極低温原子気体を用いた弾性衝突過程による イオンの冷却の観測

中川研究室

笹川瑞樹

1 序論

冷却原子イオン混合系

近年、レーザー冷却技術とトラップ技術の開 発によって別々に発展してきた冷却原子系と冷 却イオン系をあわせた新しい実験系である冷却 原子イオン混合系が誕生した。原子やイオンは 絶対零度付近まで冷却すると外部状態や内部状 態が量子化され、レーザーや磁場を用いること でこれらの状態を自由に選択することが可能と なる。この技術を用いることで、原子イオン間 の散乱条件の操作や粒子1個単位での散乱現象 の観測ができるようになるため、冷却原子イオ ン混合系は化学反応をはじめとしたマクロなス ケールの現象を解明するプラットフォームとし て期待されている。またs波散乱が支配的にな る温度領域まで冷却すると我々がよく知る古典 的な化学反応とは異なる散乱現象が観測される と予想され、極低温領域における化学反応を観 測することも目的のひとつになっている。

原子イオン間の散乱には大きく分けて2種類 存在し、非弾性散乱と弾性散乱という。非弾性 散乱とは、電荷交換散乱・状態緩和散乱・分子 生成などの散乱前後に原子とイオンの内部状態 に変化を伴う散乱であり、弾性散乱は原子イオ ン間で運動エネルギーの交換のみが生じる散乱 である。非弾性散乱は原子とイオンの2粒子間 の化学反応と見ることができ、前述した低温領 域の化学反応の研究などが行われている。

RF トラップ内イオンの共同冷却

冷却原子・イオン系は注目され現在までに様々 な研究が行われてきたが、未だ冷却技術では十 分とは言えずに、研究可能な粒子種が制限され る問題が存在する。レーザー冷却は粒子の内部 状態に共鳴する光子の吸収放出過程を利用した 技術であるため、複雑な内部状態を持ち閉じた 冷却サイクルを作れない粒子(例えば分子など) を冷却することができない。そのため冷却可能 な粒子種の拡大は冷却原子・イオン系の分野を 発展に大いに貢献することが期待される。

そこで本研究で狙ったのは共同冷却を用いた 冷却可能なイオン種の拡大である。共同冷却 とはターゲットとなる粒子をより低温の粒子と 「弾性衝突」させることで冷却する手法であり、 液体へリウムを使用した方法など良く用いられ る簡単な技術であるが、RFトラップ内のイオ ンへの共同冷却の適用は他の分野のように簡単 ではない。

電荷を持つイオンは電場と強く相互作用する ため RF 電場を用いてトラップされており、ト ラップ中のイオンは調和振動に加えて RF 電場 によって誘起されるマイクロモーションをして いる。[1] コヒーレントに振動している間はマイ クロモーションはイオンの温度に影響を与えな いが、粒子との衝突などの外力が働きコヒーレ ンスが崩れるとマイクロモーションエネルギー が調和振動エネルギーに流入し、その結果イオ ンの加熱を招く。よって RF トラップ内のイオ ンとの共同冷却は、「低温の粒子との衝突によ る冷却効果」と「マイクロモーションが衝突に よって乱されたことによる加熱効果|の兼ね合 いで作用が異なる。RF トラップ内イオンの共 同冷却を観測した研究は未だ無かったが、近年 理論の論文において加熱効果が原子イオン間の 質量比に大きく依存することが提唱され [2]、共 同冷却可能な条件が予想され始めた。そこで本 研究では⁴⁰Ca⁺ イオンと⁶Li 原子の組合せ (質 量比 0.15) を採用し、冷却可能と予想される質 量比での共同冷却実験を行い、RF トラップ内 イオンの共同冷却の実現性について確認するこ とを目的としている。

