全正常分散ファイバーレーザーの開発と

パルス圧縮

白川晃研究室 与儀安史

1. 序論

ファイバーレーザーは導波路構造を持つことから 高利得であることや表面積が非常に大きいことから 冷却性能に優れているといった利点があるが,高尖 頭出力によるファイバー端面の破壊が起きる欠点も ある.

本研究室では分割パルス増幅やマルチコアファイ バー増幅の研究を行っている.先行研究ではマルチ コアファイバー増幅のためのシード光源として,利 得媒質にYb³⁺添加ファイバーを使用した全正常分散 モード同期ファイバーレーザー(ANDiFL)を作製して いた.ANDiFLは共振器内で分散補償を行わないた め出力制限を回避でき,共振器内ではパルスがチャ ープされているためピークパワーを抑えられ高エネ ルギー化が可能である.

本研究では、先行研究[1]で作製されていた ANDiFL の構成を検討し、より安定でノイズの少な いパルスレーザーとなるように開発した.また回折 格子対を用いたパルス圧縮にも挑戦した.

2. 原理

2.1 レーザー共振器とモード同期

レーザーには大別して連続波(CW)発振とパルス発 振がある. CW 発振は一定のパワーが出力され続け るものである. パルス発振は有限な時間幅にエネル ギーが集中しているものである. もっとも簡単なレ ーザー共振器は図 2.1.1 のような,外部からエネルギ ーを加え反転分布している媒質とそれを挟むように 2枚の鏡を置いた構成のファブリペロー共振器とい われる.

反転分布しているレーザー媒質から光が放出され ると、両側の鏡によって共振器を往復する光が現れ る. 共振器を往復するたびに利得媒質によって位相 のそろった光が増幅され、位相のそろっていない光 は打ち消される. 片側の鏡を部分反射鏡とすること で、共振器内で往復し位相のそろったレーザー光を 取り出すことができる.

パルス発振は受動モード同期や能動モード同期な どのモード同期によって得られる.

図 2.1.2 モード同期の概念図

周波数軸上でレーザー媒質の利得に広がりがあ る場合,図2.1.2のように共振器内では複数の周波数 で発振する.これを多モード発振という.それらの 位相がそろった部分でパルスが生成され,共振器を1 周するごとに部分反射鏡から外へ出るためパルス列 が生成される.しかし時間とともに位相は変化しや すく,モードごとの位相関係を何らかの方法で固定 する必要がある.能動モード同期では,機械的なシ ャッターを導入するなどして直接損失を与えること によりモード同期を得る.受動モード同期では,損 失を与える物質として可飽和吸収体を共振器内に組 み込む.

図 2.1.3 可飽和吸収の概念図

可飽和吸収体とは図 2.1.3 のように弱い光は吸収 し,強い光は吸収飽和を起こすことでそのまま通す 物質である.ファイバーレーザーにおいては,非線 形偏波回転と呼ばれるファイバー内での偏光変化と 組み合わせて偏光素子を可飽和吸収体とすることも できる[2].可飽和吸収体の回復時間が,光が共振器 内を1周する時間より短い媒質であれば受動モード 同期を得ることができる.

2.2 ANDiFLの概要

一般的な超短パルスモード同期レーザーでは正常 分散の補償のために回折格子対などの異常分散媒質 を使用して分散補償してソリトンパルスを生成す る.これらの異常分散媒質はレーザーの性能を大き く制限するものであり,共振器内に異常分散媒質が 存在しないことが望まれる.全正常分散モード同期 ファイバーレーザー(ANDiFL)は共振器内で分散補償 を行わないファイバーレーザーであり,群速度分散 や自己位相変調の影響を受けてチャープされたパル スが生成される.

図 2.2.1 発振器内部のスペクトル形状[3]

図 2.8.1 は ANDiFL での解析結果である[3]. ガウ ス型の透過スペクトルフィルターによって切り取ら れたパルス(a)は SMF 内を通過することで自己位相 変調によってスペクトル幅が広がる(b).利得ファイ バーで増幅され(c),最終的には(d)のようなスペクト ル形状となる.このスペクトル形状は ANDiFL で見 られる特徴的な形状であり,両端が立ち上がってい て猫の耳のように見えることから cat ear 型ともいわ れる.

