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The Schrodinger equation for an dectron inside an annular cylindrical box and in the
presence of an axial uniform magnetic field is solved in two comparative situations: i) when
the magnetic induction By = QBO is the same in the central perforation and in the box, and
i) when its values in the perforation B; = QBi and in the box Bg = QBO are diffaent. The
Aharonov-Bohm effect on the Landau states of the confined electron is exhibited through the
analysis of the dependence of the energy eigenvalues and eigenfunctions on the difference of
the magnetic flux in the perforation as B j By changes.

PACS. 03.65.—w — Quantum mechanics.
PACS. 03.65.Bz — Aharonov-Bohm effect.

I. Introduction

This paper deds with the problem of an dectron moving under the action of uniform
megnetic fidds combining the situations of the Landau problem [1-3] and of the Aharonov-Bohm
(A-B) effect [4-6]. The first situation corresponds to a uniform magnetic induction at all points of
gpace and to an dectron dlowed to be at any of those points. The Landau problem has been solved
in both the linear gauge and the symmetric gauge, and the connections between the respective
elgendates have been exhibited in [3]. The second situation involves a uniform magnetic induction
in alimited region of space from which the ectron is excluded. Aharonov and Bohm predicted
that the fringe pattern in an dectron interference experiment should be shifted by altering the
amount of magnetic flux passng between two beams, even though the beams themsdves pass
only through fidd-free regions [4]. The experiments performed by Chambers using magnetic
whiskers confirmed this prediction [5]. The A-B effect on the bound states of an dectron inside
an annular cylindrical box was andyzed in [6)].

The A-B effect on the Landau states of an dectron ingde an annular cylindricd box is
investigated by comparing two new situations. In Sec. 1, the same uniform magnetic induction
BO - % - b ";z) = KBy is present in the central perforation (0 - % - a) and in the box
@ - % - b). In Sec. lll, the magnetic induction in the perforation B(O - % - b; ";z) =
kB; is different from the one in the box B(a - % - b;";z) = KBo. The andysis of both
Stuations involves identifying the regective vector potentias in the perforation and in the box,
congructing the Hamiltonians viathe minima-coupling prescription, and solving the corresponding
Schrodinger equations. The box is assumed to be impenetrable, which translaes into the boundary
condition that the egenfunctions must vanish a the postions of the wdls of the box. Sec. IV
presents numerica and graphica reaults illustrating the A-B effect through the changes of the
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energy egenvaues and egenfuncti on parameters as the magnetic flux difference in the perforation
(Bi i Bo):a? changes, including a discussion of these results. For completeness sake the explicit
forms of the Kummer confluent hypergeometric functions are included in the Appendix.

I1. Landau gatesin an annular cylindrical box

This section presents the formulation and solution of the quantum problem of an dectron,
of mass me and dectric charge j e, confined inside an annular cylindricd box (a - % - b;0 -
" . 2%;0 - z - L), and under the action of an axid uniform magnetic fidd,

BO - % - b;";z) =kB; ™

which has the same magnitude in both the perforation and the box. The associated magnetic
vector potential is chosen as the one in the symmetric gauge,

1
AQ - %- b "2)= "%; )

congruent with the geometry of the box. The Hamiltonian for the sysem is constructed by using
the minima-coupling prescription [2],

1, 4 eBgh
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involving the radid py, azimuthd I,=p, and axid p, components of the canonical momentum;
I, is the canonical angular momentum. Then the corresponding time-independent Schrodinger
equation becomes
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The three terms coming from the square of the binomid in Eq. (3) are identified as the rota-
tiond Kinetic energy, the diamagnetic energy, and the harmonic oscillator potential energy with a
frequency 1 = eBp=2mec.

Equation (4) admits separable solutions

A% ™ 2) = R(MO(T)Z(2): ©)

Each factor satisfies the respective ordinary differential equation in the longitudinal, azimutha
and radid coordinate:
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Here the longitudinal and transverse contri butions to the energy add up to the total energy,
E-+E" =E: 9)

The eigensolutions of Eq. (6) are determined by the boundary conditions that they must
vanigh at the lower z = 0 and upper z = L walls of the box. Their explicit form is

r—

2 H r]1/4z . — . . DR
Zn(Z)— ESlnT, n=1;2;3:::: (10)
The correponding longitudina eigenenergy becomes
~2n21,2
L n /4 .
N 2mel?” (1)

Equation (7) is the eigenvalue equation for the z-component of the angular momentum,
with egensolutions
Om(®) = 1%m= (12)
2%
and integer eigenvalues
m=0;81;82;::: (13

arising from the periodicity condition © (* +2%) =0 ().

