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Reflection of waves from a ridged surface is interpreted as the spatial Zeno effect. This interpretation leads to a simple
estimate for the coefficient of reflection. This estimate shows good agreement with experimental data of scattering of
cold atoms from ridged surfaces. # 2005 The Optical Society of Japan
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1. Introduction

Waves are reflected at any abrupt change in the index of
refraction, regardless of the sign of change. In the case of
light waves, such step in the index of refraction arises
naturally at any interface of two media with different optical
properties. In the case of atomic waves, the reflection occurs
when the interaction potential changes significantly within
one de Broglie wavelength. The phenomenon has been
called ‘‘quantum reflection’’ because it relies on the wave-
like properties of atoms.

The classical specular reflection of atoms from condensed
matter is usually impossible because of the attractive
character of the van der Waals potential. When an atom
approaches so close that the potential becomes repulsive, it
is already well accelerated and feels the discrete structure of
the surface. This leads to diffuse scattering. In contrast, the
quantum reflection occurs at a distances large in compar-
isson to the atomic size, and leads to specular reflection.

The quantum reflection has been predicted and observed
with ultra-cold atoms, and then intensively studied as a way
to realize stable, accurate and dispersionless atom reflec-
tors.1–12) However, the quantum reflection quickly decreases
with increasing normal wavenumber, and the application is
usually limited to ultra-cold atoms and/or small grazing
angles.

The reflectivity of atoms is higher when the van der Waals
interaction potential is weaker. This indicates that the
van der Waals interaction prevents efficient reflection, be-
cause it accelerates the atoms toward the surface. A material
with lower density would be a better reflector. This
reasoning motivated Shimizu and Fujita to use nano-
fabricated silicon surface structures consisting of parallel
narrow ridges to reflect cold atoms.14,15) A schematic cross-
sectional view of such ridges is shown in Fig. 1(a). In this
experiment, the laser-cooled metastable neon atoms were
incident at a small grazing angle � on this surface structure
and were reflected much better than on a smooth surface.

In spite of this progress, the process that leads to such
increase of the reflectivity on the grating structures was not
yet understood. First, the enhancement in reflectivity was
estimated by assuming a reduction of the density, and hence

the van der Waals constant, by a factor ‘=L. This assump-
tion overestimates the reflectivity and does not allow
prediction of properties of the ridged mirrors.14)

Here, we present a simple model which is in a good
agreement with experimental results performed on a ridged
surface. In this model, the reflectivity is determined by the
dimensionless parameter

p2 ¼ 2Enor=ðh� f Þ ð1Þ

where Enor ¼ mv2=2 is kinetic energy of an atom of mass m,
corresponding to the normal component v of its velocity; V
is tangential velocity, and f ¼ V=L is frequency at which the
atom passes by the ridges. Parameter p has sense of
normalized momentum.

Our model interprets the ridges as idealized absorbers as
shown in Fig. 1(b). Let x and y be Cartesian coordinates.
Atoms are incident onto the ridged surface under a small
grazing angle �. The grazing angle � in experiments14–16)

with ridged atomic mirrors was in the order of 10mrad, and
the height of the ridges were high enough that the incoming
wave saw mainly the side-walls of the ridges. Assuming
small values of the grazing angle �, we make no difference
between the incident velocity and its tangential component
V . The narrow ridges are placed with period L. These ridges
either absorb the atoms or modify their quantum state.
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Fig. 1. (a) Particle with velocity V incident at grazing angle �
onto a surface with a grating structure. (b) The idealization of the
structure as a periodical set of absorbers.
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Neither the width ‘ of the ridges [Fig. 1(a)], nor the potential
of interaction of atoms with the surface are used in our
model. The transversal velocity of the incoming atoms is
high so that they are expected to collide with the ridge walls.
The metastable atoms are quenched during such a collision.
In the following section we interpret this quenching as
‘‘measurement’’; then we show that such interpretation leads
to a simple and correct estimate.

2. Reflection from Ridges as Spatial Zeno Effect

In general, the Zeno effect can be defined as a class of
phenomena when a transition is suppressed by some
interaction which allows the interpretation of the final state
in terms of ‘‘a transition has not yet occured’’ or ‘‘a
transition already occurred’’. In quantum mechanics, such
an interaction is called ‘‘measurement’’ because its result can
be interpreted in terms of classical mechanics. Frequent
measurement prohibits the transition. Various versions of the
Zeno effect17–21) fall into our definition above. We need to
justify the term ‘‘measurement’’ in the case of interaction of
atoms with ridges. In this section, we apply the concept of
Zeno effect to the transition of the atom from the upper half-
space (y > 0) to the lower half-space (y < 0).

