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Efficiency of pump absorption in double-clad fiber
amplifiers. I. Fiber with circular symmetry
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The paraxial propagation of spatially random monochromatic light in a fiber with an absorbing core is treated
as a model for pump absorption in a double-clad optical fiber amplifier. Mode coupling caused by fluctuations
of the index of refraction is considered a mechanism that increases the pump absorption and is analyzed in the
speckle-mode approximation for the example of a Kerr nonlinearity. The original method of approximate im-
ages is described; it allows the use of a fast Fourier transform for numerical simulations in curvilinear regions.
Simulations demonstrate the validity of the speckle-mode estimations. For a continuous-wave pump in silica
fibers, the electronic Kerr effect is shown to be too small to enhance pump absorption; however, estimates show
that the thermal nonlinearity may have a significant effect. The electronic Kerr nonlinearity in the cladding
can be significant for a pulsed pump source. © 2001 Optical Society of America
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1. INTRODUCTION
Double-clad fiber amplifiers provide an effective way to
transfer the energy of partially coherent light from semi-
conductor lasers into single-mode radiation.1–3 In the
simplest geometry the pump propagates in a broad-core
optical fiber, which plays the role of a cladding for the
narrow amplifying core. The maximal output power of a
single-mode double-clad fiber laser is limited by the power
of the pump and the efficiency of the coupling of the pump
into the core3–6; a geometrical optics approximation al-
lows the estimation of the efficiency of absorption of the
pump in the core for various cases. In this paper we
present the results of a wave-optical approach to the same
problem for the case of a circular fiber with a nonlinear
cladding. Also, we develop an original method of ap-
proximate images, which allows generalization to the case
of noncircular fibers.

Fluctuations of the refractive index in a double-clad fi-
ber can provide significant mixing of the modes of the un-
perturbed fiber. Since most of the unperturbed modes al-
most do not overlap the absorbing core, the mode mixing
can significantly increase the pump absorption. We esti-
mate that, for realistic fibers, spatially varying fluctua-
tions dn/n of the order of 1024 may provide such a mix-
ing. Such small fluctuations may have many origins, and
they are difficult to measure experimentally. As a spe-
cific illustration we consider self-phase modulation
caused by the Kerr nonlinearity, which could be either
electronic or thermal in origin. There are reasons in fa-
vor of such a choice. The efficiency of the pump in unper-
turbed cylindrical fibers is low.5,6 Thus any mechanism
of modes mixing should be clearly seen in experiments, as
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well as in the simulations. The Kerr constant is known;
so, for a given field, we can explicitly calculate the index
of refraction. For a pulsed pump and a highly homoge-
neous cladding, the fluctuations induced by the Kerr non-
linearity should dominate. This should allow an easy ex-
perimental test of our results. Note that the power of the
pump is the easiest parameter to vary during experi-
ments. The dependence of the efficiency on this param-
eter can be measured without modifying of the experi-
mental setup.

We analyze the role of inhomogeneities in the cladding,
considering the Kerr nonlinearity as a possible way to
improve the coupling of the modes of the cladding into
the core. We expect our results to be useful for estima-
tion of the role of any other inhomogeneities in the clad-
ding. At least a qualitative estimate of the role of such
fluctuations can be performed on the basis of our results
for the Kerr nonlinearity. In addition, we expect that our
method of simulation will be useful not only for fibers
with circular symmetry but also for any other convex
cladding.

We make an asymptotic estimation based on the geo-
metrical optics and the speckle-mode approximation.
This estimate leads to a system of two ordinary differen-
tial equations for the power in the coupled and the un-
coupled modes. On the basis of these equations, we ana-
lyze the significance of fluctuations of the index of
refraction in realistic fibers. We describe the original
method of approximate images for conducting numerical
simulations. We apply this method to test our analytical
results. Finally, we estimate the role of thermal nonlin-
earity in the mixing of modes.
2001 Optical Society of America
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2. COUPLED AND UNCOUPLED MODES
In this section we write the basic equations and analyze
the efficiency of the pumping of the core in terms of geo-
metrical optics.

