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A theoretical investigation is made of conversion (in an amplifier) of the image of a signal consisting of a wave
with a psendorandom transverse structure and a plane wave. Equations are obtained for the description of the
mutual influence of these waves under saturation conditions. The results of calculations demonstrate a
considerable change in the ratio of the intensities of these waves as a result of amplification.

PACS numbers: 42.50. + g, 42.65.Cq

1. INTRODUCTION

Amplification of images in active optical systems!
gives rise to distortions of spatial signals in an ampli-
fying medium. In principle, such distortions are always
possible and they may originate from the saturation ef-
fect in the amplifying medium. Particularly strong dis-
tortions are experienced by a signal when strong ampli-
fication is concentrated in a short distance.? When the
amplifier length is increased, the relative proportion of

distortions should decrease, but in this case it isn
longer possible to carry out an analysis for an arbi
form of the signal.

A method is developed in Ref. 3 for investigating
propagation of a signal with a complex spatial struc
in a nonlinearly amplifying medium. The differenti
gain is found as a function of the intensity of a wave
a pseudorandom spatial structure but without a cons
component. As expected, the value of the gain in th
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nonlinear regime is found to be less than the corre-
gponding value for a plane wave. However, if the signal
includes both an alternating pseudorandom component
and a constant one, one may expect these two compon-
ents to grow at different rates and thus distort the ori-
ginal signal. The presence of alternating and constant
components in a signal is frequently encountered in real
cases. In fact, when light is reflected from an object
or when it is transmitted by a transparency, a likely
result is a fairly strong constant component. Moreover,
we can expect the appearance of various strays in an
amplifier and these strays may include a fairly strong
plane wave traveling along the axis of the system.
Changes in the ratioof thealternating and constant com-
ponents of a signal in an amplifier will be calculated be-
low.

It should be stressed particularly that in solving this
problem it is not sufficient to calculate the gains for the
two waves: it is also necessary to allow for the trans-
fer of energy from one wave to the other, which occurs
because of the nonlinearity. Another important aspect
which must be allowed for is the appearance inanonlin-
ear medium of “extra” fields whose transverse struc-
ture does not agree with the constant or alternating com-
ponents, and which will be regarded as interference
(noise). :

2. DERIVATION OF EQUATIONS

Let us assume that a spatially modulated wave %(x,y,
z)explik(z - ct)] is traveling along the Z direction in an
amplifier. The characteristic scale of the transverse
modulation will be denoted by ! and it will be assumed
that ! obeys the condition

K1 ‘ (1)

A parabolic equation for the field & can be written in
the form

Lomls i (e omp. @
P=B&/(1 + &EY). (3)

on the assumption that the medium being investigated is
of the two-level type causing homogeneous broadening,
and the field will be expressed in units which determine
saturation. We shall assume that the medium occupies
a region of dimensions L,XLy,XL. At the entry to the
medium, where £z =0, the field is ‘

8y, 0=V a0 +V £ 4, 0) explig(x, 5, 0)], (4)

where a(0) is independent of the transverse coordinates
and the complex function of the transverse coordinates
VE(x,y,0 exp[ig(x,y,0)] has a fairly complicated struc-
ture and satisfies the conditions

(5)

LeLy
§ | dxdyVEexpliq) =0,
00

and belongs to a set of functions whose values for anyix,
¥ obey the distribution
@ (¢) dp = —5-—do, w(E) dg = exp [-— T%ﬁ)‘] ﬁ%—,. (6)

We shall seek the solution of Eqg. (2) subject to the
boundary condition (4) in the form

8=8,+8&,, )
=V a@+V Exy 2 explip(x, 4, 2], (8)

where \/_E- exp(ig) is a function of x,y, and z proportion-
al in each z section to the field expected:in the case of
propagation of the alternating part of the input signal in
free space. For convenience, we shall denote the pro-
portionality factor by vb{(z),5(0); thus, the function
Vb{0),5(2) XV E expli¢) obeys the following homogeneous
equation:

LIV B/ VER g, 2 explip(x, y, 21} =0. (9)

The function &, has to satisfy the requirement that in
each section g it is orthogonal to the constant compon-
ent and to the function vV £ exp(ig).

We have thus separated the two parts in the required
solution: the signal (field #,) and interference (field
#,). The signal contains two fundamentally differing
terms: a field constant over the transverse cross sec-
tion [plane wave of amplitude v a(z)] and a component
varying rapidly over this cross section [V exp(i¢)].

We shall write down the equations for the constant and
alternating components of the signal field by introducing
projections of the right-hand side of Eq. (2) on these
components:

LxL”
Po=—7 L,, Of ) dxdyP =,V a,
P, = VT—exp (i) Ls‘,}y dxdyP V—E; (10)
o 0
x exp (— ig)= V%exp (i@) %s.
Using the above notation, we have
L(a)=P., L(VEexpl(ig)) =P, (11)

Using Eq. (9), and also the fact that @ and b depend only
on one coordinate z, we find from Eq. (11)

d — —
4 Vai=xVa -5 Vi=1Vb.

