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An investigation is made of the resonant amplification of two counterpropagating monochromat-
ic beams having pseudorandom spatial modulation. A system of equations describing the change
in the average intensities of the beams in the direction of propagation is derived and solved.

Optical signals having a pseudorandom transverse
structure propagating through a nonlinear (amplifying) me-
dium were investigated in Refs. 1 and 2 for waves traveling in
one direction. The case when counterpropagating waves
travel in a medium is considered below. The presence of
transverse modulation complicates considerably the interac-
tion, compared with the case of plane waves considered in
Refs. 3 and 4. The situation is simplified slightly if the wave
modulation is complete, i.e., if both waves have a zero aver-
age over the transverse cross section. The differential equa-
tion for the average intensities of the counterpropagating
waves can then be solved in terms of quadratures.

We shall analyze a field of the type Ee ~"'. We shall
assume that £ satisfies the equation

(A-HR)E=ik? (Se/e,)E, (1)
where k? = g,@?/c*; € = £, — iS¢ is the permittivity of the
medium; 8¢ = 28c/w(1 + E *E). This dependence corre-
sponds to a two-level homogeneously broadened medium.
We shall assume that de<1.

In order to isolate explicitly the counterpropagating
fields, we shall write E = & \¢** 4 &,e ~ **, where #, and
& , are slowly varying functions of the coordinates. Convert-
ing to a parabolic approximation, we obtain
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Multiplying Eq. (2) by e~ **/(2ik ) and averaging over z
between z — 77/2k and z + 7/2k, we obtain
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An equation for the counterpropagating wave is derived sim-
ilarly:
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We recall the problem of interacting plane waves. For

functions &' | and &, that do not depend on the transverse

coordinates the system (3) and (4) yields the familiar system

of ordinary differential equations

f I , -, - -
27 E1=DF (6.8, 8,8)8,, L& = —BF (8,63, 8,8))[8.,

(5)
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where F is an elementary function of two real variables:
Fx, )=[1—(—x+0)/V TF2EFy)+ x—y)?l/2x. (6)

For simplicity, it can be assumed that &, and & , are real. In
this case, the general solution of the system (5) takes the form

1 +83 83— (1 +& +83)°—48285 = 2[ 1y, = const, (7a)

(83 +83) (VT+

@, —&y+1)—(&3—83) (YT & —8&)

+1)

&:—& +In

(67 + &) (VTF @&, —2)r+1)+ (87— 83) (V T+ E— &P +1)

2pz = 2Pz, = const.
(7b)

r

The physical meaning of the constants /,,;, and z, is clear
from Fig. 1.

We are interested in the case when # | and & , are waves
having a complex structure, a zero average, and different
transverse modulations. The interaction between one such
wave and a nonlinear medium is well known.'

We shall seek a solution of the system (3) and (4) in the
form

&1=Bi[i+F &,=Bof, T, (8)
where B, only depends on z; /', , are the solutions of equa-
tions for free space;

d 1 d
a7 fL+ Q}Ed;hza E:F-z 2,;; A f2=0; )

 ,, are relatively weak fields that are logically described as
noise. It is important to note that for the case of completely
modulated waves there are no conjugate fields. If there were
sources of conjugate fields (and these certainly do occur in
the presence of a constant component), these fields would be
weak and could not be included in the noise. For this reason
the absence of a constant component considerably simplifies
the analysis.

We shall assume- that the solutions of the equations (9)
are normalized: (f, 1), ={(fof3). =1, where (...),
denotes averaging over the transverse coordinates. Substi-
tuting Eq. (8) into the system (3) and (4) and allowing for Eq.
(9), we obtain
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FIG. 1. Dependences of the intensity of counterpropagating plane waves
on the coordinate z.
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The integrals in the system (10) can be calculated for and
then the right-hand sides of the equations (10) can be ex-
pressed in terms of the function F given by Eq. (6), but this
does not simplify the following calculations.