2 原理

原子イオン間の散乱

⁴⁰Ca⁺ イオンと⁶Li 原子との散乱の種類は大 きく分けて2種類存在する。1つは散乱前後で イオンと原子の状態の変化を伴う非弾性散乱、 もう1つは散乱した際に運動エネルギーのみを 交換する弾性散乱である。非弾性散乱の中にも いくつか種類があり、電荷交換散乱・状態変化 散乱・スピン緩和散乱・分子生成などがある。 本研究では弾性衝突と非弾性衝突の1つである 電荷交換散乱を利用した実験を行った。共同冷 却の際にイオンの状態に変化を与えないために 弾性衝突を支配的に発生させ、後に記述するが ランジュバン衝突レートを測定するために電荷 交換散乱を用いた。

$Ca^+ + Li \rightarrow Ca + Li^+$

原子イオン間の衝突

上記した内容は原子とイオンが衝突した際の 反応について述べているが、ここでは原子とイ オンの衝突仕方について述べる。カルシウムイ オンとリチウム原子間には分極による引力相互 作用が働いている。そのため2粒子間の相対運 動エネルギーや相対距離に応じて粒子の衝突の 様子が異なる。以下の図1では簡単のために相 対運動エネルギーと一定にし、イオンが静止し て見える座標系で考えている。

原子イオン間の距離が樹分に離れていると衝 突は発生しないが、徐々に近づくと原子は引力 ポテンシャルの影響を受けて軌道が変化し始め る。さらに近づくと原子は引力ポテンシャルに 完全に捕まり内向きのスパイラル軌道を描いて イオンと衝突をする。原子の軌道のみが変化す る衝突をグランシング衝突といい、原子がイオ ンとぶつかる衝突をランジュバン衝突という。 図1より、原子の横軸からの距離に応じて衝突 の様子が変化することがわかる。この原子の横

図 1: 原子イオン間の衝突の様子

軸からの距離を衝突係数 b といい、衝突係数に よって原子イオン間の衝突を記述することが可 能である。ランジュバン衝突とグランシング衝 突の境界を臨界衝突係数 bc といい、原子イオ ン間の相対運動エネルギーと引力ポテンシャル の関係から決定される値であり、以下の式で表 される。

$$b_{\rm c} = \left(\frac{4\mathcal{C}_4}{\mu b_0^2}\right)^{\frac{1}{4}} \tag{1}$$

(A) ランジュバン衝突

衝突係数 b が臨界衝突係数 b_c より小さい時 に生じる衝突であるから、ランジュバン衝突断 面積 σ_{Lang} は以下の式で表すことができる。

$$\sigma_{\rm Lang} = \pi b_{\rm c}^2 = \pi \left(\frac{4C_4}{\mu v_0^2}\right)^{\frac{1}{2}}$$
(2)

よってランジュバン衝突レートは以下の式で 表すことができる。

$$\Gamma_{\text{Lang}} = n\sigma_{\text{Lang}}v_0 \tag{3}$$

ランジュバン断面積は原子イオン間の相対速 度に反比例する値でありから、ランジュバン衝 突レートは原子密度にのみ依存する値であるこ とがわかる。

電荷交換衝突とは原子からイオンに電子が 移る現象であるから、原子イオン間の距離が近 づくランジュバン衝突をした際に一定の確率で 生じる反応である。このことから電荷交換衝突 レートは以下の式で表すことができる。

$$\Gamma_{\rm ce} = \mathbf{A} \times \Gamma_{\rm Lang} \tag{4}$$

我々が行った先行研究によって式中の A 定 数は既知の値となっている。[5] 電荷交換衝突 レートを実測すると計算によってランジュバン 衝突レートを求めることが可能である。

(B) グランシング衝突

衝突係数 b が臨界衝突係数 b_c より大きい時 に生じる衝突である。原理的には原子イオン間 距離がどんなに離れていても相互作用が生じる ので、ランジュバン衝突のように衝突断面積を 定義することはできない。

