# ミトコンドリアの観測のための 可視域広視野フォトサーマル顕微鏡の開発

戸倉川研究室 丸山 朋希

#### 1. はじめに

フォトサーマル顕微鏡はポンプ・プローブ顕微 鏡の一種でラベルフリーな分子分布の計測などを 可能とする.原理は試料内の特定の分子や分子結 合のもつ吸収ピークに対応する波長の光をポンプ 光として照射すると,ポンプ光が試料に吸収され 熱が発生し試料の温度が上昇する(フォトサーマル 効果),この温度上昇の結果として屈折率が変化し これをプローブ光で検出することができる.

ミトコンドリアは細胞内のエネルギー産生にお いて中心的な役割を担う細胞小器官で,筋肉の活 動や発達,維持においても不可欠である.先行研究 において,ミトコンドリアを対象とした波長 520 nm励起のポイントスキャン型フォトサーマル顕微 鏡が開発されてきた [1].ポンプ光とプローブ光が それぞれ集光されて試料に照射され,信号強度分 布関数が 2 つの光の共同分布関数の積となるので 高い空間分解能を有するが,試料上をスキャンす る必要があることから時間分解能が低いという欠 点を有する.そこで我々はスキャンを必要としな い可視域広視野フォトサーマル顕微鏡(フォトサー マル定量位相顕微鏡)を開発した.

本論文ではフォトサーマル定量位相顕微鏡を構 築するための定量位相イメージングシステムとし て回折型定量位相顕微鏡を構築し,その性能の評 価を行っている.また,回折型定量位相顕微鏡にフ ォトサーマル効果を誘起させるための励起光源を 導入したフォトサーマル定量位相顕微鏡を構築し, その性能の評価を行っている.





#### 2. 原理

#### 2.1 フォトサーマル効果

光照射により一度にたくさんの分子が基底状態 から励起状態に励起されるが,励起状態の分子が すべて蛍光を放出して緩和するのではなく,蛍光 を出さなかった残りの分子は光を出さずに緩和す る.この過程を無輻射遷移という.無輻射遷移では, 励起状態と基底状態との差のエネルギーは最終的 には分子の並進運動の運動エネルギーとなり,周 辺の分子と衝突を繰り返し,集団としては熱エネ ルギーとして系に放出される.つまり,光エネルギ ーが熱エネルギーに変換されており,熱膨張にと もなう屈折率変化が発生したり,音響波が発生し たりする.こうした効果を総称して光熱変換効果 (フォトサーマル効果)と呼ぶ.

## 2.2 ポイントスキャン型フォトサーマル顕微鏡

熱は熱膨張による圧力や応力などの力学的変化 だけでなく,圧力が変わることによる密度の変化 も引き起こし,それにともない屈折率も変化する. 空間的に温度の分布があると,屈折率は温度依存 性をもつため屈折率の空間分布も一様でなくなる. この屈折率分布が疑似的な光学レンズ(熱レンズ) として作用し,これを熱レンズ効果と呼ぶ [2].こ の熱レンズ効果を用いたポイントスキャン型フォ トサーマル顕微鏡(熱レンズ顕微鏡)について述べ る.

図 2 に顕微鏡下での熱レンズ効果の概念図を示す. 測定対象が吸収を有する波長のレーザー光と試料 に吸収のない波長のプローブ光を同軸に入射する. 励起光とプローブ光の焦点に差をつけると,プロ ーブ光の光路が熱レンズによって変化し,ピンホ ールを通過する光量が変化し,励起光による吸収 を定量的に分析可能となる.また,励起光に強度変 調をかけると,熱レンズ効果によるプローブ光の 光量変化も変調される.したがってこの変調周波 数でロックイン検出することによって高感度測定 が可能となる.一度の光量検出では一点のみの熱 レンズ効果しか検出できないが,試料を二次元方 向に走査することで試料全体の分布が得られる.



