準安定状態アルゴン原子と固体表面の相互作用の研究

情報理工学研究科 先進理工学専攻 応用物理工学コース

清水和子研究室

1033095 山戸宏太

1. 研究背景

近年、希ガス原子と固体表面間のファン デルワールスポテンシャル係数C₃の測定が 行われるようになり、超音速原子ビームを 用いて基底状態 He、Ne、Ar、Kr、準安定 状態 He、Ne、について実験が行われ係数 C₃が報告されている。レーザー冷却・トラ ップ技術の利用により速度が1m/s以下の超 低速原子ビームの生成が可能になった。超 低速原子ビームは微弱なポテンシャルの影 響を受けて波の位相が大きく変化するため、 表面ポテンシャルの検出に有用である。ま た超低速原子ビームはド・ブロイ波長が数 nm となり、幅が数百 nm のスリット列から なる回折格子からの1次回折角は10⁻³ rad 以上になる。原子を冷却することにより回 折角が大きくなるので、実験装置を小さく することか可能となり測定が容易になる。

分子間には凝縮力や斥力の要因としてフ アンデルワールス力が働いていることが知 られている。そのポテンシャルエネルギー は原子 - 原子ではその距離の6乗に反比例 して、

 $V = -\frac{C_6}{R^6}$ (C_6 :相互作用係数)

と与えられ。原子-固体表面ではその距離 の3乗に反比例して、

$$V = -\frac{C_3}{R^3} \quad (C_3: 相互作用係数)$$

と与えられる。原子と固体表面の相互作用 係数 *C*₃については原子回折の回折パター ンを解析することにより定量的に測定する ことができる。

我々の研究室では準安定状態 Ar 原子の 磁気光学トラップを生成しており、これを 原子源として透過型回折格子からの原子波 の回折実験を行うことが可能となった。

2. 研究目的

準安定状態Ar 原子の磁気光学トラップ を生成し、低速のAr 原子を透過型回折格子 に通過させ原子回折パターンを観測しレー ザー冷却・トラップした準安定状態アルゴ ン原子を原子源とし、透過型回折格子を通 過した回折パターンを観測・解析すること によって、アルゴン原子と固体表面との相 互作用係数を定量的に求めることである。

 C_3 は熱原子を用いた先行研究から 7.4meVnm³ と見積もられている。我々の研 究室では低速原子を用いた原子波回折実験 を行うことでより正確な C_3 の値を見積も られると考えている。

3. アルゴン原子

本研究の原子源として用いているにアル ゴン原子のエネルギー準位を図1に示す。

図1 アルゴン原子のエネルギー準位図

アルゴン原子の準安定状態となる準位は 第一励起状態 $3p^54s^1$ の $I = 0 \geq I = 2$ である。 基底状態3p⁶からグロー放電により、第一励 起状態3p⁵4s¹のJ = 2の準安定状態を生成 し、第二励起状態3p⁵4s¹の/=3との間で冷 却遷移となる。冷却遷移のレーザー光の波 長は811.754nm また上準位の寿命は27ns で ある。トラップから原子を解放させるため、 波長 912.547nm のトランスファーレーザー 光により、第一励起状態3p⁵4s¹のI = 2から 冷却レーザーと磁場の影響を受けない第二 励起状態3p⁵4p¹のJ = 1へ励起し、第一励起 状態3p⁵4s¹のJ = 0の準安定状態へ遷移さ せる。また、 $3p^54p^1$ のJ = 1の原子は $3p^54s^1$ の2つの/=1へ遷移する原子もあり、これ らの原子は基底状態へと落ちるとき真空紫 外光 (VUV) を発する。

4. 原子波回折

光が粒子性と波動性を併せ持つように、 量子力学では原子もまた粒子性と波動性を 同時に併せ持つ。光の回折実験のように原 子波においても回折格子を通過させて回折 パターンを観測することができる。原子波 の波長をド・ブロイ波長λ_{db}といい、λ_{db}=h/mv と表される。

本実験では原子を自由落下させ回折格子 を通過させて回折パターンを観測する。自 由落下する原子が重力により加速されると、ド・ ブロイ波長が短くなり、干渉縞の間隔が重力に より影響を受ける。

