電子ビームイオントラップの電子エネルギー制御による

多価イオンの励起・電離過程の研究

中村信行研究室 物部将士

1. 序論

電子ビームイオントラップ(Electron beam ion trap: EBIT)[1]は多価イオンを研究する ための装置である。EBITの電子ビームエネ ルギーを制御することにより、電子と多価 イオンとの衝突の中で二電子性再結合[2]や 共鳴励起[3]のような重要な原子過程の研究 を可能とする。また、電離や再結合が進行す る過程や、準位間のポピュレーションの変 化も観測することができる。本研究ではこ のEBITの電子ビームエネルギー制御を利用 して、プロメチウム様金イオンの電離や励 起を観測する研究と、鉄14価に着目した共 鳴励起過程を観測する研究を行った。

2. 実験装置

図 2.1 本研究における実験装置概略図

本研究では、電子ビームイオントラップ (electron beam ion trap : EBIT)[1]を用いた。 EBITは主に電子銃、3つのドリフトチューブ (drift tube : DT)、コレクター、超伝導コイル によって構成されている。電子銃から放出 された電子はカソード電位とアノード電位 差によって加速され、超伝導コイルによっ て径方向に圧縮されながらドリフトチュー ブに入射される。3つのドリフトチューブ、 DT1、DT2、DT3では、DT1とDT3の両端の 電極に高い正電圧が印加されて、多価イオ ンが軸方向にトラップされる。径方向に対 する多価イオンの閉じ込めは、超伝導コイ ルによって高密度に圧縮された電子ビーム 自身が作り出す空間電荷ポテンシャルによ って達成される。また、閉じ込められたイオ ンは、電子ビームの逐次衝突を受けて多価 イオン化される。さらに、電子はイオン化や トラップの他に、イオンを励起させて光を 放出させる役割も担う。本実験では小型電 子ビームイオントラップ[4]を使用した。

トラップされたイオンからの極端紫外領 域の発光は平面結像型不等間隔凹面回折格 子[5]によって観測された。回折格子は溝本 数1200 lines/mmの日立テクノロジーズ社 001-0659を採用している。回折された光子 は位置有感検出器(PSD)によって検出され た。本実験で扱ったPSDは、5枚のマイクロ チャンネルプレート(MCP)と、空間情報を 提供するための抵抗アノードエンコーダ (RAE)によって構成されている。

本研究では、周期的に電子ビームエネル ギーを制御するために、カソード電位を固 定し、DT2 の電位を周期的に変化させてい る。任意波形生成器から出力された電圧波 形を増幅器で増幅し、DT の電位を周期的に 変えて、電子ビームエネルギーを変化させ ている。 プロメチウム様金イオンのポピュレーショントラップ解明のための時間発展測定

3.1 序論

近年、小型電子ビームイオントラップに よるプロメチウム様ビスマスイオン(Z=83) の観測と衝突輻射モデル計算によって、 4f¹³5s² 準安定状態のポピュレーションは、 4f⁴⁵s 基底状態のポピュレーションよりも 優勢であり、その結果、共鳴線 4f¹⁴5s-4f¹⁴5p は、4f¹³5s²-4f¹³5s5p 遷移に比べてはるかに弱 いことが報告された[6]。この準安定状態 4f¹³5s² のポピュレーションの方が支配的で あることを準安定状態のポピュレーション トラップと呼ぶ。

図 3.1 プロメチウム様金イオンのエネルギー 準位図

図 3.1 のプロメチウム様金イオンのエネ ルギー準位図をもとに、ポピュレーション トラップの原因について説明する。基底状 態 4f¹⁴5s は主に 4f¹⁴5p か 4f¹³5s5d のどちら かに励起される。4f¹⁴5p の方はすぐに基底状 態に脱励起する。一方、 $4f^{13}5s5d$ は基底状態 $4f^{45}s$ よりも、多くの微細構造準位をもつ $4f^{13}5s5p$ の方へと脱励起する。 $4f^{13}5s5p$ は最 終的に $4f^{13}5s^2$ へと脱励起する。この準位は 数十秒の長寿命をもち、準安定状態である ため、一度、電子が $4f^{13}5s5d$ へ励起すると、 プロメチウム様金イオンはほとんど基底状 態に戻ることはできない。その結果、ポピュ レーションが基底状態から準安定状態へ移 り、最終的に、平衡状態時には準安定状態 $4f^{13}5s^2$ のポピュレーションが支配的となる。

