発表者:1533048 宍戸 宏樹

 主任指導教員:宮本 洋子
 指導教員:清水 亮介

1 はじめに

本研究では、パラメトリック蛍光光子対の軌道角 運動量もつれ合い状態の発生のために必要な励起光 光源の作製と軌道角運動量特性の確認を行うための 検出系の特性測定を行う.

軌道角運動量のもつれ合い状態は,近年,量子通 信や量子コンピュータなどの量子情報の分野で注目 されている.量子コンピュータにおける情報の最小 単位の量子ビットは0と1およびその重ね合わせで 表される.一方,軌道角運動量状態の場合はモード 指数 m を利用すると,0,+1,-1等およびその重 ね合わせを表現でき,1つの光子でより多くの情報 を伝達できる.もつれ合い状態光子対発生とその軌 道角運動量特性の確認を行うために,励起光光源と して用いるレーザーと検出に用いるシングルモード ファイバ (SMF)の特性測定を行う必要がある.

光子対としての時間・空間特性は励起光の影響を受けるため,開発中の外部共振器付き半導体レーザー (ECDL)の特性測定を行い,動作条件を決定する.

光子の軌道角運動量状態の検出の基礎となるのは 軌道角運動量0の状態の検出である.軌道角運動量 0の状態の検出にはファイバーカップラ (FC)を通 して自由空間と結合した SMF を用い,これが動径 方向のモード関数を決定する.そのため,FCを通 して SMF と結合するモードを明らかにする必要が ある.

外部共振器付き半導体レーザー (ECDL) の特 性測定

本研究では,光子対のもつれ合い状態の光源とし てパラメトリック蛍光を用いるが,その励起光の光 源として外部共振器付き半導体レーザー(ECDL)を 用いる. ECDL は半導体レーザーに外部共振器や 波長選択素子を加えることにより,波長制御や狭帯 域化を実現できる.また,本研究の ECDL はサー ミスタとペルチェ素子により温度制御を行う. 本実験の目標として,必要なレーザーの性能は波 長 405nm,出力 100mW,コヒーレンス長 3-30mW 以上である.

2.1 ECDL の仕様

外部共振器付き半導体レーザー (ECDL)の構造は 大きく2つに分けることができる.1つ目は,レー ザーの1次回折光をレーザーダイオード (LD)素子 に直接戻す Littrow型,2つ目は回折された1次光 をミラーに反射させて LD 素子に戻す Littman 型で ある.今回,高出力かつ安定したモードのレーザー が必要なため Littrow 配置を採用している [2].

図1に本研究で使用するLittrow 配置型のECDL を示す. -1次光は半導体レーザーへフィードバッ クし,波長選択を行う. 0次光は出力光である. -1次光と回折格子の法線とのなす角 θ_0 は以下の式を 満たす.

$$\sin\theta_0 = \frac{\lambda}{2d} \tag{1}$$

ここで、 λ は入射光の波長、dは回折格子のピッチである.

本研究では $\lambda = 405$ nm の半導体レーザーと d = 2400mm の回折格子を用いて ECDL を作製する.式 (1) より, -1 次光と回折格子の面の法線のなす角は約 30° である.上手くフィードバックするためには,入射光と-1 次光が重なる必要があるので,入射光と反射光のなす角が約 60° になるよう回折格子を調整した [2].

図 1: Littrow 配置型の拡張共振器付き半導体レー ザー (ECDL)

レーザーダイオードに LD 電源をつなぎ,電流 を流した.レーザーダイオード (LD) に流す電流は 30mA とした.LD の閾値電流が 33mA であるので それを超えないためである.回折格子を-1次光が LD に返るよう調整した.拡張共振器により、レー ザー発振するとき閾値以下の電流でも発振し,出力 が大きくなる.この特徴を利用して,0次光が強く 光る (出力が最も強くなる)角度に回折格子を固定 するようにした.