図2 自由落下する原子波回折

また原子波回折では透過型回折格子のス リットの壁からも影響を受け、これをファ ンデルワールス相互作用という。

原子と固体表面間におけるファンデルワ ールスポテンシャル V は原子と固体表面と の距離 R として $V = -C_3/R^3$ となる。これは スリット間での原子波の位相 ϕ に影響する。 単スリットの中心とゼロ、スリット幅を w 原子のスリット間での位置 ξ とすると、単ス リットでの振幅透過関数 $U(\xi)$ は

$$U(\xi) = \begin{cases} exp[i\Delta\phi(\xi)] & |\xi| < w/2 \\ 0 & |\xi| > w/2 \end{cases}$$

となる。

原子がスリットの両壁から受けるファン デルワールスポテンシャル**V(ξ)**は

$$V_{\pm} = \pm \frac{C_3}{(\xi \mp w/2)^3}$$

となり、ファンデルワールスポテンシャルから 原子波の位相変化 $\Delta \phi(\xi)$ は

$$\Delta\phi(\xi) = \frac{t}{hv} [V_+(\xi) + V_-(\xi)]$$

となる。tはスリットの厚さ、vはスリットを通過する原子の速度である。スリット通過後の原子の 位相変化は図3のようになる。

図3スリット通過後の原子波の位相変化

原子波の位相がそろっているとき回折パタ ーンはみられるので、ポテンシャルを受け位相 のずれがπよりも大きくなってしまうと干渉に寄 与しなくなり、実効スリット幅は実際のスリット幅 よりも狭くなる。

今回の実験ではスリットと観測面との距離が 十分離れているため、フランホーファー回折パ ターンが観測される。

観測面 x での回折パターンの強度 I(x)はa をスリット幅、b をスリット間隔、z をスリ ットと観測面との距離、N をスリットの数 とすると単スリットでは

$$I(x) = \left[\frac{\sin\left(\frac{\pi a x}{\lambda z}\right)}{\left(\frac{\pi a x}{\lambda z}\right)}\right]^2$$

と書き表すことができる。多重スリットでは

$$I(x) = \left[\frac{\sin\left(\frac{\pi a x}{\lambda z}\right)}{\left(\frac{\pi a x}{\lambda z}\right)}\right]^2 \left[\frac{\sin\left(\frac{N\pi b x}{\lambda z}\right)}{\sin\left(\frac{\pi b x}{\lambda z}\right)}\right]^2$$

となる。

図4はスリット幅bとスリット間隔aの 比が1:2のときの回折パターンの強度分布 を表したものである。2次の回折は観測さ れない。点線は単スリットの場合であり、 実線は多重スリットの場合である。スリッ トの数が増加することで強度が大きくなり、 線幅は狭くなる。

スリット幅とスリット間隔の比が1:2でない場合 は2次の回折が現れる。

図5はスリット幅とスリット間隔の比が0.8:2の ときの回折パターンの強度分布を表したもので ある。図4では見られなかった±2次の回折パ ターンが見られるようになる。

アルゴン原子と表面との相互作用により、実 効的なスリット幅が狭くなり±2次の回折ピーク が現れることが予想される。

5. 実験

5.1 真空系

真空装置はソースチャンバー、トラップ チャンバー、ディテクタチャンバーに分け られる。ソースチャンバーはアルゴンガス を注入し、液体窒素で冷却しながら放電管 により準安定状態に励起し原子ビームを流 している。ゼーマンコイルを通して原子を レーザー冷却した後、トラップチャンバー でトラップしている。トラップされた原子 を下のディテクタチャンバーへ重力により 落下させ、ディテクタのマイクロチャンネ ルプレートで検出している。

5.2 光学系

温度と電圧を調整し、レーザー発振器から 811.754nmのレーザーを出力させる。出力した レーザーは PBS で分け、一方はアルゴンガス で満たされたセルを往復させ、飽和分光法に より周波数ロックし、発振器へとフィードバック させる。もう一方は、3台の注入同期レーザー に注入し、レーザー出力を増幅させる。

4本のレーザーすべてにおいて、波長計とオ シロスコープにより波長が合っているかシング ルモードであるかを見ながら電圧・温度を調整 する。

図7 光学系 (光源側)

注入同期レーザーから出力した③のレー ザーを PBS で2本に分け、計4本のレーザ ーとトラップコイルにより準安定状態Ar 原子を磁気光学トラップする。

図8 光学系(トラップチャンバー側)