We shall now calculate X, and x,. We shall ignore the
influence of interference (exactly as in Ref. 3) and sub-
stitute in Eq. (3) the expression for the signal field (8);
this gives

(12)

Va+V Eexplig) 1
l+a+E-+2Vakcosg Va'-

1 Lxly
xa=ﬁm°j Of dxdy
13)

VEexp (—ig) 4+

gy VEE VE e i)
L:vagi}‘ Y 1 ¥a+t+2Vatcosg

Next, we shall replace in Eq. (13) the averaging over
the coordinates with the averaging over the set [see Eq.
(6)], which gives

—p ?L’Eéewb?f;%
0

]

Va + VT explig) 1
1+a+E+2Vakcosp Va’

(14)

Ve +E 1
l+atE+2/akcosgp b -

wejges g

Calculating the integrals with respect to ¢, we shall re-
duce the system (14) to
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x'z=ﬂ

Oy B

"Tge-a/b[x-r

a—E—1 ]
ViFfafor—aat )

We shall now calculate the flux W, in the far-field
zone. We shall express the field %, in terms of the

|

" a==§=="7
Xy =

b+ et

. , , (15)
1— éi_—]
Vi+a+pr—dat

B < a4l N\

: 2\ VYV Udatror—da/"
Averaging over the distribution (6) will be denoted by
angular brackets. In terms of the above notation, we
finally obtain the following system of coupled equations
for the two components of the signal field:

Ly amplip_8=E-1 \_1_
zVa=b 2 <1+V(1+a+§)’—4a§/ Vi’

X

]

Xb=55 dT§e —%/b [
[+

L
3

ol

(16)
L yhapl ekl N\ 1
w VE=b( - v
The equation for the interference field will be found by
turning back to Eq. (22) describing the total field &,
+&,:

Z(gn‘Hgl)=ﬂ($u+g1)/(l+|$n+81lz)- (1)

Expanding the right-hand side of Eq. (17) in terms of
the weak field #;, we obtain

_R g;ga‘?o i
T (1—gs)

L@ +&)=p—2Eo 1 (18)

&
1 + gugo (l + g’ﬂg(.))’l
We shall assume that the interference can be estimated
using the coefficients in front of #, and &} averaged
over the transverse cross section. If we again replace
averaging over the coordinates with the averaging over
the set, we find that the coefficient in front of €T van-
ishes and that in front of #, becomes

. 1 \'-.= 1 _
r= < (l+gng:})1 / < (1+a+§+2]/a§cosqw)z>

_ 1+a+8
”< (1 +e+ H2—aagp? > (19)

Bearing this point in mind, we obtain the following e-
quation for the interference from Eqgs. (7), (16), and
(18):

L&1—46:1=1P—Pa—Pillg_g, =P,. (20)

3. INTERFERENCE INTENSITY

We can estimate the relative level of the interference
in the system under discussion by considering the total
radiation flux

W= C(21)

00

Lx Lll

| & & axdy.,
We can easily see that in view of the orthogonality of the
functions va, v£exp(ip), and P,, both components of the
signal field and the interference field make additive
contributions to the flux:

V=W,+W,+W,, (22)
where
W.=L,L,a (23)
Wy=L,L,b; . (24)
Lyt
W, = j (é’lé’x dxdy, (25)
b0
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right-hand side of Eq. (20) using the source function o
the parabolic equation, and thenwe shall substitute th
expression in Eq. (25) and carry out transformations
similar to those in Ref. 3. This gives '

£ w fFhpk
Wi (z— 00) = exp (2 'g'xd;)@—; s‘ f (‘ dxdydz
LI 0 0 00
x |
il

XPx(x.y,Z)eXP(-—fxd C)P; (%, 4, 2) exp (—}xdg). (2
0

0

Ly L
1 ik (x—x)4(y—y')2
S hf de'dy’dz’ -—— exp [ - —“ﬁ]

z—2'

We shall find it convenient to use the approach em-
ployed in Ref. 3 and use the Fourier components of the
quantity P,(x,y,z)exp(—_/;' xd¢). As in Ref. 3, we shal]
assume that the intensities of all the Fourier compon-

. ents are the same when the wave vectors obey Ik,, |< 1

|ky|<1/1, and [k.|<1/2k1, but vanish outside these
ranges. Repeating the estimates represented by Egs.
(25)-(217) from Eq. (3) (x, should be replaced with X an
X1 &0 with P,), which gives