Apat from the diamagnetic energy term, Eq. (8) is identified as the radid Schrodinger
equation for a two-dimensional isotropic harmonic oscillator. Its solutions are wel-known; for the
dectron indde the annular cylindrical box they must vanish at the inner % = a and outer %2 = b
walls. The generd solution is

) u Al

R(%) =#Mei Me!¥=2~ CM o jmj+ 1;

+DU o jmj+ 1 — ;

in terms of the confluent hypergeometric functions M and U [7], where the transverse e genenergy
contri bution has the form

Edn =~1[2% + jmj +1 +m]: (15)

The radid boundary conditions become:

W 1 Zﬂ H 1 2ﬂ
CM i°;jmj+1;me'a + DU i°;jmj+1;me'a

=0, (16)
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H Izﬂ H |2ﬂ
CM i°;jmj+1;me'b +DU i°;jmj+1;me'b =

0: (17)

The value of the transverse eigenenergy parameter © is determined by the condition that the
determinant of the two linear homogeneous agebraic Egs. (16) and (17) in C and D vanishes

H

M S jmj+1;
H

iU joim+1;

T u 1
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e~.a U jojmj+1; e:b

18
H . me!bzﬂ (18)
M i°;ij+1;f =0:

me!a21T

For an éectron confined in an annular cylindrical box with inner and outer radii a and b, under the
action of theuniform magnetic induction fied defined by Eq. (1), and in an eigenstatewith achosen
vdue of m, Eq. (13), the zeros of Eq. (18) for ©s, s = 1;2; 3;::: determine the corresponding
radial eigenfunctions Rsm (%), Eq. (14), and transverse & genenergies El,,, Eq. (15). Such zeros
are computed numericdly using the gppropriate representations of the functions M and U [7],
Egs (A.1), (A4) with® = j © and n = jmj.

The normd Landau problem in which the electron may be at any point in the range
0 - % < 1 coresonds to the particular case of a = 0 and b = 1. By recdling that U is
sngular a % = 0 its presencein Eq. (14) must be diminated by taking D = 0. On the other hand,
M diverges as exp (me1¥%2=~) as%» ¥ 1, Eqg. (A.5), and the only way to make Eq. (14) still
useful is to take © as a non-negdive integer N for which M becomes a polynomid of degree
2N. Correspondingly, the Landau energy levels of Eq. (15) become the spectrum of odd integers
in units ~1, each level being infinitedy degenerate on account of the cancellatiion of the rotation
and diamagnetic contributions jmj + m for m = j jmj.

The zeros of ©5 in Eq. (18) depend on the vaues of the other parameters of M and U,
namely jmj, (me'a®=~), and (me!b?=~) and in generd ae not integers The dimensionless
parameter me 'h%=~ can be rewritten in terms of the magnetic induction field as Bo¥%h?=(hc=g),
which can be identified as the magnetic flux in the circular cross-section of radius b expressed in
the fluxon unit, hc=e = 4.135£ 10i ’ gauss-om?. The result of the confinement of the eectron
indde the annular cylindricd box is to remove the infinite degeneracy of the normal Landau
energy levds described in the previous paragraph. Explicit numericd illustrations of these results
are shown in Sec. IV.

[11. Aharonov-bohm effect on the landau gatesin an annular cylindrical box
In this section we analyze the changes in the e genenergies and e genfunctions of the Landau

dates when the magnetic induction field has a value in the perforation different form its vaue in
the box. Let the respective vd ues be

BO- % - a;";z) =KB; (19)

B@- % - b;";z) =KBy: (20)
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The corresponding magnetic vector potentid is

-1
AQ - % - a;';z)="\%;
2 ’ ’ - 2 21/2 :

This potentid is continuous at the boundary % = a, and its curl reproduces the magnetic induction
fidds in the perforaion and in the box. The Hamiltonian for the eectron in the box becomes

2 I &(Bii Bo)az | eBok72 2
05 + : + ]
H= Pt Lh 2ck 2c 1, Pz, (22)
2Me 2Mme 2Me

The difference of the magnetic induction in the perforation, Eq. (19), compared to the one in
the box, Eg. (20), is trandated into the difference of the magnetic vector potentid of Eq. (21)
compared to that of Eqg. (2) and correspondingly to the difference between the Hamiltonian of
Eq. (22) compared to that of Eq. (3). The latter consigs in the replacement

e(Bi i Bo)a2
+
; ¥, 2

in going from Eq. (3) to Eq. (22), in the terms inversdy proportiond to the radial coordinate %.
Then the new time-independent Schrodinger equation is

(23)

Y . 2 .
: 2 3@12@4_ [],\Z + e(Bi IZCBO)a ]2 . eBo ],\ . e(Bi I Bo)a2=
2me % @% @% 2mg2 meC 2c (2
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instead of Eq. (4). It also admits separable olutions of the same type of Eq. (5), with the
same longitudinal and azimutha egenfunctions and eigenvalues of Egs. (10)-(13) saidying the
corresponding differentid Egs. (6) and (7). The radid differentid equation becomes