図2,図3より調節ネジが二つあり、二つのグレー ティングマウントを固定せず、回折格子の回転角部 分(ECDLの波長選択の調節ネジ)とあおり角部分 (ECDLのフィードバックの操作の調節ネジ)を調節 する.0次光が強くなるあおり角を見つけた後.あ おり角を固定する.回転角を微動の状態にし,0次 光が強くなる角度を見つける.

図 2: ECDL の波長選択 [2]

図 3: ECDL のフィードバックの操作 [2]

また,フィードバックの有無による電流-パワー 特性測定を図4に示す.

図 4: ECDL の電流-パワー特性測定

2.2 ECDL のビーム成形

外部共振器付き半導体レーザー (ECDL)の複素 振幅を回転対称にするために、また、ビームの強度 分布から不規則な変動を取り除くため、空間フィル タを用いてビーム成形を行った.本実験では、対物 レンズを用いてビームを集光した後に空間フィルタ に通して、ビームを成形する.このとき、空間フィ ルタは直径 10μmの円形開口を使用した.

ECDL のビーム成形に用いた実験系を図5に示 す.本実験の目的は,光パワーを得つつ,ガウス関 数に従った円形のビームを得ることである.その ため,各パワーごとのビーム径を求め,ビームの パワーと縦横比の関係を調べた.空間フィルタを 通過したビームのパワーの最高値は40mWである. よって,空間フィルタと対物レンズの距離を調節し, 40mWから30mWでのビーム径を求めた.このと き,対物レンズと空間フィルタの距離は,最大パ ワーとなる距離から大きくする方向に変化させた. その結果を図6に示す.

図 5: 外部共振器付き半導体レーザー (ECDL) の ビーム成形

図 6: ビームのパワーと縦横比の関係

本研究ではパラメトリック蛍光の励起光にガウス ビームを想定して軌道角運動量もつれ合い状態を発 生させる.図6から電流値38mW時に理想的な円 形ガウスビームになっていると考えられる.また, 特定の場所以外でも円形のビーム断面になってい ることを確かめるために,パワーが38mWの時の 対物レンズと空間フィルタの距離に固定したまま, コリメートレンズからCCDカメラまでの距離を変 えながらビームを観察した.図7,表2.2に距離と ビーム径の関係を示す.

図 7: コリメートレンズからの距離とビーム径の 関係

表 1: コリメートレンズからの距離とビーム径の 関係

伝搬距離 [mm]	x方向 [pixel]	y方向 [pixel]
150	262.5	255.2
200	257.0	257.0
250	254.8	261.5
300	273.1	265.8
350	288	283.7

図 2.2 からほぼ円形を維持したままビームは伝搬 していることが分かる.7,表 2.2 から対物レンズ と空間フィルタの距離は以後この距離のまま使用 する.

2.3 ECDL のコヒーレンス長の確認

図8に実験系を示す.

図 8: 干渉縞測定のための光学系 (HM : ハーフミ ラー, Detector : CCD カメラ)

ECDLのコヒーレンス長の評価をするために,電 流を ECDL に流して各電流ごとのコヒーレンス長 を確認した.コヒーレンス長は 3-30mm 必要なの で,ミラー2を 0-15mm まで動かせるマイクロメー タ付きステージに載せて光路長を 0-30mm まで調 節できるよう光学系を組んだ.干渉縞を CCD カメ ラで観察した.マイクロメータ付きステージに載せ たミラー2で光路長を 0-30mm まで調節した.これ を干渉縞が現れなくなる電流値まで続けた.

図 9,10に撮影した干渉縞を示す.図 10 の (a), (b) は同じマイクロメータの位置で異なる時刻に撮 影したものである.

マイクロメータ 0mm

マイクロメータ 10mm マイクロメータ 15mm 図 9: 電流値 150mA での干渉縞

マイクロメータ

4.77 mm(b)

マイクロメータ 4.77mm(a)

図 10: 電流値 160mA での干渉縞

電流値 160mA では図 10 より干渉縞は時間に対 して変化し,時刻によって縞が消えるようになった. このことから,電流値 160mA のときコヒーレンス 長は4.77mm である.また,図9より電流値 150mA のときにコヒーレンス長が 30mm 以上であること を確認した.このことから以後,本研究において ECDL に流す電流値は 150mA とする.