この項目では[3]を参考にして導出を行った。

ドップラー再冷却法

本研究ではカルシウムイオンの温度の測定方 法としてドップラー再冷却法を採用した。[4] ドップラー再冷却法とは原子やイオンにドップ ラー冷却光を照射し、冷却が進行することによ る光子の散乱レートの増加の時間発展を観測 することで温度を測定する手法である。任意の 初期運動エネルギーを持った粒子の光子の散乱 レートの時間発展は以下の式のように表される。

$$\frac{dN}{d\tau} = \int P_D\left(\delta_M; \delta_D\right) \frac{1}{1 + \left(\delta + \delta_D\right)^2} d\delta_D \quad (5)$$

RF トラップ内の中心部に十分に局在してい るイオンのエネルギー分布の拡がりはマクス ウェル分布に近似できることが知られている。 そのためイオンの温度を測定する際は、イオン の光子の散乱レートの時間発展を複数回測定し 積算したデータを、フリーパラメータを温度T にとったマクスウェルボルツマン分布に従って 重み付けして足し合わせた上記の式と比較する ことで温度を決定した。使用したイオン種・冷 却遷移・離調・レーザーパワーの条件から、本 研究のドップラー再冷却法による温度測定が最 も精度がよくなる領域は数百マイクロケルビン から十数ケルビンである。以下の図は我々の実 験系でカルシウムイオンにドップラー再冷却法 を適用して得られたイオンの光子の散乱レート の時間発展を測定した結果である。

図 2: ドップラー再冷却法測定結果

赤いプロットはカルシウムイオンが 10.5K で あることを表し、青いプロットはカルシウムイ オンが 3.3K であることを表している。このよ うにカルシウムイオンが低温であるほど早く光 子の散乱レートが立ち上がり定常状態に至る。

共同冷却のフィッティング関数

⁶Li 原子との衝突による ⁴⁰Ca⁺ イオンの温度 の単位時間当たりの変化率を η と定義すると、 以下の式が成り立つ。

$$\frac{d}{dt}T_{\rm ion} = -\eta T_{\rm ion} \tag{6}$$

 T_{ion} は⁴⁰Ca⁺ イオンの温度を表している。 η は衝突を起因とする温度変化の効果を含んでい る。つまりグランシング衝突やランジュバン衝 突による冷却の効果と衝突によるマイクロモー ション加熱の効果の兼ね合いで決定される値で ある。マイクロモーション加熱の効果が冷却の 効果よりも大きい時 η が負の値となり、冷却の 効果が支配的である時 η の値は正の値をとる。 また原子との衝突レートの変化に応じて衝突に よる温度変化率を表す η は変化する。

式6では衝突による温度変化のみを考慮した が、実際の実験系ではRF 電場に生じるわずか なノイズ等によって捕獲を維持しているだけで 自然に加熱される要素が存在するため、この効 果フィッティング関数に取り入れなければ正確 に原子との衝突によるイオンの温度変化の効果 を導くことはできない。導入の仕方の詳細は実 験結果に記述するが、原子との衝突以外による 温度変化の効果は時間に線形に効く加熱である ことが測定結果からわかっている。これより本 研究では共同冷却によるイオンの温度の時間発 展のプロットに対して、以下の式を用いてフィッ ティングを描けた。

$$\frac{d}{dt}T_{\rm ion} = -\eta T_{\rm ion} + H \tag{7}$$

右辺の第1項目は原子との衝突による温度変 化を表し、第2項目は原子との衝突以外による 温度変化を表している。

3 実験方法

ランジュバン衝突レートの測定

3~6 個の⁴⁰Ca⁺ イオンをイオントラップで 捕獲しレーザー冷却を用いて冷却した。⁴⁰Ca⁺ イオンに冷却光を照射しながら、光双極子ト ラップを用いて捕獲した⁶Li原子集団をイオン のトラップ位置まで運び、原子集団とイオンを 同一空間上で5秒間重ね合わせる。原子集団と イオンを重ね合わせている間、少数個のイオン の蛍光量を観測した。以上の測定を20回程度 繰り返し、蛍光量の時間変化の平均から電荷交 換散乱レートを求めた。先行研究で明らかにし たランジュバン衝突レートと電荷交換散乱レー トの比を表すA定数を用いて、ランジュバン衝 突レートを求めた。[5]