In principle it is possible to detect the collision of an
excited atom with the wall of a ridge. The high internal
energy of metastable noble gas atoms typically leads to the
emission of an electron during the collision. Also, the atom
could emit a photon, or just exchange momentum and energy
with a phonon at the surface—any kind of interaction which
removes the particle (atom) from the beam. We therefore
interpret the ridges as a measurement device that tells us
whether the atom has already collided with the surface or
not. The good detector could even say which particular ridge
has just been hit by the atom. We have a grating with many
ridges along the surface, so the position of the atom is
periodically measured. The rate of measurement is given by
the velocity V of the atoms along the surface and the
distance L between the ridges. This is the spatial Zeno effect;
the frequently repeated measurement of the atom in the
lower half-space prohibits the transition. Such prohibition
means reflection.

Although the Zeno effect was formulated far before
quantum mechanics, the reflection caused by the measure-
ment is a relatively new phenomenon. Last century, such a
reflection looked counter-intuitive and caused worries that
the statistical interpretation of the quantum mechanical wave
packet contained a gap.22) In our paper, we use the concept
of spatial Zeno effect for quick interpretation of recent
experimental data14–16) of the reflection of excited He and Ne
atoms from ridged surfaces. These data appear as the
experimental evidence of the spatial Zeno effect.

The parameter p2 by eq. (1) can be interpreted as doubled
ratio of frequency of the system ! ¼ Enor=h� to the frequency
f of the measurement. In our case, the frequency ! is the
only frequency which characterizes the movement of the
atom toward the surface. If the frequency f of the measure-
ments is large compared to !, we expect the suppression of
the absorption due to the Zeno effect. Therefore, the

mormalized momentum p is the key parameter which
determines the reflectivity of the ridged mirror; at p � 1, we
expect strong reflection, and at p � 1 we expect strong
absorption. From eq. (1) we see that the Zeno-reflection of
macroscopical objects requires too high frequency of
measurements. In the case of cold atoms, however, such
reflection is possible and we estimate its efficiency below.

The efficiency of the reflection is the same, whether the
ridges are connected to some macroscopic measurement
device or not. It is sufficient that the state of an atom
entering the half-space y < 0 gets entangled with some sub-
system. Such a sub-system can be the emitted electron or
photon, as well as phonons in the ridges. Then, the actual
measurement could be performed without any additional
distortion of the state of the atom. In this sense, the frequent
absorption causes the reflection, and the reflectivity is
determined by the frequency of the detection.

Once we accept the interpretation of the reflection from a
ridged surface as the Zeno effect, we can simplify the
derivation by assuming that the measurement at a rate f with
unit detection efficiency is equivalent to a continuous
measurement with absorption rate f . At grazing incidence
we therefore expect the grating structure to behave like an
equivalent absorbing medium with an absorption rate f ¼
V=L, where V is tangential component of velocity. This
strong assumption allows us to obtain an easy analytical
estimate of the reflection coefficient R as function of
dimension-less momentum p.

3. Reflectivity by Continuous Detection

Following the ideas of the previous sections we interpret
the ridged surface as a set of detectors, then as a distributed
detector with the same rate of detection, and then as an
equivalent absorbing medium with absorption rate f . Such
assumption allows us to estimate the reflection coefficient.

Let � be the part of the scattering wave function which
represents the atom that has not yet interacted with the
detector. Assume that the half-space y < 0 is filled with a
continuous detector which detects (absorbs) the atom with
rate f ¼ V=L. Then we can consider the single-dimensional
Schrödinger equation for wave function � of the movement
in y-direction:

i
@�

@t
¼ �

h�

2m

@2�

@y2
� i

f

2
#ð�yÞ� ð2Þ

where # is the unit-step function. The last term phenom-
enologically takes into account the entanglement of the
matter wave with other degrees of freedom. This entangle-
ment occurs with the rate f in the half-space (y < 0).

Assuming the monochromatic beam, we write

� ¼ �ðy; tÞ ¼  ðyÞ expð�i!tÞ ð3Þ

where  is spatial part of the wave function. It satisfies the
equation

d2

dy2
þ k2 þ i�2#ð�yÞ

� �
 ¼ 0; ð4Þ

where k ¼ mv=h� is the transversal component of wave-
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number, m is the mass of the atom, v is normal component of
velocity, and �2 ¼ fm=h� .

We construct the solution of (4) in the form:

 ¼ e�iky � reiky; y � 0

ð1� rÞeð�i���Þy; y � 0

�
ð5Þ

where r is the complex reflection amplitude, and � and � are
positive parameters. Outside the absorber, the wave consists
of the incoming and reflected parts. Inside the absorber, the
wave function decays exponentially, as if it were be an
optical wave inside an absorbing medium.

