ベッセルビームを用いた高アスペクトナノホール加工法の開発

1413006 飯田 浩祐 主任指導教員:米田仁紀 教授

1. 序論

現在、フェムト秒パルスレーザーによる穴 加工では、非線形光学吸収過程により光学ス ポット径よりも小さい直径の加工が得られ ている。しかし、口径の穴直径の小ささだけ ではイオンビーム、、電子ビーム加工や、リ ソグラフィなどさらに優れたものがあり、レ ーザー加工としては、より付加価値が高い加 工方法が求められている。最近、レーザーの パルス波形を制御したり、空間位相を調整す ることで、穴の深さ対口径比が大きな加工が 可能なことが報告されるようになってきた。 特に、ベッセルビームを用いることは、原理 的にガウスビームが持つ回折によって決ま るレイリー長の制約を回避することが可能 で、比較的簡単な光学系でナノメートルサイ ズの高アスペクト比穴加工が可能になる。

そこで本研究では、アキシコンレンズを用 い、超短パルスレーザー光をベッセルビーム 化し、縮小光学系によりさらに集光系を減少 させた後に非線形吸収の過程を使った高ア スペクト加工の最適条件を決定する目的で、 実験を行っている。

2. 原理

2.1 自己位相変調(Self Phase Modulation: SPM)

カー効果(Kerr 効果)媒質中のガウス型の 強度分布を持つレーザービーム伝播、非線形 応答の結果、局所的な屈折率は次の式(9)に 従って強度 I(x, y, z)とともに上昇する。

 $n(x,y,z) = n_0 + n_2 I(x,y,z)$

 n_0 は物質特有のものであり、 n_2 はカー係数(Kerr 係数)である。ガウシアンビームでは、強度はビーム中心軸の近くで二乗分布となる。

これにより、自分自身の強度に起因する 屈折率変化により、位相がシフトしてしまう 現象である。

2.2 非線形イオン化現象

フェムト秒パルスレーザー自由電子を保 有しない石英ガラスなどの誘電体に照射し た場合、レーザーと物質との相互作用の初期 段階において、レーザー光による強電場によ り多光子吸収が生じ、自由電子が生じる。こ の自由電子はレーザー光による強電場を受 け、逆制動放射により、加速し運動エネルギ ーを得て、別の束縛電子に衝突をする。この 過程を繰り返すことにより、雪雪崩式(アバ ランシュ衝突過程)に自由電子が急速に増加 する。この結果、初期段階に生成された自由 電子が素となり、プラズマが形成され、加工 がなされる。

3. アキシコンレンズの特性評価実験

コヒーレンス性の良い He-Ne レーザーを用 いて、実際にアキシコンレンズにレーザーを 入射することでどのような現象が起こるの かを評価した。本節では、アキシコンレンズ によってどの程度非回折ベッセルビームの 伝播が可能なのか、位相変化に対する応答は どうかなど実際に加工に使用する前にビー ムプロファイルがどのような影響を受ける のか計測するために行った。

3.1 実験方法

図 3.1-1 実験セットアップ

用いたレーザーは He-Ne レーザー(波長 632.8nm)、ビームエキスパンダーを用いてビ ーム系を広げコリメートし aperture でビー ム径 20mm になるように切り出した。切り出 したビームをソーラボジャパン株式会社よ り購入したアキシコンレンズ(AX2505-B -0.5°, 650 - 1050 nm AR Coated UVFS, Ø25.4 mm (\emptyset 1″) Axicon)に入射した。CCD(ワイドダ イナミックレンジCCDカメラボディMT V-63W1N)を用いて光軸方向に掃引し ビーム断面プロファイルを測定した。

3.2 結果·考察

図 3.1-2 に伝播距離とビームウェストに ついて得られた実験結果を示した。なお、 ベッセルビーム中心のスポットのビームウ ェストを計測した。

また、ビームウェストが一定区間の位置 0.65m を確認すると

図 3.1-3 位置 0.65m におけるベッセルビーム断面

コヒーレンス性の良い He-Ne レーザーを用 いたが図のようにベッセルリングに強弱が 現れている。これはアキシコンレンズもしく はその他のオプティクスの精度の問題であ ると考えられる。

