レーザー誘起ブレークダウン分光分析装置の立ち上げ

中村信行研究室 横田大地

1. 序論

1.1 重力波

重力波とは星の衝突や合体により生じた 時空間の歪みのことを指す。重力波が生じ る原因としては、2 つのブラックホールの 合体、ブラックホールと中性子星の合体、2 つの中性子星の合体がある。1916年にアイ ンシュタインは重力波の存在を予測してい た。しかし、重力波の存在は連星パルサーの 観測により明らかにされていたものの 2015年まで実際に観測されたことはなか った。重力波の観測をすることで重力波天 体の場所や発生源の質量などを知ることが 出来る。

1.2 本研究における目的と背景

次世代の重力波検出器は連星系の中性子 星の合体による重力波の信号を検出するこ とが期待されている。その理由としては中 性子星の合体において重元素が作られるこ とが知られており、これまで謎とされてい た重元素の起源に迫ることが可能となるか らである。中性子星の合体で放出される重 元素の量を測るために、合体において放射 される電磁波を観測することが提唱されて いる[1]。そのためには、その重元素の吸収 係数を考慮した輻射輸送計算が必要となる が、重元素の束縛ー束縛遷移のデータが不 足しているため、信頼性の高い計算ができ ないことが問題となっている[1]。特に、中 性子星合体において多く放出されるはずで ある原子番号 26 よりも重い元素のデータ

数が、原子番号26以下のデータ数に比べて 明らかに少ない。特に原子番号が31以上の 3価のデータがないことが指摘されている。 そのため重元素における発光線の測定は重 要である。

そこで本研究では、種々の重元素の束縛 - 束縛遷移について、その波長と遷移確率 のデータを収集するため、レーザー誘起ブ レークダウン分光 (Laser Induced Breakdown Spectroscopy: LIBS)分析装置 を立ち上げることを目的とした。LIBS は高 強度レーザーを集光照射することで標的元 素試料をプラズマ化し、そこからの発光を 分光計測するものである。プラズマが局所 的熱平衡条件を満たすことで、発光強度か ら遷移確率を実験的に得ることが可能であ る。

2. レーザー誘起ブレークダウン分 光法

2.1 概要

レーザー誘起ブレークダウン分光法 (Laser Induced Breakdown Spectroscopy: LIBS)は、試料にパルスレーザーを照射し 生成されるプラズマの発光を分光すること で、試料の元素構成を分析する方法である。 LIBS の利点としては、試料に前処理をす る必要がないこと、固体や液体、気体といっ た試料の形態を問わず実験が行えること、 試料に非接触であり破壊が微量であること、 即時に分析が可能であることなどが挙げら れる[2]。 LIBS の測定ではまずパルスレーザーを 試料に集光し、照射することでプラズマを 生成する。生成されたプラズマは高温であ り、局所的に試料から蒸発した原子やイオ ンが励起される。この現象をブレークダウ ンと呼ぶ。パルスレーザーの照射が終わる とプラズマは膨張していきプラズマ温度は 下がっていく。このとき励起された原子や イオンはその原子特有の発光を放射しなが ら基底状態へ戻る。そのようにプラズマは 継時変化を示すが、ごく短い時間において は局所熱平衡状態にあると考えることがで きる。

分光分析においては、高分解能であるこ とや広い波長域が測定可能であることが求 められている。そこで LIBS においてはこ の条件を満たす分光器としてエシェル型分 光器がよく用いられている。またエシェル 型分光器は高次数により分解能をあげるた め、焦点距離の大きな一般的高分解能分光 器と比べ、小型であることも特徴である。

2.2 観測方法

局所熱平衡状態が成り立つような短時間 測定では、占有密度がボルツマン分布とな るため、上準位から下準位への発光線の発 光強度 *I* とプラズマ温度 *T* の関係式は (2.1)式で与えられる[3]。

$$\ln(\frac{I \times \lambda}{g \times A}) = -\frac{1}{kT}E + \ln(\frac{hc}{4\pi}\frac{N}{Z}) \quad (2.1)$$

ここで、h はプランク定数、c は真空の光速 度、g は統計重率、A は遷移確率、 λ は波 長、N と Z は原子またはイオンの数密度 と分配関数、k はボルツマン定数、E は上 準位のエネルギーレベルを示す。gA や E が認知である発光線について、(2.1)式の左 辺を E の関数としてプロットすると一定 の傾きを持った直線となる。この直線を用 いることで、発光強度と上準位のエネルギ ーレベルが分かれば遷移確率が導出可能と なる。発光強度は標準ランプを用いて較正 する必要がある。