共同冷却によるイオンの温度変化の測定

単一の⁴⁰Ca⁺ イオンを RF トラップで捕獲 し、レーザー冷却を用いて冷却した。次に冷却 光を切り3秒間保持した。これは弾性衝突過 程を支配的に起こすこと [5] と⁴⁰Ca⁺ イオンを 敢えて加熱させることで原子との衝突による温 度変化を観測しやすくするためである。別空間 上で光双極子トラップを用いて捕獲した⁶Li原 子集団を光ピンセット技術を用いて、イオンの トラップ位置まで運び同一空間上で重ね合わせ た。重ね合わせる時間を以下では混合時間とい う。その後光双極子トラップを解放し、⁴⁰Ca⁺ イオンに冷却光を再照射し、ドップラー再冷却 法を用いてイオンの温度を測定した。原子とイ オンのランジュバン衝突レートや混合時間を変 えて同様の測定を繰り返すことで、各ランジュ バン衝突レート時の温度変化の時間発展を1秒 から4秒間測定を行った。

4 実験結果

ランジュバン衝突レートの測定

以下の図はカルシウムイオンに冷却光を照射 した状態でリチウム原子集団と混合した際のカ ルシウムイオンの蛍光信号の時間変化を観測し たデータの1つである。縦軸の蛍光信号は規格 化している。

図 3: ⁴⁰Ca⁺ イオンの蛍光の時間変化

図からわかるようにカルシウムイオンの蛍光 量はトラップされているイオンの個数と線形の 関係があることから、蛍光量の減少からトラッ プから外れたイオンの個数と時間を観測するこ とができる。原子と混合中に冷却光を照射し続 けているため、カルシウムイオンの内部状態は S_{1/2}, P_{1/2}, D_{3/2}の混合状態をとっている。レー ザーのパワー及び離調の関係からそれぞれの状 態をとる確率は以下の表のようになっている。

表 1: ⁴⁰Ca⁺ イオンの内部状態の混合比

$S_{1/2}$	$P_{1/2}$	$D_{3/2}$
0.42	0.29	0.29

カルシウムイオンに対しリチウム原子の方 が低温であるため弾性衝突によってトラップか ら外れてことは考えにくく、またイオントラッ プのトラップポテンシャルは十分に深いため非 弾性衝突によって運動量を得てトラップを外れ たことも考えにくい。これよりカルシウムイオ ンがトラップから外れた原因は電荷交換衝突に よって電荷を失いカルシウム原子となったこと が原因であることがわかる。図のようなデータ を 20 回取り平均したものが以下の図である。

図 4: 平均化した蛍光の時間発展

以上のデータに指数関数でフィッティングを 掛けることで電荷交換衝突レートを求め、A 定 数を用いてランジュバン衝突レートを求めた。

共同冷却によるイオンの温度変化の測定

図5は各ランジュバン衝突レートにおける 共同冷却の時間発展の測定結果である。黒のプ ロットは原子を運ばなかった際のイオンの温度 変化を測定したデータであり、原子との衝突以 外による温度変化の効果を見積もるために行っ た。その結果原子との衝突以外による温度変化 の効果はH = 1.9[K/s]であった。黒のプロット に対し線形のフィッティングを掛けて式7の第 2項のHの値を測定した。各色のプロットは図 中に記したランジュバン衝突レートにおける共 同冷却の時間発展のデータを表している。これ らのプロットに掛けたフィッティング関数は式 7を用いており、第2項のHは黒のプロットの 線形フィッティングの結果を用いた。フィッティ ングの結果得られたnは以下の表2と図6の通 りであった。