0 o
X 2RI Si (L/2k1%) (2

) L L z
W,=exp (2 jxdg) L,,Lyjl {P1P}) exp (_2 j‘xdg)dz
; 0
there, Si is the integral sine). The flux W, associated

with the interference should be compared with the ener
gy flux of the main field Wy =W, + W,. In the far-field

zone the fluxes W, and W, can be expressed in terms o
the intensities of the constant and alternating compon-

ents of the signal at the exit from the amplifier:

WMW,=L.L,la(L)+b(L)]; (24
instead of Eq. (28), it is convenient to use the following
formal equality: '

L
Wo+Wy=L,L,[a(z) + b(2)] exp (2 j‘ x,,,,,,dc) ) (2¢

where Xg5 = (Xa@ +x;0)/(a +b). This equality is based o
a consequence of Eq. (12), which is d{a +b)/dz =2(x.a
+Xsb). Combining Egs. (27) and (29), we obtain

v X L L } . L
Wz—zwzsl( W,)hf <:f;> [exp2§(x—x¢+b) dc] dz, (30

We recall that in the case discussed in Ref. 3, when the
signal field has no constant component, the signal and
interference gains are equal (X =Xp, X.s =X¢) and the
argument of the exponential function vanishes in the
formula for the ratio W,/W,. On the other hand, if
there is no alternating component, we have Xasb =1/ {1
+a) and x =1/(1 +a)?, i.e., X < Xaope

In the general case (@#0, b+ 0) one would need to
carry out numerical calculations. Such calculations
demonstrate that the inequality x <yx,,, is always obeyed
(only for @ =0 it reduces to x =Y,,;). Bearing this point
in mind, we shall replace Eq. (30) with the inequality
L{ppp>

W, - . L
Vo S S [

TR dz. (31}

We can estimate the ratio (P,P})/(a +b) if we can ex-
press (P,P¥) in terms of a and b. Averaging gives
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fIG. 1. Dependence of (P{P,*/(a+b) on b,

(PPY ={|P —Pa—Py [y = (PP Y —yla—x}b
= (VT +a+EP—4at) —<(I +a+ 8/l +a+E)*—4at]*’?>
—Y 1+ (@@= E— WV (T +a+ E)F—4at)¥a
— Yo (l—(a—t+ )V T +a+ £ — 4ag)?/b. (32)

Numerical calculations were carried out on the basis of
Eq. (32). The results of these calculations are present-
ed in Fig. 1 where the curves representing (P,P})/(a
+b) are plotted.

The maximum value of {(P,P¥)(a +b) occurs at a="0
and b =0.8 and it amounts to 0.038% Thus, Eq. (31) can
be replaced with

W /W 4<<0,0332L2kI1* Si(L/2kI%). (33)

We can now see that the radiation flux representing in-
terference is much weaker than the output signal if the
value of BL is moderate. However, the ratio of these
two quantities decreases considerably if diffraction ef-
fects occur. In fact, if the amplifying medium is short
(i.e., when L << 2kI%) and there is no diffraction smear-
ing of the signal structure in the amplifier, we find that
2kIPL-18i(L/2k1%) =1 and Eq. (33) gives W,/W,<0.03
(B/L)*. When L/2kl* increases, the quantity 2kI°L-!Si
(L/2k1%) decreases and for L/2kI%>> 1 it can be replaced
with a small quantity 7kl?/L, which gives Wi/Wos 0.05
(81)*2k1%/L. It should be stressed that this estimate of
the interference given by Eq. (33) is grossly overesti-
mated. More accurate estimates can be obtained only if
more detailed numerical calculations are made. The
smallness of the ratio W1/W0 confirms the validity of
the splitting of the total field into the main or signal
f&ioeld #,=Va +V Eexp(ig)and the weak interference field
1'

4.CHANGES IN THE INTENSITIESOF THE CONSTANT
AND ALTERNATING COMPONENTS OF A SIGNAL IN
AN AMPLIFIER

In view of the smallness of the interference, 1he sig-
nal field can be considered independently of the inter-
ference, i.e., we can describe the signal by the system
(12). It is convenient to modify the system (12) by re-
Placing the coefficients va and Vb of the constant and
variable components of the signal field with their
tsl?utares a and b. It then follows from Egs. (12) and (15)

aj

da V/
m.— 5 !
_a g P
d (22 = T

(34)

T Yfrte §f-da
it .Should be noted that at low intensities we readily ob-
An from the system (34)

_da db
d(?ﬂz) -, 'm—. b . (35)

2 5 e 2/3;
FIG. 2. Dependences of the intensity of the constant compon-
ent a of a signal on the amplifier length for different input par-
ameters: 0) a=0.01, b=0; 1) a=0.0067, b=0.0033; 2) a
=0.005, b=0.005; 3) a=0,004, b=0.006; 4) a=0.003, b
~0.007; 5) a=0.002, b=0.008; 6) a=0,001, b=0.009.