4. Ti:sapphire レーザー(1kHz)を用いた加工

パルス励起の Ti:sapphire レーザー(パルス 幅:25fs,中心周波数:800nm,繰り返し周波 数:1kHz)を用いて加工を行った。本節では、 試験的な加工試験を行い、まずは加工の際に どのような物質と光の作用が現れるのかを 検証した

4.1 実験方法

図 4-1. Ti:sapphire レーザー(1kHz)を加工に用いた実験系

レーザーはパルス励起の Ti:sapphire レ ーザー(パルス幅:25fs,中心周波数:800nm, 繰り返し周波数:1kHz)をもちいた。オシレー ターのみを用いて発振させた。アキシコンレ ンズは前章に用いたアキシコンレンズと同 様である。また、アキシコンレンズ通過後ベ ッセルビームを縮小光学系に集光した。この 際に用いた対物レンズは[~]である。今回用い たターゲットはカバーガラスであり、142µm の厚さであった。

図 4-1 にて緑色の枠で囲った顕微鏡ラインについて、長作動対物レンズは~をもちい

て、バンドパスフィルターは532nmのみを通 すものをもちいた。CCD についてはワイドダ イナミックレンジCCDカメラボディMT V-63W1Nを用いた。長作動対物レンズ とCCDの間は鏡筒の関係に従い17cmとした。 顕微鏡ラインを光軸方向に掃引しピントを カバーガラス裏面に合わせた。この際には、 カバーガラス裏面にガラスカッターで傷を つけて確認した。ピントを合わせたままカバ ーガラスを固定し、カバーガラスと顕微鏡ラ インを同時に光軸方向に掃引し集光スポッ ト近傍での相互作用を確認した。

4.2 結果·考察

ガラスとレーザーによって発生する相互作用 SPM により加工点の位置を確認し、発生区間と加工区間をレーザー出力ごとに確認した。以下にまとめた表を示す。

表 4-1. 囲と加工範囲

Power[mW]	SPM 発生	加工範囲
	範囲[µm]	[µm]
3~4	150	50
5~6	400	200
8~9	300	180

表 4-1 から 5~6mW と 8~9mW における加 工範囲はほぼ変わらず,この範囲のレーザー 出力では過剰ではないかと考えた。なので、 加工に用いるべきレーザー出力は 3~4mW で あると考えた。

以上の結果より、加工に用いるべきレーザ ー出力は 3~4mW あった。しかし、本来 700mW 前後で安定的に出力されるレーザー を 3~4mW ほどで出力させているため 1パル スごとの強度がとても不安定であった。レー ザー出力 3~4mW を用いてカバーガラス裏面 に 1 ショットで加工を行った際の SEM 画像 を以下に図 4-2 として示した。

図 4-2. レーザー出力 3~4mW 時の1ショット を用いた加工

この条件では 500nm ほどの穴加工ができ た。しかし、この画像中心部に映し出された 穴加工以外はおおよそ 1µm ほどの大きさで あった。これは1ショットごとのピーク強度 が不安定であることを示していると考えら れる。

5. Ti:sapphire レーザー(125kHz)を用いた 加工

前節でよりパルス励起のTi:sapphire レー ザーを用いた場合では1パルスのピーク強 度の不均一性により均一な穴加工が行えな いことが分かった。そこでCW励起で高繰り 返しなTi:sapphire レーザーを用いること により、より均一な穴あけ加工を行った。

5.1 実験方法

これまでの実験により、安定的なレーザー を用いなければならないこと、アキシコンレ ンズのアライメントを厳密に行いまた、ベッ セルビーム中心の強度プロファイルを鋭く し加工閾値ギリギリで加工を行わなければ ならないと考えた。これらを踏まえ実験系を 構築し図 5-1 として以下に示した。