共振器内部でのパルス幅の解析結果を示す.

図 2.8.2 共振器内部のパルス幅[3]

正常分散媒質のみで構成されているため、共振器 内部で大きくチャープされている.SMF、利得ファ イバーでチャープされ、スペクトルフィルターによ ってパルス幅は短くなり、図 2.8.2 の両端でパルス幅 が一致するようになっている.

3. 実験

3.1 先行研究の検討, 改善

本研究では先行研究で作製されていた ANDiFL を 検討し,改良・最適化した.以下に先行研究での実 験図と得られた結果を示す.

図 3.1.2 先行研究での(a)時間波形 (b)スペクトル波形(c)自己相関波形[1]

先行研究ではスペクトルフィルターに透過幅 11 nm の複屈折フィルターを使用していたが,スペクト ル広がりは 4.28 nm と透過幅より狭く,またパルス 幅は約 75 ps と非常に大きなものとなっていた.

フィルターの帯域が最適でないと考察し,透過幅3 nmのバンドパスフィルター(BPF)を使用し,また利 得媒質長やファイバー長を調節しながら実験を行った.

3.2 透過幅 3 nm の BPF 使用時の結果
透過幅 3 nm の BPF を設置した実験図を示す.

図 3.2.1 透過幅 3 nm の BPF を使用した実験図

LD に 645.1 mA の電流を入力し,波長板を調節し たところモード同期を得られた.得られたスペクト ル波形と時間波形を図 3.2.2 に示す.

図 3.2.2 3 nmBPF 使用時のスペクトル波形と 時間波形

スペクトル幅は半値全幅で 10 nm に広がってい た.繰り返し周波数は 31.6 MHz に増加した. これは インライン BPF の付け外しなどで融着を何度か行っ たためである.平均出力は 40mW 程度であった.ま たモード同期は非常に安定であり,一定出力のパル ス列を観測できた.

図 3.2.3 測定したパルス列

この時に測定された自己相関波形を示す.

図 3.2.4 測定された自己相関波形

自己相関波形には中心付近に鋭いピーク,コヒーレ ントスパイクが表れていた.これは中心波長付近に大 きな変調が表れているためだと考えられる.

ファイバーによる自己位相変調が大きく寄与して いるのだと考え,ファイバー長を調節し,さらに LD の入力電流を下げてコヒーレントスパイクが表れな い解が得られた.

典型的な ANDiFL のスペクトル形状にはなってい ないが,広がり幅は 5 nm で BPF の透過幅よりも広が っていた.この時のパルス幅は約 2 ps となっていた.

3.3 回折格子対による圧縮

チャープしたパルスを短パルス化させるには,回 折格子やプリズムを使用したパルス圧縮が有効であ る.透過型回折格子を用いたパルス圧縮の概略図を 示す.

図 3.3.1 透過型回折格子対によるパルス圧縮 の概略図

回折格子に入射したパルスが,波長ごとに異なる回 折角をもつことによって光路差が生まれ圧縮が行え る.

回折格子対を実験系と自己相関計の間に設置した.

図 3.5.1 回折格子対を設置した実験系 回折格子対の間隔を 4 cm として測定を行った.

図 3.5.2 回折格子対を使用した測定結果

回折格子対を使用した結果パルス幅は約13psとなり、パルス圧縮は達成できなかった.これは回折格 子対と自己相関計のアライメントが不十分であった ためと考察する.

4. まとめ

BPF や利得ファイバー長などを調節することによ りパルス幅は約 80 ps から 2 ps と短パルス化するこ とができた. 回折格子による圧縮は不十分であるた め, 調節を行いさらなる短パルス化を行うことが目 標である.

5. 参考文献

[1]田中望実, "全正常分散ファイバーレーザーの作 製,"電気通信大学卒業論文, 2021

[2] Zhi-Bo Liu, Xiao-Qing Yan, Jian-Guo Tian, Wen-Yuan Zhou, and Wei-Ping Zang M. Savage, *Optics Express*, Vol. 15, No. 20, 13351-13359, 1964

[3] F. W. Wise, A. Chong, and W. H. Renninger, *Laser & Photonics Reviews*, Vol. **2**, No. 1-2, 58-73, 2008