Finding the projections of the right-hand sides of the
system (10) on the ﬁeldsfl,ﬁ, we write

d

&, L& e—-izkz o\
=B 2kz L
\ \ 1) et e )
I (11a)
d ; &, & ai2kz PN
Fl i / 2 1
&z P2 B\ \ @) g e 7))
= —%Bs (11b)

Substituting the system (11) into the system (10), we obtain
an equation for the noise:
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We shall solve the system of equations (11) for the fundamen-
tal-frequency fields using the substitution %, = .5, =0,
which is equivalent to assuming that the noise is relatively
weak.

As in Refs. 1 and 2, we shall modify the system (11) by
replacing the averaging over the transverse cross section
with the averaging over an ensemble. Assuming that the
fields carry images of complex objects, we shall assume that
each of these is described by a Gaussian distribution having a
zero average. We shall also assume that these fields are inde-
pendent. Performing the substitution
“hlrg,  (13)

(@, Oy, 1, = o | drfrarfue ™1

for y,, from the system (11) we obtain

Byfy -+ Bafoe ~ 2% h

—p-L ¥ aer)( =)
e 2:: \ d2k2) \1+|Bify + Befee— 22 2 B, /..
| By, Bofyel2hs i\ {14a}
—p-L [ e E
X =B 2::_5“ ( 2')< 141 Bof + By ™2 B, );, i+ (14b)

In this case, integration with respect to 24z is removed from
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the integrals with respect to f; and f;. The integrals in the
system (14) are taken by substituting

f,=Biv,/)/ BiB, +B,Bi— Byuy/| BB+ BB, (15a)

fe~t% — Bjv, + |/ B,B} -+ ByB; - B,vy/}” B,B} + B.B:.
(15b)
As a result, we have
s = %2 =By (B,B1 + B,B2), (16)

where y is a real function of a single variable expressed in
terms of the exponential integral:
% (b) = \ dxe=*y

X | i eh”’
SR !
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Equation (17) was derived earlier' for a single modulat-
ed wave. Converting to intensities, we obtain the following
system of equations

Ei [_—)). (17)

5 d
de =2 () by — b= 2N (b 0) b (18)
The general solution of the system (18) takes the form

by (2)
. g dx
b, (2) = I§ = const, 2pz— _ . .

by (2} 2 (2) 0 =con f’z :‘\v Lx -+ fﬁl.n’x] A {x +- fﬁl.n’x]

= 2Pz, = const, (19)

The constants [, and z, introduced here have simple mean-
ings: I, is the wave intensity at the point z, where both waves
have the same intensities.

An estimate of the noise intensity is derived from the
equations (12) in the same way as for a single modulated
wave.! Noise having the following intensity is generated in
an amplifier of length L:

|71 < 2

L
BL, r del1(by (2) + 2 () <5

0

X exp[_Qp [ dty (b, )+b2(:))] Si (L’d) (20)

where L, is the diffraction length characterizing the coun-
terpropagating beams and the function /7 is uniformly
bounded:

O<<II=< (b)=1—y(b)—by(b)(1+(b))<0.03. (21)

A simpler estimate, that is more approximate than Eq.
(20), can be given for the ratio of the noise intensity to the
signal intensity:

|1 (L)1*/b,(L)=0,05 B2L L. (22)

Since this ratio is small, it is justifiable to neglect the noise
when deriving the system of equations (10) for the fundamen-
tal-frequency fields.

Figure 2 illustrates the difference between the interac-
tion of plane waves and the case when the counterpropagat-
ing waves have a complex transverse structure by showing
the intensities as a function of the longitudinal coordinate z.
Since the systems (5) and (11) are translationally invariant,
the origin may be placed at any point. The only isolated point
is the coordinate where the intensities of the counterpropa-
gating waves are the same. The pattern is symmetrical rela-
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FIG. 2. Dependences of the intensity of counterpropagating plane (contin-
uous curves) and modulated (dashed curves) waves on the coordinate.

tive to this point (z = 0), so that only half the graph is shown
in Fig. 2. The lower curve of each pair corresponds to the
wave which is amplified and propagates to the left and the
upper curve corresponds to that propagating to the right.