2.4 成形後のビームパラメタの推定

成形後のビーム (電流値 150mA) について伝搬距 離 250~1250mm の強度分布画像を MATLAB に取 り込み,2次元ガウス関数によりフィッティングし た. これによって得られた伝搬距離とビーム径の データからビームウェストとその位置を求める.そ のために,ガウスビームのビーム径と伝搬距離の式 [1]を用いる.

$$w_{x(y)}(z) = \sqrt{w_0^2 + \frac{1}{w_0^2} \left\{\frac{\lambda}{\pi}(z - z_0)\right\}^2}$$
(2)

ここで、 w_0, z_0 はそれぞれビームウェストの径とその位置である.

式 (2) によるフィッティング結果を表 2 と図 11 に 示す.

表 2:2 次元ガウス関数によるフィッティングの結果

	ウェスト径 $w_0[{ m m}]$	ウェスト位置 <i>z</i> _[m]
w_x	$(1.5 \pm 0.2) \times 10^{-3}$	11.0 ± 3.0
w_y	$(1.3 \pm 0.3) \times 10^{-3}$	13.0 ± 3.0

図 11: コリメートレンズからの距離とビーム径 (実 線及び破線は式 (2) のフィッティング結果)

3 光子の軌道角運動量状態の検出方法

本研究では、シングルモードファイバ (SMF) を 用いて光子の軌道角運動量もつれ合い状態の検出を 行うことを想定する.光子の軌道角運動量もつれ合 い状態の検出には、軌道角運動量状態の検出を行う 必要がある.軌道角運動量状態の検出にはホログラ ムと SMF を用いる.

本研究で用いるホログラムは l 次回折光に位相 因子 $\exp(ilm_H\phi)$ を付加する反射型ホログラムであ る.ホログラムの欠陥部分に軌道角運動量 $m = m_0$ のビームが入射した場合,その出射光の軌道角運動 量は反射により反転し $m = -m_0$ となる.l 次回 折光はさらに軌道角運動量が lm_H シフトし, $m = lm_H - m_0$ となる.SMF には m=0の成分のみが通 過する.ホログラムと SMF を組み合わせることに よりホログラム入射前の軌道角運動量が $m = lm_H$ となる成分のみが通過できる.

以上により、ホログラムによる位相因子の付加と SMFのフィルター効果により単一の軌道角運動量 成分のみを検出することができる.

図 12: ホログラムとその回折次数の定義

図 13: 光子の軌道角運動量状態の検出系

4 光子検出系の特性測定

本研究では光子の検出系にシングルモードファイ バ (SMF)を使用する.このとき,検出されるモー ドの動径方向のモード関数は SMF と SMF の入り 口に置かれたファイバーカップラ (FC)によって決 定される.軌道角運動量状態検出系の設計には FC を通して SMF と結合するモードの同定が不可欠で ある.

本章ではSMFの特性測定の実験系とその出射光 のパラメタ推定について述べる.

4.1 実験系

シングルモードファイバ特性測定の実験系を図14 に示す.

図 14: シングルモードファイバ (SMF) 特性測定の 実験系 (FC: ファイバーカップラ, SMF: シングル モードファイバ)

本実験では、光源に波長830nmの半導体レーザー (LD)を用いた.この波長の半導体レーザを用いた 理由は、本研究で用いるパラメトリック蛍光の波 長 810nm に近いからである.入射したビーム光が SMF の伝搬モードに結合し、光が出射するようファ イバーカップラ (FC4) の調整を行い, FC2 から光 が出射したのを確認した.このとき,FC2からの出 射光のパワーが最大になるよう FC4 を最適化した. 次に, FC2 上の対物レンズと SMF の距離を調整 することにより, FC2からの出射光の強度分布を2 次元ガウス関数に従うようにした. これは、本研究 がガウスビームを想定しているためである.また, FC2 から伝搬距離 100~300mm 間について 25mm 間隔で強度分布を観察した. 出射光の強度分布を観 察することにより、出射光の強度分布と同じビーム パラメタを持つ光を逆伝搬させれば, SMF を通過 すると期待されるからである.