Ti:sapphire レーザー(中心波長:800nm,パ ルス幅:200fs,繰り返し周波数:125kHz)から 出射されたビーム径は約4.4mm であった。そ の後の ND フィルターによってレーザーパワ ーを変化させ、Aperture 後の Power meter で出力を測定した。その後、Deformable Mirror に入射し波面整形を行い Deformable 反射後の波面をf=100mmとf=200mmのレンズ ペアを用いて Shack-Hartman 型波面センサ ーと Axicon レンズに像転送した。また、こ のレンズペアは像転送するだけでなく焦点 距離が異なる二枚のレンズを用いることに よりビーム径を広げ、ベッセルビームの集光 点の伝播距離を長くする目的もある。アキシ コンレンズ通過後のベッセルビームを対物 レンズ (NA=0.7) を用いて縮小光学系としよ りビーム径を小さくし加工対象であるガラ スに加工を行った。ガラスはスライドガラス (1mm)もしくはカバーガラス(142µm)を用い た

5.2 結果·考察

Deformable Mirror を手動で変形させた ときの、ビーム形の変化を確認した。こ の時得られたビーム断面強度分布を図 5-2としてまとめて示した。

図 5-2. Deformable mirror 動作前後のビ

ームスポット強度分布

半値全幅を算出した。結果、Deformable mirror 動作前は 0.42 mm であり、Deformable mirror 動作後は 0.412 mm であった。またグ ラフからも半値全幅にほぼ差がないことが 分かる。しかし、修正後スポット中心強度は 1割ほど高くなり 0.5mm 付近に発生していた 振動もなくなっている。このことから、 DeformableMirror を手動で印加することに よりビーム形を整えることができたように 思えるが、図 5-3より、ビーム全体の形は崩 れてしまっていることが分かる。アキシコン レンズは波面の重なり合わせなので、入射す るビームは限りなく円形に近いほどいい。こ のことから、強度分布のみを見るのではなく、 ビーム形も確認しなければならないことが 分かった。

図 5-3. Deformable mirror 動作後のビー ムスポット

前述のDeformable Mirrorの形状を用いて、 掃引加工を行った。レーザーパワーは 150^{250mW} に変化させ、掃引速度は 50 μ m/s²2mm/s まで変化させた。

カバーガラス裏面は 150mW でも加工され た。以下に 120mW 時と 150mW 時のカバーガラ ス裏面の SEM 画像を図 5-5, 図 5-6 として示 す。またこの時の掃引速度は 50µm/s とした。

図 5-5.カバーガラス裏面の SEM イメージ (レーザー出力:120mW, 掃引速度 50 µ m/s)

図 58. カバーガラス裏面の SEM イメージ (レーザー出力:150mW, 掃引速度 50 µ m/s)

カバーガラスにはテーパー状の穴が開い ているのではないかと考えた。カバーガラス を透過する際に無視できないレベルで非線 形吸収が発生しているのではないかと考え た。そもそもアキシコンレンズ入射前のビー ム中心の強度を落としていないことが問題 であると考えた。このことの対策として何か ビーム中心の強度を減少させるフィルター をかませるべきだと考えた。

6 参考文献

[i]ガラスへのミクロンオーダーの微細 穴開け加工技術の開発に成功 ~積層半導体 部材への応用に向けて~,旭硝子株式会社,

[ii]超短パルス発生技術 渡辺俊太郎 光 学 第 24 巻 第 7 号 (1995)

[iii]フェムト秒短パルスレーザー加工を 用いた石英ファイバへの機能埋め込み 博士 論文 合谷 賢治

[iv]電気学会 レーザーアブレーションと その応用 コロナ社(1991)

[v]P.K.Velpula, M. K. Bhuyan Spatio-temporal dynamics in nondiffractive Bessel ultrafast laser nanoscale volume structuring Laser Photonics Rev. 10, No. 2, 230–244 (2016)