タングステン多価イオンの発光過程の研究

中村信行研究室

氏名:寺西若葉

平成 31 年 3月 8日

1. 背景と目的

現在フランスで建設中である国際熱核融合実験炉 ITER では、プラズマ中の粒子流を制御するプラズマ 対向壁(ダイバータ)の材料にタングステンを用い ることが予定されている。その理由として、タング ステンは高い融点をもちプラズマの熱に耐えられる こと、核融合の燃料となるトリチウムを吸蔵しにく いことが挙げられる。しかしながら、プラズマ中に タングステン粒子が混入すると、タングステン多価 イオンとなって X 線を放出し、プラズマの温度を下 げ、核融合の効率を下げてしまうという問題点があ る。効率的に核融合を起こし続けるためには、タン グステンのプラズマへの流入量と流入経路を調べ、 プラズマを制御する必要がある。プラズマ中のタン グステン多価イオンの挙動を調べる手法として、タ ングステン多価イオンの発光を観測する分光診断が 非常に有用であると考えられている。しかし、波長 や発光寿命などの原子データが不足しているため、 具体的な診断計画を確立することができていないの が現状である。そのため、タングステン多価イオン からの発光線を系統的に探索・同定し、波長や遷移 寿命などの基礎データを蓄積することが今強く求め られている。本研究ではまず、電子ビームイオント ラップ(Tokyo-EBIT)[1]を使って、52価のタングステ ン多価イオンの基底状態微細構造準位間磁気双極子 遷移の発光寿命測定を行った。実験では、まず電子 ビームによる逐次電離により52価イオンを生成、

トラップした。その後電子ビームを止め、ペニング トラップの原理でイオンをトラップし、発光強度の 時間変化を観測した。発光強度の減衰から寿命を測 定することが出来る。また、Flexible atomic code: FAC)と呼ばれるコードを用いて計算した理論値と実 験値を比較した。

2. 遷移寿命測定

EBIT では、強磁場で圧縮した電子ビームの空間電 荷によりイオンをトラップするが、電子ビームを遮 断した後も、軸方向の強磁場によりイオンをある程 度の時間トラップし続けることが可能である。電子 ビームを遮断することで電子衝撃による電離や励起 も起こらなくなるため、その後の発光強度の減衰を 観測することで遷移寿命を測定することが可能であ る。本研究では Tokyo-EBIT を用いて遷移寿命の測 定を行った。実験の測定系を図1に示す。

図 1:測定系

干渉フィルターを通った多価イオンからの発光を、光 電子増倍管(Photomultiplier Tubes: PMT)に入射 させ、PMT からの電気信号をプリアンプとアンプに よって増幅させる。増幅された信号をシングルチャン ネルアナライザ(Single Channel Analyzer: SCA) を用いてノイズ信号と分離し、マルチチャンネルアナ ライザ(Multi Channel Analyzer: MCA) に入力す る。ここで、PMT は R4220P(浜松ホトニクス製)、 暗電流:0.2[nA]、暗計数:10[s⁻¹]を用いている。 ま た、分光器によるスペクトル測定を同時に行うこと で、他の遷移による発光の寄与がないことを確認しな がら測定を行った。

[スペクトル測定]

遷移寿命測定では、図1にあるように干渉フィルター を用いている。干渉フィルターは特定の対象の波長域 のみ透過することができる。

図2に、分光器により測定したW⁵²⁺のスペクトルを示す。

図 2: W^{52+} $(3d^4)^5 D_2$ - $(3d^4)^5 D_3$ 遷移に対するスペクトル

今回の遷移寿命測定では、半値幅が 11 nm のフィル ターを使用したが、図2からわかるように、その範 囲内に他の発光線による寄与がないことが確認でき た。

[アルゴンの発光寿命測定]

まずは動作確認を含め、過去に報告例のある、13 価 のアルゴンの遷移寿命測定を行った。 図3にその結果を示す。

図 3: Ar¹³⁺(²_□P_{3/2} - ²_□P_{1/2})の遷移寿命測定結果

遷移寿命は 8.86ms となった。表1 に今回の実験と 過去の実験値を比較したものを示す。本実験で得ら れた遷移寿命の値を含め、既に報告されている値に は少しばらつきがあるが、おおよそ一致しているこ とがわかる。 表 1: Ar¹³⁺における磁気双極子遷移の遷移寿命に関す る今回の実験値と過去の実験値との比較

寿命[ms]
9.70
9.12
8.77
9.50
8.86

J=2-3、J=4-3の両遷移を考慮し、遷移確率の和を求めた結果を表3に示す。

表3:遷移確率の実験値と理論値との比較

	J=2(/s)	J=4(1/s)	両遷移
			の合計
present	-	-	1316
Feldman[6]	263	1424	1687
Beck[7]	246	1231	1477
Kato[8]	244	1174	1418
FAC(present)	263	1433	1696

[タングステンの発光寿命測定]