If we neglect the core, then the paraxial propagation of
the quasi-monochromatic field Re@E(x, z)exp(ikz 2 ivt)#
can be described with the equation
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where x 5 $x1 , x2%, k 5 2p/l is the wave number in the
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field practically disappears outside of the cladding. This
gives the boundary condition E(x, z) 5 0 at uxu2 5 R2,
where R is the radius of the cladding (see Fig. 1).

The solution of the paraxial equation can be written as
an expansion in Bessel modes C:
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Cm, j 5 Jm~qm, jr/R !exp@imf 2 i~qj,m /R !2z/~2k !#, (1)

where Jm is the Bessel function of the mth order, qm, j is
the jth solution of the equation Jm(q) 5 0, and C denotes
arbitrary complex coefficients.

The core can be taken into account by addition of the
term 2iknE on the right-hand side of the paraxial equa-
tion, where n 5 n(uxu) is the relative variation of the com-
plex index of refraction; its imaginary part describes ab-
sorption. This dependence on spatial coordinates can be
approximated with a step function, n(r) 5 n0 5 (ncore
2 nclad)/nclad at r , r, and n(r) 5 0 at r . r, where r is
radius of the core (Fig. 1).

Functions (1) give the natural basis for the expansion
of the field in fibers with circular cladding. Nevertheless,
for the simulation below we use another method (the
method of approximate images) that seems to be flexible
with respect to changes of cladding geometry, and we plan
to investigate this characteristic as a continuation of this
research.

Formally, all modes c are coupled to the core of any
positive radius r; but, as the angular mode number m in-
creases, the coupling decreases as (r/R) umu and soon be-
comes very small. How can one estimate the percentage
of effectively coupled modes? To do this we use the fol-
lowing assumption based on geometrical optics5: The
number of coupled modes is proportional to the number of
coupled rays. Then, instead of modes, we consider the
ensemble of rays with various helicities passing through
each point $r cos f, r sin f% of the cladding cross section.

Fig. 1. Cross section of the symmetrical double-clad fiber.
Note that if the ray crosses the core once it will cross it at
every trip between reflections from the wall of the clad-
ding, owing to the symmetry. The probability Pr that the
ray crosses the core Pr 5 2a/p is the simple ratio of the
quadrupled angle a 5 arcsin(r/r) to the whole angle 2p.
Taking the mean value (average) of Pr with respect to the
cross section of the cladding, we get an estimate of the
percentage of coupled rays:
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To get this approximation, we assumed that r/R ! 1.
This formula can also be obtained as the limit case of for-
mula (7) of Ref. 5.

The asymptotic formula (2) allows comparison with an
experiment. Reference 6 reports experimental results for
the symmetric fiber with r 5 3.3 mm, R 5 160 mm. For
three different wavelengths Bedö et al.6 present a value of
Pn8 , which is equivalent to our 1 2 h. The mean value of
their data gives the value Pn8 5 0.9713, which agrees with
value 1 2 h 5 0.9737 evaluated with formula (2).

The mean absorption rate k of any coupled ray depends
on its minimal distance h from the optical axis:

k~h ! 5 2k Im~n0!Ar2 2 h2/R.

Consider the mean value over all possible rays:
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If we neglect the difference between various coupled
modes, the evolution of the total power A of all coupled
modes in the absence of nonlinearity can be described
with the equation dA/dz 5 2k A. This gives us A(z)
5 A(0)exp(2k z).

Let B be the power of all uncoupled modes. Then the
total power in the cladding W(z) 5 B 1 A
5 B(0) 1 A(0)exp(2k z). Let W0 5 A(0) 1 B(0) be
the initial power of the pump. Then A(0) 5 hW0 , B(0)
5 (1 2 h)W0 , and we get the estimate of the efficiency
of core pumping as a ratio of the absorbed power
to the initial power: D 5 (W0 2 A 2 B)/W0 5 h@1
2 exp(2k z)#. In this approximation the efficiency D de-
pends neither on the real part of n0 nor on the scale of the
transverse modulation of the pump.