3. 装置

3.1 全体の構成

本研究におけるレーザー誘起ブレークダ ウン分光分析装置の概略図を図3.1に示す。 その構成は、Q スイッチ Nd:YAG レーザ ー、標的試料容器、エシェル型分光器、分光 器の検出器として CCD、ミラーや集光レン ズなどの光学系、および制御 PC となる。Q スイッチ Nd:YAG レーザーは試料をプラ ズマ化するために必要な高強度パルスを出 力することが可能であり、エシェル型分光 器は高分解能かつ広い波長域での測定がで きることが特徴である。Nd:YAG レーザー から出力されたパルス光をミラーと集光レ ンズを用いて容器内試料に照射する。集光 されたパルス光により試料はプラズマ化さ れ発光線が放射される。試料からの発光線 は集光レンズによりエシェル型分光器に導 入され、回折格子で分散された後に CCD で 検出される。Nd:YAG レーザーのパルス光 を照射するタイミングと CCD を同期制 御するため、この2つの機器を PC と接続 する。

3.2 Q スイッチ Nd:YAG レーザー

試料をプラズマ化させるためのレーザー として Spectra-Physics 社製の Q スイッ チ Nd:YAG レーザー(GCR-150)を用いた。 波長は 1064 nm 、繰り返し周波数は 10 Hz 、出力エネルギーは 650 mJ 、パルス 幅は 9 ns 、ビーム径は 9 mm である。入 射ビーム径を W_1 、レーザーを集光させた 部分であるビームウエストにおけるビーム 径を W_2 、集光レンズの焦点距離を f、波 長を λ とすると、ビームウエストにおける ビーム径は式(3.1)で与えられる[4]。

$$W_2 \approx 2.44 \times \lambda \frac{f}{W_1}$$
 (3.1)

したがって焦点距離 150 mm の YAG レー ザー用集光レンズを用いることでビームウ エストにおけるビーム径を 43 μ m にでき る。またパワー密度 F はレーザーの出力エ ネルギーを P、パルス幅を τ 、ビーム径を d とすると(3.2)式で表される。

$$F = \frac{4P}{\pi d^2 \tau} \tag{3.2}$$

(3.2)式を用いてレーザーのパワー密度を

求めると5 × 10^{16} W/cm² となる。

4. 動作確認

4.1 Q スイッチ Nd:YAG レーザー

これまで研究室にありながら長年使用し ておらず発振していなかった Q スイッチ Nd:YAG レーザーの整備を行った。まず冷 却水の流量不足によりインターロックがか かった状態であったので、冷却システムの 動作を確認した。冷却水を循環させるポン プが原因であることが判明した。そこでポ ンプとフィルターの交換を行うことで流量 を確保することができた。

しかしインターロックが解除されてもレ ーザーは発振されなかったため、レーザー を発信させる箇所に問題があると考えられ た。そのため共振器内の反射鏡とフラッシ ュランプの交換を行った。その結果レーザ ーは発振したのでレーザー内部素子のアラ イメントを行い出力を最適化した。その結 果を表 4.1 に示す。繰り返し周波数は 10 Hz で行った。仕様である出力と比較しても正 常に機能していることがわかる。

表 4.1 Q スイッチ Nd:YAG レーザーの

出力結果

波長 (nm)	出力エネルギー
	(mJ)
1064	700
355	190

4.2 エシェル型分光器

分光器には液体窒素冷却型 CCD を取り付け、動作確認を行った。スリットの高さ調整 を行った結果を図 4.1 と図 4.2 に示す。この時に用いた光源は連続光である。横軸は 凹面回折格子による分散、縦軸はエシェル 回折格子による分散を示している。

図 4.1 CCD 動作確認 (スリット高さ 4 mm)

(スリット高さ 2 mm)

図 4.2 に示したように次数ごとに発光線 を観測することができた。また、隣接する次 数の重なりはスリットの高さを調整するこ とで解消できることを確認し、観測におい て適したスリット高さが2mm であること が判明した。

5. まとめと展望

本研究では新たな分光分析装置として LIBS を立ち上げ、レーザーや分光器の動 作確認と光学素子の検討を行った。レーザ ーの動作確認では仕様を満たすことを確認 した。一方、分光器の動作確認としてはスリ ットの高さにより結果が変化することを確 認し、適切なスリットの高さを決定した。ま た光学素子については試料をプラズマ化す るために必要なパワー密度に耐えるものを 用意した。

今後は正確な試料の発光線を測定するた

めに試料容器の検討を行い、それを元にレ ーザーを集光させる集束光学系と試料から の発光線をエシェル型分光器に集光させる 集光分光計を設置する。その後、 Nd:YAG レーザーとエシェル型分光器の同期を PC で行い、実際に試料を用いた分光分析を開 始する。

参考文献

 Masaomi Tanaka and Kenta Hotokezaka ApJ, 775:113 (2013)
Sergo Musazzi, Umberto Perini「Laserinduced breakdown spectroscopy : theory and applications 」(Berlin : Springer, 2014)
赤岡克昭, 大場正規, 宮部昌文, 音部治 幹, JAEA-Research 2015-012 (2015)

```
[4] 原田明, 澤田嗣郎 「レーザー分光分析」(丸善, 2009)
```