The system (35) states the obvious result: in the linear
regime both components increase exponentially with the
same growth increments. In the other limiting case
when a>1 and b> 1, we obtain from Eq. (34)

emet (36)

=1—e—ast

L
d(2B2) v d(2Bz) T
It follows from Eq. (36) that in the case of strong satu-
ration the total field energy increases linearly, d/(a
+b)/d(28z) =1, but the constant component is amplified
preferentially. In fact, it follows from Eq. (36) that

d (2Bz) b

d (ajb —alb .
(a/b) e (ea/b_ 1_%1) 0.

Thus, the ratio a/b must increase when the saturation
is strong. If the amplifier is sufficiently long, then be-
ginning from a certain coordinate z the value of a/b be-
comes so large that Eq. (36) changes to

da db
7op = b aggg = O 37

1t follows from the system (37) that in the case of
very considerable amplification lengths the regime is
such that the constant component of the signal increases
linearly with the coordinate and the energy stored in the
alternating component reaches a saturation value and
does not increase any further. At moderate satura-
tions, which are of greatest practical importance in the
case of image amplifiers, one has to solve numerically
the system (34). We obtained such solutions for a ser-
ies of input data. The initial values were selected so
that the power of the whole signal at the input was the

0 — w0 i 757

FIG. 3. Dependences of the intensity of the alternating com-
ponent b of a signal on the amplifier length for different input
parameters: 1) a=0.0067, b=0.0033; 2) a=0.005, b=0.005;
3) a=0.004, b=0,006; 4) a=0,003, b=0.007; 5) a= 0.002,
b=0.008; 6) a=0.001, b=0.009; 7) a=0, b=0.01.

717 N IR y S
u93 Sov. J. Quantum Electron. 11{8), Aug. 1981

T.T. Kuznetsova and D. Yu. Kuznetsov

— .:‘ 093 S



. \ ~
T T TT]sS T T LIS
q/ !
- - () Ll
<

FIG. 4. Dependences of the depth of modulation of a signal on
the amplifier length for the following input parameters: 1)
a=0,0067, b=0.0033; 2) a=0.005, b=0.005; 3) a=0.004, b
=0.006; 4) a=0,003, b=0.007; 5) a=0.002, b=0,008; 6) a
=0,001, b=0.009.

same in all cases: the condition a(0) +5(0) =0.01 was
obeyed in all cases. In view of the invariance of the
equations in the system (34) relative to the shift of z,
the results of the calculations could be used also in the
case when higher intensities were assumed at the input.
The results of these calculations are plotted in Figs. 2
and 3. The uppermost curve in Fig. 2 represents the
case of propagation of a plane wave in an amplifier,
i.e., it corresponds to the absence of any modulation:
da/d(2Bz) =a/(1 +a), b=0. The uppermost curve in
Fig. 3 represents the opposite case, when the modula-
tion is total, i.e., when a constant component is absent:

a=0,d—('42£’$7)—1 —l——;(exp %)Ei(—%) (38)

(Ei is the exponential integral). Equation (38) was ob-
tained in Ref. 3. It is interesting to note curves 1 and 2
in Fig. 3, which reveal that the alternating component
has already reached saturation, We can also see from
the two figures that the constant component increases
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faster in the 'intensity than the alternating one. For ex.

—ample, -assuming-the-input-values-a{0)=0.004-and (o)

=0.006, we find that for 2Bz =8.4 the constant compon- .
ent becomes greater than the alternating component
(curve 3 in Figs. 2 and 3).

Figure 4 shows how the ratio b/a varies with the co-
ordinate. We can see that in all the cases discussed a-
bove the depth of modulation of the signal (i.e., the qua.n-‘:
tity b/a) decreases significantly as a result of amplifij-
cation. Only in the case of the largest (of those given ip
Fig. 4) input value of b/a =9 is the change in the depth of
modulation not too great. This means that for this input
signal and total gain 2BL =20 the distortions of the sig-
nal at the amplifier exit are slight. Reduction in the in- |
put value of b/a enhances the importance of distortiong
of the signal in the amplifier.

We shall conclude by stressing that the approach a-

- dopted above has made it possible to reduce the equation

for a nonlinear medium expressed in terms of partial
derivatives to a system of two ordinary differential e-
quations, and to obtain a solution in a clear form. This
method should be convenient in analyzing other problems.
involving quantum amplifiers.

We have shown above that the most important distor-
tions occurring in an amplifier in the course of propaga-
tion of a spatially modulated wave with a pseudorandom
transverse structure involve reduction in the depth of
modulation. Such distortions can easily be removed by
filtering a Fourier plane. The results obtained allow us
to estimate the reduction in the depth of modulation
which can be expected under specific conditions.
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