先行研究[6]では、電子エネルギーを固定 して、平衡状態のポピュレーションを研究 してきた。今回、私は平衡状態になる前の発 光スペクトルの時間発展を観測し、準位ポ ピュレーションの発展を研究した。

3.2 実験

電子が一つ多い状態、サマリウム様金イ オン Au¹⁷⁺を準備段階として生成しておき、 素早くプロメチウム様金イオン Au¹⁸⁺を生 成することでプロメチウム様金イオン内の 基底状態から準安定状態へポピュレーショ ンの変化を確認する。

3.3 結果と考察

図3.2 金多価イオンの発光強度の時間依存性

図3.2は測定された極端紫外領域の金多

価イオンの発光強度の時間依存性を示して いる。横軸は、プロメチウム様金イオン生成 の閾値以下457eVから、閾値を超えた480eV にエネルギーを変化させた時点を0msとし たときの時間経過を示す。縦軸は発光強度 を示す。(Pm*A)と(Pm*B)はプロメチウム様 金イオンの準安定状態への遷移、(Sm)はサ マリウム様金イオンの遷移、(Pm)はプロメ チウム様金イオンの基底状態への遷移をそ れぞれ示している。実験データを指数関数 でフィッティングした結果を黒の実線で示 している。rはそれぞれのライン強度をフィ ッティングしたときに求められた時定数を 示す。また、フィッティングにより求められ た関数の切片は0を示していない。これはエ ネルギーを変えた時点(0ms)で、すでに、プ ロメチウム様金イオンが存在していること を意味する。

図3.2を見ると、おおよそ0msから200ms の間で著しく各ラインの発光強度が変化し、 電離的に非平衡状態であると言える。よっ て、サマリウム様金イオンからプロメチウ ム様金イオンへの電離の過程が観測できた といえる。

図3.3は図3.2のプロメチウム様金イオン の基底状態への遷移の発光強度と準安定状 態への遷移の発光強度を使って求めた強度 比の時間依存性を示している。横軸は図3.2 と同様、縦軸は強度比を表している。 (Pm*A)/(Pm)、(Pm*B)/(Pm)それぞれ、図3.2 のフィッティングの結果を使って計算して いる。τはそれぞれの強度比の時定数を示す。

この図3.3から、初期段階0msからおおよ そ200msあたりにおいて、明らかに著しい強 度比の変化が確認され、2つの状態間でポピ ュレーションの変化があったといえる。さ らに、強度比が増加を示すことから、基底状態から準安定状態へのポピュレーションの変化があったと考えられる。

図3.3 Pm様金イオンの基底状態への遷移と準 安定状態への遷移の強度比の時間依存性

図3.2のプロメチウム様金イオンの準安 定状態への遷移の発光強度を示すグラフ (Pm*A)の時定数は110msである。このグラ フはサマリウム様金イオンからプロメチウ ム様金イオンへの電離過程を示すことから、 サマリウム様金イオンからプロメチウム様 金イオンへの電離過程が平衡状態になるま での時定数を110msと考えることができる。 一方、図3.3のプロメチウム様金イオンの準 安定状態への遷移の発光強度と基底状態へ の遷移の発光強度との比を示すグラフ (Pm*A)/(Pm)の時定数は50msである。このグ ラフはプロメチウム様金イオンの基底状態 から準安定状態への遷移によるポピュレー ションの変化を示すことから、基底状態か ら準安定状態へのポピュレーションの変化 が平衡状態になるまでの時定数を50msと考 えることができる。この2つの時定数を比較

することにより、サマリウム様金イオンか らプロメチウム様金イオンへの電離による ポピュレーションの変化よりも、プロメチ ウム様金イオンの基底状態から準安定状態 への遷移によるポピュレーションの変化の 方が速いことがわかった。

4. 閾値近傍における鉄多価イオンの 電子衝突励起過程の研究

4.1 序論

太陽コロナのような天体高温プラズマに とって、共鳴励起過程は極めて重要である。 しかし、天体プラズマでは電子がエネルギ 一分布を有しており、特定のエネルギーで のみ起きる共鳴励起過程の研究をすること は難しい。そのため、エネルギーの制御が可 能な実験室プラズマでの研究が必要となる。 しかし、共鳴励起過程は、ほとんど実験が行 われておらず、未だにデータも集まってい ない。

近年、小型電子ビームイオントラップを 用いて極端紫外線領域における鉄14価の 3s3p-3p3d遷移の電子エネルギー依存性を測 定したところ、LMM共鳴励起の観測に成功 したとの報告があった[7]。また、この先行 研究では、非共鳴励起において実験データ と理論計算との間で差異が確認されている。