図 5 からランジュバン衝突レートが増えると 共に ⁴⁰Ca⁺ イオンの温度の減少が大きくなり、

図 5: 共同冷却の時間発展

表 2: ランジュバン衝突レート毎の η

ランジュバン衝突レート	η
0.65Hz	0.31
1.6Hz	0.52
2.3Hz	0.92

今回の測定における到達温度もより低くなるこ とがわかる。衝突による単位時間の温度変化率 を表すηの値もフィッティングの結果から、ラ ンジュバン衝突レートが大きいほど高くなり冷 却効果が高いことを表している。図6の実線は フィッティングから得られたデータに線形フィッ トを掛けた結果であり、点線はランジュバン衝 突とグランシング衝突による冷却効果のみを考 慮した場合の予想される理論線である。序論で 述べた衝突によるマイクロモーション加熱効果 は計算が難しいため、理論線には含まれていな い。図6の実線に注目すると冷却効果の強さを 表す η がランジュバン衝突レートに依存する 値であることがわかる。原子との衝突に依存し た冷却が観測されたことから、⁴⁰Ca⁺ イオンと ⁶Li 原子の質量比 0.15 の組みあわせにおいて共 同冷却の観測に成功したと結論付けた。

図 6: ランジュバン衝突レート毎の η

またランジュバン衝突とグランシング衝突の 冷却効果のみを考慮した理論線と冷却効果とマ イクロモーション加熱効果の両方を含んでいる 実験データを比較すると良い一致を示している ことが図 6 からわかる。ηは序論で述べたよう にランジュバン衝突やグランシング衝突による 冷却効果と衝突によるマイクロモーション加熱 効果との兼ね合いで決定される値である。本実 験において共同冷却の観測に成功した原因とし ては、衝突によるマイクロモーション加熱効果 を⁴⁰Ca⁺ イオンと⁶Li原子を採用することで抑 え冷却効果を支配的にすることができたためで あるとが予想でき、実際に理論値と実験値との 比較からも裏付けるような結果を得ることがで きた。

5 まとめと展望

⁴⁰Ca⁺ イオンと⁶Li 原子の質量比 0.15 の組 合せを用いて、RF トラップ内のイオンの共同 冷却の観測に成功した。これにより RF トラッ プ内のイオンへの共同冷却の適用は原子とイオ ンの質量比の組合せによっては可能であること を実験的に確認することができ、冷却可能な粒 子種の拡大の足がかりを与えることができた。 またランジュバン衝突レート毎にイオンの温度 の時間発展を測定しその共同冷却のダイナミク スから、⁴⁰Ca⁺ イオンと⁶Li 原子の組合せにお いて衝突によるマイクロモーション加熱効果の 大きさはランジュバン衝突とグランシング衝突 の冷却効果と比較して小さいことを確認するこ とができた。

今後の展望としては、⁴⁰Ca⁺ イオンと⁶Li 原 子の組合せにおける共同冷却の限界温度の測定 を考えている。本研究では⁶Li 原子の密度を十 分に確保することができず、最大でもランジュ バン衝突レートを 2.3Hz であった。そこで⁶Li 原子のトラップの設定を見直し原子密度を向上 させ、共同冷却の限界温度を測定する。

参考文献

- D.J. Berkeland, J.D. Miller, J.C. Berfquist, W.M. Itano, and D.J.Wineland, J. Appl. Phys. 83, 5025 (1998)
- [2] Kuang Chen, Scott T. Sullivan, and Dric R. Hudson, Phys. Rev. Lett 112, 143009 (2014)
- [3] Stefan Schmid, 博士論文, Ulm university, 2011
- [4] J. H. Wesenberg, R. J. Epstein, D. Leibfried, R. B. Blakestad, J.Britton, J. P. Home, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, S. Seidelin, and D.J. Wineland, Phys. Rev. A 76, 053416 (2007)
- R. Saito, S. Haze, M Sasakawa, R. Nakai,
 H. Da Silva Jr., O. Dulier, T. Mukaiyama,
 Phys. Rev. A 95, 032709 (2017)