図 2 顕微鏡下での熱レンズ効果の概念図

ポイントスキャン型フォトサーマル顕微鏡は高 感度な測定が可能であるが、20×20 µm<sup>2</sup>(200×200 ピクセル)の測定に 80 s 程度の時間を必要とする [1]. そのためピクセル間の時間的な相関が失われ てしまい、動的な観察には向いていない.次節で述 べるフォトサーマル定量位相顕微鏡は試料全体の 屈折率分布を一度の露光で取得することができ、 試料の動的な観察が可能である.

#### 2.3 フォトサーマル定量位相顕微鏡

フォトサーマル効果は局所的な屈折率の変化を 引き起こし、ポイントスキャン型フォトサーマル 顕微鏡はその屈折率の変化を光の進行方向の変化 として観測するものである.一方,屈折率の変化は 光路長の変化と言い換えることができ、その光路 長の変化を観測するのがフォトサーマル定量位相 顕微鏡である. [3]

フォトサーマル定量位相顕微鏡では、光路長の 変化を光の位相変化として検出する.次章で詳し く述べる定量位相イメージング法は1枚または複 数枚の画像から試料の位相分布を取得する手法で あり、励起光によって屈折率の変化が起きている ときと起きていないときの差分を取ることによっ てフォトサーマル効果による変化を検出する.(図 3)



#### 2.4 off-axis 配置による定量位相イメージング

透過物体を定量位相イメージングする場合,図 4に示すようなマッハ・ツェンダー型の干渉計がよ く用いられる.光源から出力された光をビームス プリッターによって分岐させ,その後分岐させた 光を次のビームスプリッターで結合する.すると, 撮像素子で干渉縞を観測することができる.この 干渉縞を後述のフーリエ変換法を用いて画像解析 することによって,試料の位相分布が得られる.



 図 4 一般的なマッハ・ツェンダー干渉計による off-axis 配置

図 4における参照光側のミラーを 90°から少し 傾け、イメージセンサーに角度0で入射した場合を 考える.物体光と参照光の複素振幅u<sub>o</sub>とu<sub>r</sub>はそれ ぞれ次のように表される.

$$u_{o} = A_{1}(x, y) \exp\left(i\phi_{1}\right)$$
$$u_{r} = A_{2}(x, y) \exp\left[i\left(\phi_{2} + \frac{2\pi}{\lambda}\sin\theta \cdot x\right)\right]$$

ここで、 $A_1 \ge A_2$ はそれぞれ物体光と参照光の振幅、  $\phi_1 \ge \phi_2$ はそれぞれ物体光と参照光の位相である. このとき、イメージセンサー上にできる干渉縞 I(x,y)は次のように表すことができる.

 $I(x, y) = |u_1(x, y) + u_2(x, y)|^2$ 

 $u_{o} \ge u_{r}$ を代入して次の式が得られる.

$$I(x, y) = |A_1(x, y)|^2 + |A_2(x, y)|^2 + |A_2(x, y)|^2 + 2A_1(x, y)A_2(x, y)\cos\left(\phi_1 - \phi_2 - \frac{2\pi}{\lambda}\sin\theta \cdot x\right)$$

この式の第 3 項のコサインが,光強度が空間的に 縞模様を作っていることを表している.

# 2.5 フーリエ変換法 [4] [5]

図 5 にフーリエ変換法の概念図を示す.全体に  $f_x \geq f_y$ の空間キャリア周波数の縞がかかっている 画像に対して空間フーリエ変換すると,空間周波 数スペクトル上で中心からx方向に $f_x$ , y方向に $f_y$ だけシフトした位置に物体像成分が現れ,試料を そのまま通過した背景光成分と物体像に共役な共 役像成分と分離される(図 5(a)).その後物体像のみ をフィルタリングで切り出し(図 5(b)),物体像成分 を $f_x \geq f_y$ だけ中心に平行移動させて縞(空間キャリ ア周波数)成分を取り除く(図 5(c)).この物体像成 分は複素振幅で強度と位相の情報を含むので,逆 空間フーリエ変換を行うことで強度と位相のそれ ぞれの分布が得られる.



(a)~(c)は空間周波数スペクトル

## 3. 回折型定量位相顕微鏡の開発

フォトサーマル信号を取得するための定量位相 イメージングシステムとして,実験系は回折型位 相顕微鏡 [6] [7]を採用し,フーリエ変換法を用い て干渉縞画像の撮影と解析を行い,回折型位相顕 微鏡の性能の評価を行った.実験図を図 6 に示す.