本研究ではLMMよりも強い共鳴を起こ すMNn共鳴励起を観測することを目的とし、 先行研究で確認された非共鳴励起において の実験データと理論計算との間の差異を再 度検証する。MNn共鳴過程は以下の式で表 すことができる。

 $e + Fe^{14+}(3s^2) \rightarrow Fe^{13+}(3s4lnl') \rightarrow Fe^{14+}(3s3d) + e$

4.2 実験

図4.1 共鳴励起観測のための電子ビームエネ ルギーの時間変化

図4.1 は本実験における電子ビームエネ ルギーの時間変化を示している。t_{dump}はイ オンの払い出しを行う周期であり、1800ms に設定した。tcookは鉄14価を生成する時間で あり、1600msに設定した。イオンの払い出 しによってトラップ内のイオンが吐き出さ れてしまうので、イオンの払い出しの後に 必ずtcookの鉄14価を生成する時間が必要と なる。tcookの鉄14価を生成する時のエネルギ ーは570eVとした。tproveは共鳴励起過程を観 測するために、220eV~70eVの間で掃引する 時間であり、6msに設定した。tkeepはtproveの間 に生じる価数分布の変動を整える役割の時 間であり、14msに設定した。今回、特に強 い共鳴強度を示すと期待されているのが約 90eVであるので、空間電荷ポテンシャルに よる電子ビームエネルギーの減少を考慮し て、220eV~70eVとした。

4.3 結果と考察

図4.2の黒の実線が実験によりも求めら れた3s3p-3s3d遷移の発光強度のエネルギ ー 依 存 性 を 示 し 、 (b) が 鉄 14 価 3s3p-3s3d(³P2-³D₃)遷移であり、(c)が鉄14価 3s3p-3s3d(¹P1-¹D2)遷移である。赤の実線が 理論計算により求められた基底状態(3s²) から3s3dへの励起を考慮した、3s3p-3s3d遷 移の発光断面積を示している。横軸は電子 エネルギー(210eV~60eV)を示す。左軸は光 子カウント数を示し、右軸は励起断面積を 示している。

図 4.2 鉄 14 価 3*s*3*p*-3*s*3*d* 遷移((b) (³P₂-³D₃), (c) (¹P₁-¹D₂))の発光強度の電子エネルギー依存 性

横軸の電子エネルギーのスケーリングに ついて説明する。図4.2の(c)鉄14価3s3p $-3s3d(^{1}P_{1}-^{1}D_{2})$ 遷移に注目すると、95eV以下 で励起が起きていないことがわかる。これ は基底状態($3s^{2}$)から励起状態($3s3d^{1}D_{2}$)への 励起閾値が94.5eV[8]であるため、電子エネ ルギーが94.5eV以下になると励起できなく なってしまい、その結果、3s3p - 3s3d

(¹P₁-¹D₂)の遷移もできなくなってしまう ために起きている。この現象を利用し、この 94.5eV閾値付近のふるまいが、実験結果の (c)鉄14価3s3p-3s3d(¹P₁-¹D₂)遷移の発光強 度と、理論計算により求められた発光断面 積とで一致するように横軸をスケーリング した。また、縦軸もこの94.5eV閾値付近のふ るまいが、実験結果の発光強度と理論計算 の断面積とで一致するようにスケーリング している。

(b)鉄14価3s3p-3s3d(3P2-3D3)遷移も(c)鉄

14価3s3p-3s3d(¹P₁-¹D₂)遷移と同様のスケ ーリングを横軸と縦軸に施した。(b)の実験 結果の発光強度と理論計算の断面積を比較 すると、明らかな不一致が確認された。おそ らく、準安定状態(3s3p 3P2)を経由した間接 励起の寄与をこの理論計算は含んでいない ことが要因として挙げられる。青の実線は 実験データと一致するように、赤の実線の 理論計算によって求めた断面積を底上げし た断面積となる。350eV~500eVのLMM共鳴 励起過程を定量的に評価した先行研究でも、 (b)鉄14価3s3p-3s3d(³P₂-³D₃)遷移の理論計 算による非共鳴励起断面積の値が実験値と 異なっていたという報告をしている[7]。よ って、非共鳴励起断面積計算の改善の必要 性を再度証明することができた。