5.3 回折装置

図9 ディテクタチャンバー

カメラレンズを取り付けたファイバーか らトラップの中心に集光するようにトラン スファー光を照射し、トラップから原子を 解放させる。トラップから解放された原子 は 23cm 下の直径 3mm の穴を通過し、ト ラップから 38cm 下に置かれた幅0.3mm の スリットと回折格子を通過させる。回折格 子を通過した原子は回折し、その回折パタ ーンは 67cm 下の MCP と蛍光板により検 出される。蛍光板をイメージインテンシフ ァイアと CCD カメラで撮影し、パソコンに 画像を取り込み Labview で長時間加算する ことで回折パターンを観測する。

5.4 回折格子

図 10 回折格子とスリットの配置図

図 11 光学顕微鏡で観測した回折格子

回折格子は 3mm×3mm と大きく、この ままでは 0 次と 1 次の回折パターンが重な ってしまう。そこで、分解をよくするため に回折格子の上に幅 0.3mm のスリットを 置き原子が回折格子を通過する範囲を狭め る。0.3mm のスリットは回折格子のスリッ トと平行になるように置いている。スリッ トは図 11 のように並んでいる。回折格子の 厚さ 100nm、スリット幅は 1µm、スリット 間隔は 2µm で 10µm の補強が入っている。

6. 結果と考察

まず、回折格子を置かず、トラップチャ ンバーとディテクターチャンバーをつなぐ 直径 3mm の孔を通過して MCP に落下する 原子を測定した。トランスファー光のパワ ー3nW で 10 分間積算すると、図 12 のよう な画像が観測された。

図12 10分積算した画像(回折格子なし)

図 13 に示すように、光の場合はトラップ 下の直径 3mm の穴を射影したパターンが 観測されるが、原子の場合は重力により放 物線状の軌道で落下してくるので、光の場 合よりも落下する範囲が小さくなる。この ことから、大きい円は真空紫外光(VUV)で あり、中の小さい円は原子であると考えら れる。

図 13 真空紫外光とアルゴン原子の重 力下での落下軌道

次に、回折格子を置き、トランスファー 光のパワー3nW で2時間積算すると図14 のような画像が観測された。

図 14 2 時間積算した画像(回折格子あり)と強度グラフ

図 14 のパターンのピークの間隔は 0.9mm となり、この値は計算値 0.93mm とほぼ合 うので、このパターンは回折格子による 0 次と±1次の回折パターンだと考えられる。 しかし、バックグラウンドのノイズが大き く 0 次と 1 次の SN 比が悪くなってしまっ た。

7. まとめと今後の課題

原子の速度分布幅を狭くするためトラップと 回折格子の距離を22cmから38cmに伸ばし、 回折パターンの間隔を長くするため回折格子 からディテクタまでの距離を30cmから67cmに 伸ばした。その結果、図14の回折パターンを 観測することができた。今後の課題としては、 ・バックグラウンドのノイズを減少させ SN 比を改善するため、装置の改良を行うこと。 ・±2次の回折パターンが観測できるよう 落下原子の原子数の増加を図ること。 ・解析を行い、原子と固体表面との相互作 用係数の定量的な測定を行うこと。 が挙げられる。

参考文献

- R.Eisenschitz and F.London. Z.Phys. 60, 491(1930).
- [2] J.Lenerd-Jones. Faraday Soc. 28,333 (1932).
- [3] E.M.Lifshitz. Zh.Eksp.Teor.Fiz 29,94(1955).
- [4] J-C Karam, N Wipf, J Grucker, F Perales, M Boustimi, G Vassilev, V Bocvarski, C Mainos, J Baudon and J Robert J. Phys. B: At. Mol. Opt. Phys. 38 (2005)
- [5] John D.Perreault, Alexander D.Cronin, T.A.Savas.Phys.Rev.A 71,053612(2005)
- [6] John D.Perreault, Alexander D.Cronin. Phys.Rev.Lett. PRL 95,133201(2005)
- [7] Alexander D. Cronin, Jörg Schmiedmayer,
 David E. Pritchard. Rev. Mod. Phys. Vol. 81 July –
 September (2009)

[8] 光学概論Ⅱ-波動光学-, 辻内順平, 朝倉書店