Substitution of (5) into (4) gives the equations for � and �:

�2 � �2 ¼ k2 ð6Þ
2�� ¼ �2 ð7Þ

The appropriate solution is

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 þ �4

p
þ k2Þ

r
; ð8Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4 þ �4

p
� k2Þ

r
: ð9Þ

An equation for the complex reflection amplitude r is readily
obtained using the continuity of the derivative of  ðyÞ at
y ¼ 0:

r ¼
i�þ �� ik

i�þ �þ ik
: ð10Þ

Then, after some algebra, we express the reflection coef-
ficient rr� in the following form:

rr� ¼ RðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=p4 þ 1

p
þ 1

q
�

ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=p4 þ 1

p
þ 1

q
þ

ffiffiffi
2

p ð11Þ

where

p ¼
ffiffiffiffiffiffi
m

h� f

r
V�; ð12Þ

has the meaning of a dimension-less transversal momentum.
In terms of wavenumber K ¼ mV=h� , this parameter can be
expressed even more simply:

p ¼

ffiffiffiffiffiffiffiffiffiffiffi
2Enor

h� f

s
¼

ffiffiffiffiffiffiffi
mL

h�V

r
v ¼

ffiffiffiffiffiffi
KL

p
� ð13Þ

The function RðpÞ by (11) can be approximated by the
exponential fit expð�

ffiffiffi
8

p
pÞ; the absolute difference between

these two functions does not exceed 0.02%. Both curves are
shown in Fig. 2. The reflectivity estimated by eq. (11) is
determined by the mormalized momentum p, which dem-
onstrates the scaling law for the reflectivity of waves on a
ridged surface.

4. Comparison with Experimental Data

In this section, we compare our estimate with various
experimental data for the reflection of cold atoms from
ridged silicon surfaces. Figure 3 collects the data from
Fig. 3 of ref. 14. and Fig. 4(b) of ref. 16 We plot the
reflectivity measured on various samples versus the normal-
ized momentum p by eq. (13). The dashed curve represents
the estimate (11), and the solid line is the fit expð�

ffiffiffi
8

p
pÞ.

Our estimate explains the almost exponential decay of the
reflection coefficient as function of the grazing angle
observed in experiments. In addition, it predicts the correct
slope of this decay. Equation (11) shows good agreement
with the data for Ne� and He� atoms in a wide range of
values of parameters. The mass m changes from 3:4� 10�26

to 0:7� 10�26 kg, the distance L between ridges varies from
5 to 100 mm, shape changes from trapesoidal14) to almost
rectangular,16) the width ‘ of the ridges changes from 40 nm
to 11 mm, the atom velocity V varies from 3 to 126 m/s,
and the transversal velocity v varies from 4mm/s to 150 cm/
s; but our estimate holds. Therefore we interpret the
measurements mentioned as the experimental evidence of
the spatial Zeno effect.
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Fig. 2. Function RðpÞ by eq. (11) (dashed line) and the fit
expð�

ffiffiffi
8

p
pÞ (solid line).
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Fig. 3. (a): Reflectivity of Ne� with velocity V ¼ 3m/sec from various ridged Si samples.14) (b): Similar data from
ref. 16 for He� atoms scattered from the sample with L ¼ 5 mm, ‘ ¼ 100 nm.
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5. Limits of the Model

The assumption of a continuous absorbing medium is a
rough model of the ridged surface. First, it ignores the
periodical character of absorbers, so it cannot be used for
analysis of higher orders of scattering. Second, it cannot
predict the effect of the finite width ‘ of the ridges. These
two effects may partially compensate each other, at least in
the case of our samples.

As we reduce the width ‘ of the ridges [Fig. 1(a)], the
reflectivity increases (compare the data for L ¼ 100 mm, ‘ ¼
11 mm to the data for L ¼ 100 mm, ‘ ¼ 1 mm) and exceeds
the dashed curve in Fig. 3(a). Hence, the expression (11)
slightly underestimates the reflectivity of a set of idealized
absorbers. This limitation can be revealed using different
kinds of waves (neutrons, photons) which do not feel the
van der Waals attraction. It is interesting to see how the
estimate (11) works for other kinds of waves.

For the excited He and Ne atoms, the description of
reflection as spatial Zeno effect catches the most important
properties of the phenomenon and provides a quick estimate
of the reflectivity. However, the speculations about measure-
ments do not bring any effect that would not follow from the
wave equations directly. The same equations and estimate
(11) can also be obtained from the assumption that L is the
effective absorption length of atoms in the half-space
occupied with ridges. More detailed consideration23) takes
into account also the discrete character of absorbers and the
van der Waals interaction, providing even more precise
estimates of the reflectivity.

6. Conclusion

We have estimated the reflectivity of atoms on a surface
structure with narrow ridges. In order to get such an
estimate, we interpret the ridges as idealized detectors. This
allows us to describe the reflection process in terms of the
Zeno effect. Then we assume that the discrete detectors are
equivalent to a distributed detector. For the scattering wave
function, such a detector appears as distributed absorber
placed in the lower half-space (Fig. 1). This leads to an
estimate of the reflection coefficient in terms of an
elementary function (11).

In this analysis, we have ignored the finite width of the
ridges and the van der Waals interaction between the atoms
and the surface. Nevertheless, our estimate explains the
almost exponential decay of the reflectivity with increase of
the grazing angle and shows good agreement with exper-
imental data over a wide range of parameters. This agree-
ment confirms our interpretation of the reflection of atoms
from a ridged mirror as the spatial Zeno effect.

We expect this result to be useful for the design of ridged

mirrors for various applications including optics of atomic
beams.
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