共鳴励起断面積に注目すると、実験デー タの発光強度と理論計算の断面積は、大ま かには良い一致を示しているが、完全に一 致しているとは言えない。これは理論計算 に考慮されていない共鳴励起過程があるの ではないかと考えている。図4.2(c)の実験デ ータを見ると、140eV~210eVの領域では共 鳴による発光強度が理論計算よりも大きい ことが確認できる。これは1つの共鳴励起に よるものではなく、無数の共鳴が存在し、そ の共鳴励起の重なりで形成されていると考 えられる。低エネルギー領域のMNN、MNO、 さらに、MNPの共鳴励起過程は多くの中間 状態を持ち、1つ1つは弱い共鳴強度である のがほとんどだが、無数に存在し、共鳴に寄 与している。特に、200eVあたりは計算に考 慮されていないMNPの共鳴励起が現れる (188.9eV中間状態3s4f6gと183.0eV中間状態 3s4f6dの共鳴励起が特に強い寄与をもつ)エ ネルギー領域であることから、MNP共鳴励

起過程の考慮により実験データとの一致に 近づくのではないかと考えている。

また、今回は(c)鉄14価3*s3p-3s3d*(¹P₁-¹D₂) 遷移の94.5eVの閾値近傍のふるまいを基準 としたが、この94.5eVの閾値近傍のふるま い自体に、実験データの発光強度と理論計 算の断面積とを完全に一致させない要因を もつ可能性もありうる。

(b)鉄14価3s3p-3s3d(³P₂-³D₃)遷移の基底 状態(3s²)から励起状態(3s3d ³D₃)への励起閾 値は84.5eV[8]であるが、(b)の遷移は閾値以 下に電子ビームエネルギーが下がってもあ る一定の光子カウント数を保つ。これは基 底状態(3s²)からの励起だけでなく、準安定 状態(3s³p ³P₂)からの励起が寄与している可 能性があるためである。準安定状態(3s3p ³P₂)から励起状態(3s3d ³D₃)への励起閾値は 53.0eVであるので、理論的にはありえる。さ らに、もし、準安定状態(3s3p ³P₂)からの間 接励起が寄与している可能性が考えられる ならば、この準安定状態(3s3p ³P₂)から励起 状態(3s3d ³D₃)への共鳴励起の寄与も十分に 考えられる。

5. 結論

5.1 プロメチウム様金イオンのポピュレー ショントラップ解明のための時間発展 計測

プロメチウム様金イオンの準安定状態へ の遷移とプロメチウム様金イオンの基底状 態への遷移の発光強度比の時間依存性を調 べた。基底状態への遷移の発光強度に対し て、準安定状態への遷移の発光強度が急激 に増加していったことから、基底状態から 準安定状態への遷移によるポピュレーショ ンの変化があることを確認できた。また、 サマリウム様金イオンからプロメチウム様 金イオンへの電離の変化と、プロメチウム 様金イオンの基底状態から準安定状態への 遷移の変化を時定数によって比較した。そ の結果、プロメチウム様金イオンへの電離 による価数の変化よりも、基底状態から準 安定状態への遷移によるポピュレーション の変化の方が速いことがわかった。

5.2 閾値近傍における鉄多価イオンの電子 衝突励起過程の研究

電子エネルギー60eV~210eVにおいて、 鉄14価の3p-3d遷移でMNn共鳴励起過程を 観測することができた。また、鉄14価3s3p - 3s3d(³P₂-³D₃)遷移において、理論計算に よる非共鳴励起断面積の値が実験の値と明 らかに異なっていることがわかり、非共鳴 励起断面積における理論計算の見直しの必 要性があると考えられる。また、共鳴断面 積においても、実験データと理論計算とで 違いがあったことから、理論計算におい て、MNN共鳴励起、MNO共鳴励起だけで はなく、MNP共鳴励起などの高準位を中間 状態にもつ共鳴励起を考慮する、もしく は、基底状態からの共鳴励起だけではな く、準安定状態からの共鳴励起も考慮する 必要があると考えられる。

参考文献

[1] R. E. Marrs et al, Phys. Rev. Lett. 60, 1715 (1988).
[2] N. Nakamura et al, J. Phys.: Conf. Ser. 58, 267 (2007).
[3] P. Beiersdorfer et al, Phys. Rev. Lett. 65, 1995 (1990).
[4] Nakamura, N. et al, 2008, Rev. Sci. Instrum., 79, 063104.
[5] Ohashi, H. et al, Rev. Sci. Instrum., 82, 083103.
[6] Y. Kobayashi et al, Phys. Rev. A 89 (2014) 010501(R).
[7] T. Tsuda et al, Nucl. Instrum. Methods phys. Res. B (2017).
[8] A. Kramida et al, NIST Atomic Spectra Database (ver. 5. 6.
1), [Online].