図 6 回折型位相顕微鏡の実験図

光源には中心波長 640 nm, 最大パルス幅 129 ns の 市販のナノ秒パルスレーザー (NPL64C/Thorlabs) を用いた. 試料の一点一点で回折した光は, レンズ 対によって回折格子に 像転送される. そしてこの 回折格子の 1 次回折によって光軸が曲げられ, 撮 像素子に垂直に入射 する. 一方, 試料をそのまま 通過した光は, 回折格子もそのまま透過し, 撮像素 子に入射角をもって入射する. よって, 物体光と参 照光が角度をつけられて入射するため, 撮像素子 上で干渉縞が得られる.

この系の利点は,物体光と参照光が共通光路を 通るという点である.これによって,外乱により光 学素子で発生する位相ノイズの影響を低減するこ とができ,サブ nm の位相分解能を有する系となる. また物体光と参照光の光路差が小さいことからコ ヒーレンス長の短い光源を使用可能で,これによ り望まぬ干渉によるスペックルノイズの影響を低 減できる.

拡大倍率は 100 倍,対物レンズの NA は 0.55,視 野 112.5×70.3 µm<sup>2</sup>の範囲を露光時間 10 ms で撮影 した. 直径 2µm のポリスチレンビーズを UV 硬化 樹脂で固めて試料を作製し,撮影した位相分布を 図 7 に示す.図 7 はビーズのある個所と無い箇所 でそれぞれ位相分布を取得し,位相のバックグラ ウンドを除去したものである.フォトサーマル顕 微鏡を構築した場合,励起光が照射されていると きとされていないときの差分を取るので,図 7 と 同様にバックグラウンドを除去した位相分布が取 得可能となる.



図 7 ビーズの位相分布

図 7 の一部を拡大したものを図 8 に示す.また, 図 8 の黒線部での断面方向の位相分布を図 9 に示 す.



図 9より, ビーズの有無によって位相が 1.41 rad 変 化することが分かった.また,ほかの 7 点のビーズ についても同様に位相変化を測定した平均値は 1.52 rad であった.これは屈折率差 0.078 に相当す る.UV 硬化樹脂の屈折率が 1.50 前後,ポリスチレ ンの屈折率が 1.580 であることからその差は 0.08 程度となるため,妥当な屈折率変化が検出された と考えられる.また,8 点の標準偏差は 0.09 rad で, これは平均値 1.52 rad の 6%程度である.5%のビー ズの製造誤差があるため,位相分解能は製造誤差 で制限されてしまうが,製造誤差程度の位相分解 能を有していることが分かった.

生体試料(マウス下肢筋の切片,電通大狩野研提 供)についても同様に観察した.バックグラウンド を除去した位相分布を図 10 に示す.また,図 10 の黒枠内の黒線部での断面方向の位相分布を図 11 に示す.細胞膜の組織の半値幅から,横方向分解能 は 0.94 μm 以下であることがわかった.





# 4. フォトサーマル定量位相顕微鏡の開発

#### 4.1 実験構成

前節で述べた回折型位相顕微鏡に励起光源を導入し,フォトサーマル定量位相顕微鏡を構築した. 図 12 に実験図を示す.



図 12 フォトサーマル定量位相顕微鏡の実験図

ミトコンドリア内部に特徴的に存在するタンパ ク質であるシトクロム c は, ほかのタンパク質と比 較して波長 520 nm 付近に特徴的な吸収極大を有す る.そのため波長 520 nm の市販のナノ秒パルスレ ーザー(NPL52C/Thorlabs)を励起光源とした.プロ ーブ光源は空間フィルタシステムを導入し,横モ ードの高次成分をフィルタリングしている.また, 試料に入射した励起光が直接対物レンズに入射し ないように光軸を調整しているが,微小な散乱が 検出されてしまうため,波長 640 nm のプローブ光 は反射し,波長 520 nm の励起光は透過するダイク ロイックミラーを入れている.