続いて、目的とするW⁵²⁺の磁気双極子遷移に対する寿 命測定を行った。その結果を図4に示す。

これより遷移寿命は 0.758ms となった。また、実験値 と理論値を比較したものを表 2 に示す。

表 2:W⁵²⁺における磁気双極子遷移の遷移寿命に関す る今回の実験値と過去の実験値との比較

	寿命[ms]
Feldman[6]	0.593
Beck[7]	0.677
Kato[8]	0.705
Present	0.758

Present が今回の実験、FAC(present)が FAC で計 算した値となり、若干のずれが見られ、遷移確率が 小さくなっている。

このため、TokyoEBIT を使ってほかの価数の遷移寿 命についても議論していく必要がある。

3.未同定発光線の同定

これまで研究室では多くの低価数タングステン多価 イオンの発光線が観測されてきたが、ほとんどの発 光線の遷移が未同定のままである。そこで、今回は FAC を用いて衝突輻射モデルによるスペクトルの 計算を行い、観測された低価数タングステン多価イ オン発光線の遷移同定を試みた。

衝突輻射モデルでは励起や脱励起のレートから各準 位の占有密度を計算し、発光線強度を得る。

今回はW⁷⁺とW⁶⁺に絞って、FAC で理論計算をし、 遷移同定を行った。また計算結果と比較するために スペクトル測定の追試を行った。

count

図 5~図 8 にはそれぞれの計算結果、表 4~表 7 にそ れぞれの計算結果を記載した。図 5、6 はそれぞれ W⁶⁺、W⁷⁺の遷移の gA 値、図 7、8 はそれぞれ衝突 輻射モデルで求めたW⁶⁺、W⁷⁺のスペクトルを示し ている。

波長(nm)

図 5:W⁶⁺波長と gA 値の関係

表 4: W⁶⁺の主な遷移の波長と gA 値、始状態と終状 態

波長(nm)	<i>gA</i> 值(/s)	始状態	終状態
① 13.9	1.97E+11	$5s^25p^56d^1$	$5s^25p^6$
2 18.9	1.52E+12	$5s^25p^55d^1$	$4f^{13}5s^25p^65d^1$
③ 23.2	1.59E+11	$5s^25p^55d^1$	$4f^{13}5s^25p^65d^1$

図 6: W⁷⁺波長と gA 値の関係

表 5: W⁷⁺の主な遷移の波長と gA 値、始状態と

終状態

波長(nm)	gA值(/s)	始状態	終状態
① 17.7	1.25E+12	$4f^{13}5s^25p^55d^1$	$5s^25p^5$

波長(nm) 図 7:W⁶⁺波長と強度の関係

表 6: W⁶⁺の主な遷移の波長と強度、始状態と終状 態

波長(nm)	強度	始状態	終状態
① 18.8	6.50E-01	$4f^{13}5s^25p^65f^1$	$5s^25p^6$
2 23.2	2.11E-01	$4f^{13}5s^25p^65f^1$	$5s^25p^6$

タングステンの極端紫外域の遷移について CoBIT を 用いてスペクトル測定を行った。試料はタングステ ンヘキサカルボニルW(CO)₆を用いた。波長較正線は Fe(C₅H₅)₂を利用した。表 8 に波長較正線、表 9 に試 料の性質を示す。

表 8:波長較正線[9]

	波長[nm]
フェロセン	18.8994 19.5119 21.9305
$Fe(C_5H_5)_2$	25.3941 26.7889 27.5208

表 9: 試料[10]

	W(CO) ₆
外観等	無色結晶性粉末
融点	~150 °C
蒸気圧	67 °C / 1.4 hPa
密度	2.65 g / cm ³ at 20 $^{\circ}$ C

図 8:W⁷⁺波長と強度の関係

表 7: W⁷⁺の主な遷移の波長と強度、始状態と終状 態

波長	強度	始状態	終状態
(nm)			
1	3.80E-00	$4f^{12}5s^25p^65d^1$	$4f^{13}5s^25p^6$
18			
. 5			

結果を図9に示す。

図 9: 18-27nm 領域のタングステン多価イオンと FAC 計算比較

下の図は衝突輻射モデルによる計算スペクトルを示 している。6価、7価のスペクトルについてずれは 見られるものの位置関係は適しているといえる。

4.まとめ

(i)本研究では、ITER での将来のプラズマ診断に貢献するために、タングステン多価イオンの分光測定を行った。

(ii)遷移寿命測定では、本研究で使用した装置と測定
方法を元にタングステン 52 価の可視域磁気双極子
遷移寿命を測定した。

(iii)また、未同定のタングステン多価イオンの発光 線を同定するため衝突輻射モデルによる計算を行っ た。

5. 参考文献

[1]E.D.Donets et al., IEEE Trance.Necle.Sci.NS-23 904(1976)

[2]E. TRÄBERT et al., THE ASTROPHYSICAL JOURNAL,541:506-511 (2000)

- [3] F G Serpa et al., J.Phys. B, 31 3345 (1998)
- [4] A. Lapierre et al., Phys Rev Lett, 95 183001 (2005)
- [5] A. Lapierre et al., Phys Rev Lett, 95 183001 (2005)
- [6] U. Feldman, J. Opt. Soc. Am. B 8 3 (1991)
- [7] D.R. Beck, Phys. Rev. A 60 3304 (1999)
- [8] D. Kato, J. Chin. Chem. Soc. 48 525 (2001)
- [9] https://www.nist.gov/
- [10]https://www.hitachihightech.com/products/ima

ges/9797/ana-grating 05.pdf