4.2 シングルモードファイバ (SMF) からの出射 光のフィッティング

シングルモードファイバ (SMF) を用いた検出系 を用いる際, どのような光が SMF を通過するかを 知ることは重要である.本研究では,ガウスビー ムを想定しているのでその強度分布に従うのが好 ましい.得られた出射光について,強度分布画像 を MATLAB に取り込み,2次元ガウス関数により フィッティングした.

2次元ガウス関数によりフィッティングして得ら れたビームパラメタからビームウェストとその位置 を求める.そのために,ガウスビームのビーム径と 伝搬距離の式(2)を用いる.

式 (2) によるフィッティング結果を表 3 と図??に 示す.

表 3: シングルモードファイバ出射光のウェスト径 とウェスト位置

	ウェスト径 w ₀ [m]	ウェスト位置 z ₀ [m]
w_x	$(1.1 \pm 0.1) \times 10^{-3}$	4.2 ± 0.1
w_y	$(8.0 \pm 0.9) \times 10^{-4}$	4.1 ± 0.2

図 15: FC2 からの距離とビーム径 (実線及び破線は 式 (2) のフィッティング結果)

5 まとめ

本研究では、パラメトリック蛍光光子対の軌道角 運動量もつれ合い状態の発生のために必要な励起光 源の作製と軌道角運動量特性の確認を行うための検 出系の特性測定を行った.

パラメトリック蛍光光子対の軌道角運動量もつれ 合い状態の発生のために必要な励起光源の作製にお いては,ECDLのビームを空間フィルタによって円 形のガウスビームになるよう成形した.また,その 確認のために2次元ガウス関数でフィッティングを 行った.各電流のコヒーレンス長を確認し,コヒー レンス長3-30mmを満たす最大電流を求めた.これ によって励起光源は完成した.

光子検出系の特性測定では、どのようなモード が検出されるかを確認するために、シングルモード ファイバ出射光の空間特性を調べた.強度分布に対 して2次元ガウス関数でフィッティングを行いビー ムパラメタとその不確かさを求めた.今回の実験で 使用した光子検出系を逆伝搬させた光がファイバを 通して検出される.さらに今回の光子検出系にホロ グラムを使用することにより、パラメトリック蛍光 の特定の空間モードが今回特定されたモードに変換 されて検出される.

参考文献

- H. Kogelnik and T. Li, "Laser Beams and Resonators", Proc. IEEE, 54, pp. 1312-1329 (1966)
- [2] 舘野 博直,「パラメトリック蛍光励起用半 導体レーザーの作製及び性能評価」,電気通 信大学修士論文,(2016)
- [3] 尾崎雄亮,「パラメトリック蛍光光子対の軌 道角運動量の連れ合い状態の検出」,電気通 信大学修士論文,(2008)
- [4] 川瀬大輔,「光子の軌道角運動量もつれ合いの生成と制御に関する研究」,北海道大学博士論文,(2009)
- [5] 青木貞雄,「光学入門」, 共立出版, (2002)
- [6] Amnon Yariv Pochi Yeh 著,多田邦雄 ほか訳,「光エレクトロニクス 基礎編 (原書 6 版)」,丸善株式会社,(2010)
- [7] L.Allen, M.W.Beijersbergen,
 R.J.C.Spreeuw and J.P.Woerdman,
 "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser mode", Physical Review A, 45, 8185 (1992)
- [8] 宮本洋子,「ラゲールガウシアンビームと光の軌道角運動量」、レーザー研究、32,4, PP232-236,(2004)
- [9] Bahaa E. A. Saleh, Malvin Carl Teich 著, 尾崎義治,朝倉利光 訳,「基本光学1」,森 北出版株式会社,(2009)
- [10] Alois Mair, Alipasha Vaziri, Gregor Weihs & Anton Zeilinger, "Entanglement of the orbital angular momentum states of photons", Nature, **412** pp. 313-316 (2001)