プローブ光のパルス, 励起光のパルス, カメラの 露光のタイミングチャートを図 13 に示す.



プローブ光と励起光は 1 ms の間隔でパルスが出射 される.また,励起光による変化をプローブ光で検 出するために,プローブ光は励起光に対して 100 ns 程度の遅延をほどこしてある.励起光は照射され ている区間とされていない区間が存在し,それぞ れの区間でカメラを露光させる.これらの各画像 ペアの差分を取ることでフォトサーマル効果によ る微小な位相の変化を検出する.各画像ペアの時 間差は 50 ms となっており,長期的なドリフトの影 響を低減している.また,この差分を数千~10,000 回平均化することでノイズ成分を除去している.

#### 4.2 着色ポリスチレンビーズの撮影

試料は直径 0.8 μm で,励起光の波長 520 nm(緑) の光を吸収する赤い着色のポリスチレンマイクロ ビーズを用いた.励起光が照射されているときと されていないときの差分を 5,000 回平均化して取 得したフォトサーマル位相分布を図 14 に示す.



図 14の黒線の枠内を拡大した画像を図 15 に示 す. 信号が強く出た個所があることが分かった.



図 15 図 14 の黒線の枠内の拡大図

図 15 の信号が強く出た個所とビーズの強度分 布を重ねた画像を図 16 に示す. 強度分布でビーズ がよく見えている個所とフォトサーマル位相分布 で信号が強く出た個所が重なっていることから, フォトサーマル効果による変化を検出したと考え られる.



図 16 図 15 の信号が強く出た個所と 強度分布を重ねた画像

# 4.3 生体試料の撮影

マウスの下肢筋の切片に対しても同様にフォト サーマル位相分布を取得した.

一枚の各干渉縞画像から,図 17のような位相分 布が得られた.細胞膜に沿った分布が確認できる.



図 17 一枚の干渉縞画像から得られた位相分布

励起光が照射されているときとされていないと きの差分を 10,000 回平均化して取得したフォトサ ーマル位相分布を図 18 に示す.細胞膜と細胞内で 位相の違いを検出した.細胞膜にはミトコンドリ アおよびそれに付随しているシトクロム c は基本 的には存在しないため,フォトサーマル効果によ る位相の違いが検出されたと考えられる.また位 相の変化は 0.4 mrad の範囲に有意な信号が存在し ており,これは光路長 0.04 nm の変化に相当する.



図 18 生体試料のフォトサーマル位相分布

# 5. まとめ

本研究では、ミトコンドリアの観測のため、全視 野可視域フォトサーマル顕微鏡の開発と性能の評 価を行った. 生体試料に対して、空間分解能 0.94 µm 以下でフォトサーマル効果による光学長 0.04 nm に相当する位相の変化を検出した. 今後の展望として、より高強度な励起光源とプ ローブ光源を用意し、平均回数を少なくすること でビデオレートでのフォトサーマル分布の取得を 目指す.また分子の指紋領域を含む中赤外光を励 起光源に使用し、ミトコンドリア以外の様々な分 子種に対しての測定を行っていく.

# 参考文献

- Toru Tomimatsu et. al, "Photothermal imaging of skeletal muscle mitochondria," Biomed. Opt. Express, 8, pp.2965-2975, 2017.
- [2] 馬場和馬 et. al, "熱レンズ顕微鏡,"光学, 33, pp.708-714, 2004.
- [3] M. Tamamitsu et al., "Label-free biochemical quantitative phase imaging with mid-infrared photothermal effect," Optica Vol. 7, Issue 4, pp. 359-366, 2020.
- [4] M. Takeda et al., Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am./Vol. 72, No. 1, pp.156-160, 1982.
- [5] 武田光夫, フーリエ変換によるしま画像解析 とその応用, 応用物理 第62巻 第6号, 1993.
- [6] Gabriel Popescu et al., "Diffraction phase microscopy for quantifying cell structure and dynamics," Optics Letters 31, pp.775-777, 2006.
- [7] 早崎芳夫, 光学ライブラリー7 ディジタルホ ログラフィ, 朝倉書店, 2016.