3. INTRAMODULATIONAL NOISE
To take into account the possible nonlinearity of the clad-
ding, consider the equation
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where g 5 (n2 /nclad)k. For the case of complete modu-
lation and a small mean intensity, and for a very large
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cladding and a very small core, we may consider the non-
linear effect as in a bulk medium. Then within the
speckle-mode approximation7–9 we write the propagating
field as E 5 E0 exp(2igwz) 1 J, where E0 is the solution
of Eq. (4) at g 5 0, w 5 ^EE* & is the average value of the
intensity over the cross section, and J is some intramodu-
lational noise. The mean noise intensity increases as
^JJ* & ' 2g2w3Ldif z, where Ldif is the diffraction length
of the field. The coefficient 2g2w3Ldif should be inter-
preted as the rate of intermodal exchange. Then the rate
of redistribution of power is given by g 5 2Ldifg

2w3pR2

5 2Ldif @gW/(pR2)#2W, where W 5 pR2w is the total
power in all modes.

Let a be the mean intensity among coupled modes and
b be the mean intensity among the uncoupled ones. Let
N be the total amount of excited modes in the cladding.
Then assume that 1/N part of this power goes to each of
the modes, whether they are coupled or uncoupled. (This
assumption implies a quasi-isotropic structure of field
modulation over most of the cross section of the inner
cladding.) Also, each mode of intensity a loses its inten-
sity at the rate ga/W, and each mode of intensity b loses
its intensity at the rate gb/W, just owing to the inter-
modal exchange. This mechanism makes no distinction
between coupled and uncoupled modes. The absorption
deals with only the coupled modes, making them lose
their mean intensity with the additional decrement k. So
we write the equations of the balance of intensities of
coupled and uncoupled modes:
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Multiplying the first equation by the factor hN and the
second one by (1 2 h)N and using the notation A and B
of the previous section, we write the total intensity of
coupled modes as A 5 Nha and the total intensity of un-
coupled modes as B 5 N(1 2 h)b. Taking into account
that W 5 A 1 B, we get

dA

dz
5 2kA 1 2LdifFg ~A 1 B !

pR2 G2

@hB 2 ~1 2 h!A#, (5)

dB

dz
5 22LdifFg ~A 1 B !

pR2 G2

@hB 2 ~1 2 h!A#. (6)

Let p0 be the maximal transverse wave number pre-
sented in the expansion of the field with respect to plane
waves. This parameter can be estimated as the product
of the wave number k and the numerical aperture of the
incident beam. (We assume p0 ! k.) Then we can esti-
mate the diffraction length Ldif , assuming that, after
propagation of a diffraction length in free space, the high-
est Fourier components change their phase so that the
real part of their projection to the initial field becomes
zero: Re@exp(2ip0

2 /(2k)Ldif)# 5 0. This gives an esti-
mate for the diffraction length: Ldif 5 pk/p0

2. Using
this estimate, we introduce the constant of intermodal ex-
change
G 5 2pS g

pR2D 2 k

p0
2 (7)

and express the evolution of the power of coupled and un-
coupled modes as follows:

dA/dz 5 2kA 1 G~A 1 B !2@hB 2 ~1 2 h!A#, (8)

dB/dz 5 2G~A 1 B !2@hB 2 ~1 2 h!A#. (9)

One can confirm that the system of Eqs. (7)–(9) is in-
variant with respect to the dilatation transformation

r → Mr, R → MR, p0 → M21p0 ,

z → M2z, n → M22n, E → M21E, (10)

where the dimensionless parameter M of dilatation
should not be too small, to satisfy the condition p0 ! k.

In the case of weak nonlinearity and a small core
(hB2G ! k), we may neglect terms with A in Eq. (9);
then dB/dz 5 2hGB3. While B(0) ' W0 , we can write

B 5 B~z ! '
W0

~1 1 2keff z !1/2 , (11)

where

keff 5
pkh

2p0
2 S 2gW0

pR2 D 2

. (12)

We see that keff should be interpreted as the effective non-
linear absorption rate. Define the following effective pa-
rameters:

(A) The nonlinear correction of the wave number: Q
5 2gW0 /(pR2) 5 2gw0 5 2(n2 /nclad)w0 ,

(B) The mean variation of the effective index of refrac-
tion: dn 5 2n2W0 /(ncladpR2),

(C) The self-focusing power Wsf 5 nclad /n2k2.