It may be noted that in the case of plane waves, the wave
that has reached the point z = 0 having the fixed intensity 7,
could not be arbitrarily weak at infinity. This wave has an
intensity higher than I, =1, + 0.5 — I, + 0.25 at all
points in the amplifier.

When the counterpropagating waves are modulated,
the pattern is different. For a given intensity at the point
z = 0 the wave entering the amplifier may be extremely weak
provided that the amplifier is fairly long.

We shall analyze the influence of this optical beam in-
teraction on the properties of the amplifier in which the
counterpropagating waves are propagating. We shall com-
pare the amplification of two plane and two transversely
modulated waves.

We shall introduce the characteristic of utilization of
the active-medium inversion W which we shall define as the
sum of the products of the field intensities and the appropri-
ate increments. The power extracted from the amplifier is
defined as the integral of W over the volume. For counter-
propagating plane waves, we have

Wo=2BF (x, y)x+2BF (y, x)y

=28 (1 =1V TF20x+y)+x—n)), (23)
and for completely modulated waves, we have
W =2y (x+y)x+2px(x+y)y=2B(x+y)x(x+y).  (24)

In Egs. (23) and (24) x and y are the intensities of the counter-
propagating beams and the functions F and y are given by
Eqgs. (6)and (17). The quantity W /28 may be described as the
inversion utilization coefficent. Figure 3 shows dependences
of this coefficient on the total intensity b = x + y. Curve 1
applies to the case of modulated waves and describes the
dependence of the coefficient W,, /2f3. This is extremely sim-
ilar to the dependence of the coefficient W /28 for standing

waves:
W /2p = w’pﬂ?ﬁ |;¢+g=g =1—1/V 14 2b.
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FIG. 3. Dependences of the coefficient of utilization of the inversion W/
243 on the total intensity & for modulated waves (1) and a plane traveling
wave (2).

Figure 3 does not give W,, /2f3 because the relative difference
between W,, and W,, does not exceed 6%. For intensities in
the range b <4.6 a standing wave ‘extracts’ a somewhat
greater power from a unit volume than does a transversely
modulated wave, but in the range b > 4.6 a modulated wave
is somewhat more “productive.” For comparison, Fig. 3
shows the intensity dependence of the coefficient W /2§ fora
traveling wave (curve 2):

Wil 28 = Wt /2B | | ymy jmapymms = D/(1 D).

The situation when the intensities of the counterpropagating
waves differ substantially in an appreciable part of the reso-
nator is of practical interest. In this case, the value of W /23
for plane waves will be higher than for modulated waves for
any b. A plane wave does not induce a structure in the non-
linear medium and is thus amplified more strongly. This was
shown in Refs. 1 and 2 for waves propagating in the same
direction and similar topics were discussed recently in Ref.
5,

We shall apply these results to calculations for a double-
pass amplifier. We shall assume that after a single pass
through an amplifier, a light wave is incident on a complex
mirror that alters the transverse structure of the wave but
does not dissipate its energy. After the second pass, the wave
leaves the system without hindrance. In this case, counter-
propagating waves having different transverse structures
will propagate in the amplifying medium and these will be
described by the system (18). Figure 4 shows the gain
K =1,,/1I, of this amplifier normalized to the weak field

out
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FIG. 4. Dependences of the normalized gain K /K, = 1,,,,/e*"* I, on the
input intensity [, for 26L =0(1}), 0.2 (2), 0.5(3), 1 (4), and 2 (5).

gain K, = ¢*”* as a function of the input intensity. Similar
curves for plane waves in a double-pass amplifier (in this case
the mirror should be assumed to be ideal) will resemble those
for modulated waves although the intensities on the mirror
will differ appreciably (Fig. 2).

In conclusion, we reemphasize that in the case under
study the counterpropagating waves travel so that the gain
of each wave may be described by an effective increment.
The increment is the same for both modulated waves and
only depends on the sum of the intensities. The total gain was
obtained by numerical calculations for various values of the
unsaturated gain.
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