Now we express the the effective absorption rate as

keff 5
2rk

Rp0
2 Q2, (13)

keff 5
8rk3

Rp0
2 ~dn !2, (14)

keff 5
8r

p2R5kp0
2 S W0

Wsf
D 2

. (15)

The length of propagation L at which such nonlinear mix-
ing becomes effective can be expressed as 1/keff .

We now estimate the orders of magnitude of the pump
power, for which the electronic Kerr nonlinearity may be-
come significant. A typical value of the constant n2 is
2.6 3 10216 cm2/W for silica glasses.10 The peak pump
power W 5 107 W is quite attainable, at least for short
pulses. Then, at r 5 1023 cm, R 5 1022 cm, k
5 105 cm21, and p0 5 0.1k, we have dn ' 1024 and keff
' 0.001 cm21, which yields 1/keff ' 10 m. The estimate
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above shows that nonlinear mode mixing is realizable for
short-pulsed pumps.

It should be noted, however, that in most practical ap-
plications of double-clad fibers one uses a continuous
pump. The continuous source of power used in the esti-
mate above is not attainable. This indicates that the
nonlinear mode mixing that is due to the electronic Kerr
effect is not relevant with a continuous pump in silica fi-
bers.

Nevertheless, the estimate above does not at all elimi-
nate the possibility of observing nonlinear mode mixing in
fiber amplifiers with a continuous pump. We note
that for polymer optical fibers11–13 values of the nonlinear
constant n2 ' 4 3 10212 cm2/W have been reported,
which are 4 orders of magnitude greater than for silica
fibers. Colored fibers14,15 could give an even stronger
effect. Also, we expect that the thermal nonlinearity
is much stronger than the Kerr nonlinearity. We
discuss the relevance of the thermal Kerr nonlinearity in
Section 5.

From the estimate above we conclude that fluctuations
of the index of refraction of the order of 1024 may
cause significant mode mixing independently of the
origin of such fluctuations. For example, internal inho-
mogeneities with appropriate correlational proper-
ties could significantly improve the coupling of
pump power into the core. Thus we expect that
experimental efforts to improve the homogeneity of the
refractive index of the cladding of the fiber amplifier may
cause a reduction of the efficiency instead of an improve-
ment.

4. WAVE-OPTICAL SIMULATIONS
The asymptotic approximation of the previous sections
takes into account only two groups of modes, coupled
and uncoupled, making no distinction between
various coupled modes. Here we solve Eq. (4) numeri-
cally and compare the results with solutions of Eqs. (8)
and (9).

To reduce discretization errors, we approximate the
variation of the refractive index with a smooth function
n(r cos f, r sin f) 5 n0(1 2 exp@2(r/r)l#). The value l
5 20 was used, and we see almost no differences in the
values of D evaluated from the simulations with l
doubled.

To construct a class of initial conditions E(x, 0), we be-
gin with d-correlated Gaussian noise Ep ; all components
are independent at this stage. Then, we treat Ep as Fou-
rier components of the field and truncate by setting them
to zero at upu . p0 . Such a truncation can be described
with projector T : T Ep 5 Epu( p0 2 upu). Then the field
can be calculated as the inverse transform of the trun-
cated noise.

To satisfy the boundary condition, we use the filter F
defined as follows:
After such filtration, owing to the abrupt change of sign at
r 5 R, the field again has strong high Fourier compo-
nents. So we calculate the Fourier transform, truncate it
again, and repeat this procedure many times; in practice
10 times were enough to get convergence, and we have a
field Ẽ 5 (F †TFF)10F † 3 (d-correlated noise), where F
is the Fourier operator and a dagger indicates the Her-
mitian conjugation. Then we construct the normalized
field

E 5 ẼAW0/F E
x1

2
1x2

2
,R2

uẼ~x, 0 !u2d2xG1/2

.

The field constructed by filter (16) outside the fiber can
be interpreted as the approximate image of the field in
the cladding, created by the reflecting surface of the clad-
ding. Figure 2(a) shows an example of the initial distri-
bution of the field constructed in this way. White regions
correspond to small values of uE(x, 0)u; dark regions rep-
resent high values of this modulus. The dashed circles of
radii r 5 20M/k and R 5 80M/k indicate the surface of
the core and the surface of cladding. The field has not
been affected by the core, but the cladding is clearly seen
as a white circle. The image of the distribution recon-
structed with the filter F is also shown. It is similar to
the reflection image of the field, reflected from the walls of
the cladding, observed from the interior of the fiber. This
field was generated at p0 5 0.5k/M.

First, we considered the propagation of light in the fi-
ber without a core: n 5 0, g 5 0. Using the operators
F, we construct the operator that represents one step of
propagation: E(x, z 1 z) ' fE(x, z), where f
5 FF †PF and PEp 5 Ep exp@2ip2/(2k0)z#. Before we
deal with random fields like those shown in Fig. 2, we ex-
amine the propagation of various Bessel modes, compar-
ing the simulation to the exact solution
Cm,n exp@2iqm,n /(2kR2)z#. For various modes, the proce-
dure works well at kqm, j

2 /(2kR2)z , 1 and begins to fail
at kqm, j

2 /(2kR2)z . 1. This sets a reasonable limit for
the step z: it should not be greater than the diffraction
length of the field.

For the random field [Fig. 2(a)] and a fiber with an ab-
sorbing core, we simulated the linear propagation for a
distance z 5 20,000M2/k at n0 5 0.001/M2. The final
field is shown in Fig. 2(b); the modes with small angular
numbers are absorbed, while the whispering gallery
modes remain; we see a white spot at the core.

To switch on nonlinearity, we change f to

f 5 FNF †PF, (17)

where

N E~x ! 5 E~x !exp@inz 1 iguE~x !u2z#. (18)

We repeat the same simulation at gW0 /k 5 70; the re-
sulting field is shown in Fig. 2(c). The field after propa-
gation for the same distance still has a significant ampli-
tude at the center; the pump continues to deliver its
energy into the core.
FE~r cos f, r sin f! 5 H E~r cos f, r sin f! r , R

2E(~2R 2 r!cos f, ~2R 2 r!sin f)~2R 2 r/R ! R , r < 2R

0 r > 2R

. (16)
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The propagation of the random initial field was simu-
lated for various values of g and r, various grids, and vari-
ous values of the step z. Typical examples of the depen-
dence of the efficiency of absorption of the pump in the
core are plotted in Fig. 3.

The case in Fig. 3(a) corresponds to r 5 20M/k, R
5 80M/k, p0 5 0.5k/M, n0 5 0.001k/M. The case in
Fig. 3(b) corresponds to r 5 10M/k, R 5 80M/k, p0
5 0.5k/M, n0 5 0.002k/M. (For simplicity, one can set
M 5 1.)

Curves 5 correspond to the linear case, g 5 0. Curves 6
represent the approximation Eqs. (8) and (9).

Curves 3 correspond to the simulations with gW0 /k
5 270 (the case of self-defocusing nonlinearity). Curves
2 (vertical bars) represent the case of gW0 /k 5 70. The
upper end of each bar is evaluated as (W0 2 W)/W0 , and
the lower end of each bar is calculated by integration of
the product of the absorption rate and intensity. Thus

Fig. 2. Distribution of the field amplitude and its image: (a)
initial field; (b) after propagation in the linear fiber, kz
5 20000M2, g 5 0; (c) after propagation in the nonlinear fiber,
(gW0 /k 5 70). p0 R 5 40, kR/M 5 80, kr/M 5 20, n0 M2

5 0.001i.
the vertical size of the bars approximates the relative er-
ror of the numerical solution. Curves 4 represent the
asymptotic approximation from Eqs. (8) and (9). Note
that, from Eq. (7), the constant of intermodal exchange G
depends on the square of g; thus this approximation de-
tects no difference between the self-focusing and self-
defocusing cases. Thus curves 4 should be compared
with both curves 3 and 2.

Curves 1 correspond to the case of ideal mixing of the
field in the fiber, when the absorbed part of the power at
each step is determined by the relation of the cross-
section areas of the core and the cladding.

For the simulations above, a 1024 3 1024 grid was
used, with the transverse coordinate step dx
5 0.25M/k, the longitudinal coordinate step z 5 M2/k,
and parameter p0 5 0.5k/M. (To be within our paraxial
approximation, parameter M should be greater than
unity.)

It is typical that the self-defocusing nonlinearity has an
effect that is a little smaller than that of self-focusing for

Fig. 3. Efficiency of pump use versus length of propagation.
Curves 1 correspond to the case of ideal mode mixing. Curves 2,
gW0 /k 5 70; curves 3, gW0 /k 5 270; curves 5, linear case
(g 5 0). Curves 6 and 4 represent the geometrical optics ap-
proximation as a solution of Eqs. (8) and (9). The grid size is
1024 3 1024, Re(n0) 5 0, dx 5 0.25M/k, p0 5 0.5k/M, and R
5 80M/k. (a) r/R 5 1/4, Im(n0)M/k 5 0.001; (b) r/R 5 1/8,
Im(n0)M/k 5 0.002.
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the same value of ug u. It should be noted that even the
detailed kinetic equation for random waves16 detects no
difference between self-focusing and self-defocusing cases.
Of course, the physical picture in these two cases is dif-
ferent. In the self-focusing case the increase in nonlin-
earity is limited by the formation of filaments. In the
above simulations the appearance of a filament was ob-
served in numerical experiments at gW0 /k 5 100. The
applicability of the initial equations becomes doubtful in
the presence of filaments; thus, here we present results
for gW0 /k 5 270, 0, 70.

The asymptotic formula of Sections 1 and 2 does not
take into account the refractive-index step in the core.
Simulations with various values of Re(n0) show that the
efficiency’s dependence on this step is small. At u Re(n0)u
, 0.001M22, simulations showed that the difference in
the efficiency is less than 1%.

We see that nonlinearity can give a significant im-
provement in the efficiency of pumping a double-clad fiber
amplifier. This follows from the speckle-mode consider-
ation of Section 3, as well as from the direct numerical
simulation.

Numerical simulations confirm the asymptotic results
of Section 3. At appropriate values of the input pump
power the efficiency increases from 40% to 70% owing to
the nonlinearity for r/R 5 0.25 and from 20% to 60% for
r/R 5 0.125.

The good agreement of the results of the simulations
with the predictions of the speckle-mode approximation
demonstrates the applicability of this model in the analy-
sis of double-clad devices. Similar models should also
simplify the consideration of fibers with broken symme-
try.

The method of approximate images does not use the
symmetry of the fiber. So we expect the same operator f,
Eq. (17), for a single step of the simulation to work well
for other convex claddings, defined with appropriate
modification of Eq. (16).

5. ROLE OF THERMAL NONLINEARITY
Here we make a qualitative estimation of the role of ther-
mal nonlinearity in the intermodal exchange. While
thermal effects are cumulative, we need to take into ac-
count the time dependence of the pump intensity I. Then
the equation for the thermally induced variation n of the
refractive index can be written as

ṅ 5 k¹2n 1 AI~x, t !, (19)

where a dot indicates the time derivative and ¹ differen-
tiates with respect to coordinates x. In the paraxial ap-
proximation all dependences of the third coordinate are
slow in comparison with the dependence on the trans-
verse coordinates; so we treat x as a two-vector.

Constants k and A can be expressed in terms of the pa-
rameters of the cladding:

k 5
K

rC
, A 5

a

Cr

dn

dT
,

where K is the thermal conductivity, r the mass density,
C the specific heat capacity, a the absorption decrement,
n0 the background refractive index, and dn/dT the ther-
mal sensitivity of the index. For fused silica, and at a
pump wavelength of 1 mm, typical values are17 K
5 1.38 W/(m deg), C 5 0.714 J/( g deg), r 5 2.2 g/cm3, a
5 9 3 1024 cm21, n0 5 1.45, and dn/dT 5 9.7
3 1026 deg21.

Assuming periodicity with a large enough scale, we use
the Fourier series

n 5 n~x, t ! 5 (
q

exp~iq • x!nq~t !,

I 5 I~x, t ! 5 (
q

exp~iq • x!Iq~t !. (20)

This gives the differential equations for the components
ṅq(t) 5 2kq2nq 1 aIq(t); their solution is nq
5 A*2`

t dt1Iq(t1)exp@2kq2(t 2 t1)#. The mean square
of the qth component is

^nq
2 & 5 A2E

2`

t

dt1E
2`

t

dt2^Iq~t1!Iq~t2!&

3 exp@2kq2~t 2 t1! 2 kq2~t 2 t2!#. (21)

We exclude the case q 5 0 because such components do
not contribute to the scattering of light and the redistri-
bution of power among modes.

Assume that the mean value on the right-hand side de-
pends only on the difference t1 2 t2 ; let ^Iq(t1)Iq(t2)&
5 J(t1 2 t2). Then, for q Þ 0, we assume a relatively
short coherence time in comparison with the relaxation
time T 5 1/(q2k). (This corresponds to an incoherent
pump.) Then we get the estimate

^nq
2 & ' A2E

2`

t

dsE dsJq~ s!exp~22kq2s ! '
A2t

2kq2 ^Iq
2 &,

where t is some typical scale of decay of the correlation
function J. Estimating dn as the square root of sum of nq

2

with respect to some reasonable region of values of uqu
around some reasonable effective qeff , we get dn
' (n2)eff I0 , where I0 is the typical intensity and

~n2!eff ' AS t

2kqeff
2 D 1/2

5
a

qeff

dn

dT S t

2KrC D 1/2

(22)

is the estimate of the effective nonlinear constant. Ow-
ing to the nonlocal character of thermal processes, this
constant depends on the effective wave number. Esti-
mating this wave number as qeff 5 103 cm21 (still greater
than the value of 1/R from the estimate of Section 3), and
assuming the time of correlation of intensity of field t
5 1025 s, we get the estimate (n2)eff ' 10213 cm2/W,
which is 3 orders of magnitude greater than the constant
for the Kerr nonlinearity in silica fibers discussed above.
We have no certain data about the thermal nonlinear con-
stant for optical polymers, but we expect that for polymer
cladding the thermal effect is even stronger.

The effect depends on the time t, which characterizes
fluctuations of the pump intensity. (Speckle structure
changes at the rate 1/t). For a quasi-monochromatic
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pump with an almost static speckle pattern, t is large,
and the thermal effect should be dominant among natural
mechanisms mixing modes.

Note that the effect of electrostriction may cause some
resonant backscattering.10 The pump backscattered by
even a small amount should cause the partial synchroni-
zation of pump lasers. Such synchronization may cause
long-living components Iq . (Then the approximation T
@ t used above to evaluate the integral with respect to
ds would not be valid.) The long-living intensity compo-
nents would cause inhomogeneities even stronger than
those estimated above.

6. RESULTS AND CONCLUSION
We suggest a simple formula to estimate the efficiency of
the nonlinear coupling of the pump into the core in a
double-clad fiber [Eqs. (11) and (12)]. This formula is the
limiting case of the asymptotic equations (7)–(9) deduced
on the basis of the speckle-mode approximation and geo-
metrical optics.

We describe an original method of approximate images
used to simulate the propagation of an optical field in a
waveguide with a curvilinear surface, employing a rectan-
gular grid and the fast Fourier transform; the elementary
step of propagation is expressed with Eq. (17). We apply
this method to the simulation of a double-clad fiber with
circular symmetry, and in Fig. 3 we compare the results
with solutions of the asymptotic equations. Good agree-
ment is established.

Any fluctuations of the index of refraction may improve
the efficiency of the noncoherent pump in any double-clad
fiber. Equation (14) gives a quantitative estimate of role
of this effect in fibers with circular symmetry. Internal
inhomogeneities of the cladding may cause this effect, but
such fluctuations are difficult to measure directly to test
this conclusion experimentally. We suggest the use of
the Kerr nonlinearity. In that case fluctuations are easy
to evaluate, and our results allow a direct experimental
test with a pulsed pump. For a continuous pump in silica
fibers, the Kerr nonlinearity is too small. In the case of a
polymer cladding we expect that the nonlinearity causes a
significant effect even for the continuous pump used in
commercial double-clad fiber amplifiers. The method of
approximate images allows generalization to the case of
cladding with broken circular symmetry.18

The thermal nonlinearity also should mix the modes of
the double-clad fiber, improving the coupling of power of
the pump into the core. This effect is sensitive to the
time of correlation of the intensity of the pump.
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