Y Y

2 ) + 1 2=

p— 1I_
2me s dn ! %2

~

RS

where

_e(Bii Bo)a® _ (Bii Bo)4a’
- 2~C ~ (hcme)

1

(26)

isthe change in the magnetic flux in the perforation in the fluxon unit when the magnetic induction
changes from its vadue of Eq. (1) to tha of Eq. (19). The difference in going from the radid
Eq. (8) to that of Eq. (25) is the replacement

m3¥Im+1; (27)
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which follows from that of Eq. (22).
The solutions of the radid Eq. (25) are of the same type as those of Eg. (8) with the
replacement of Eq. (27). Thear explicit forms are

Y
. — uim+1iAai |1/2:2~2 IJ_ L. . . me!l/ZZﬂ
Rsm(%; 1) =@M+ lgi Me 2% CM jojm+1j+1;
o : me!l/zzﬂs/4 (28)
+DU 9% m+1j+1;
indead of Eq. (14), with the new transverse egenenergy
Edin(*) =~1[2% +jm+21j+ 1+ m+1]; (29)

ingead of Eq. (15), and theratio of the C and D coefficients and the parameter © being determined

C _ . UGoim+2j+ 1Mty UG ojm + 2+ 1; Mt )
D~ ' M(ojm+1j+1; meta®) T (o jm + 1) + 1; mett)

indead of Egs. (16)-(18). Of course, for the case in which Bj = By the value of 1 vanishes,
Eg. (26), and the results of Sec. |l are recovered. For the general case of interest here B 6 By,
and the A-B effect on the Landau states in the annular cylindrica box is associaed with the
1 dependence of the radial eigenfunctions Eqg. (28), and the transverse egenenergies, Eq. (29),
determined by the vaues of ©5 solutions of Eq. (30), withs =1;2;3;:::. Here the Eq. (A.3) for
U must be used for non integer vaues of 2. Numerically computed vaues of ©s and EL. () for
different chosen vaues of * are presented in the following section.

IV. Numerical results and discusson

This section contains some numerica and grgphicd results illustrating the confinement
effect of the annular box on the Landau states, and the A-B effect on the same states, from the
analyss in Section |1 and 111, respectively. For the first one, the zeros of Eg. (18) in © are based
on the logarithmic form of the U function, Eqg. (A.4). For the second one, Eq. (30) requires the
use of the form of U of Eq. (A.3) for non-integer values of 1. Table | and Fig. 1 illugrate the
confinement effect, and Table |1 and Fig. 2 the A-B effect on the Landau states, as explained and
discussed next.

Table | presents the transverse energy eigenvalues EJ.,, for the Landau states with s = 1,
2,and 3, and m=0;8 1;8 2;::: obtained from Egs (15) and (18), for the dectron confined in
boxes with b = 2a, 5a and 10a, in different magnetic induction fields producing magnetic fluxes
of 1 and 15 fluxons in the circular cross sections of radius b. The va ues of ©¢ from the numericd
solution of Eq. (18), when doubled and increased by one unit, give the energy egenvd ues for the
zero and negative m gates; for the positive m gates the further addition of 2m is required.

The confinement effect of the box on the electron Landau states is obviously manifested by
the departure of the energy levels from the equally spaced and infinitely degenerate (2N + 1)~1
gpectra with integer values of N. The daa in Table | indicate that such an effect is dominant
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TABLE |. Radid s and angular momentum m quantum numbers and transverse energy eigen-
values EJ, in units ~1, for an dectron confined in boxes with b = 2a, 5a and 10a,
in magnetic induction fields defined by the dimendonless magnetic flux parameter

Me 1h2=~.
me ! b2=~ 1 1 1 15 15 15
mela2=~ 0.25 0.4 0.01 375 0.6 0.15
s m Edn Edn Edm Edm Edn Edm
1 0 1979178  7.46920 565108 533410 246994 1.91268
1 19.72188 8.16592 6.94048 4.40352 1.76000 1.23668
21.72188 10.16592 8.94048 6.40352 3.76000 3.23668
T2 21.50142 11.84566 11.42684 3.61104 1.29718 1.03460
25.50142 15.84566 15.42684 7.61104 5.29718 5.03460
"3 25.09870 17.67902 17.58700 2.95458 1.09156 1.00632
31.09870 23.67902 23.58700 8.95458 7.09156 7.00632
4 30.46266 25.06046 25.04484
38.46266 33.06046 33.04484
"5 37.52606 33.74222 33.73996
47.52606 43.74222 43.73996
2 0 79.00098 30.51030 23.69370 9.06064 5.06776 4.16546
1 78.98152 31.64624 26.04792 8.72414 421142 3.41790
80.98152 33.64624 28.04792 10.72414 6.21142 5.41790
"2 80.92192 36.95496 33.94736 7.91474 3.63896 3.11796
84.92192 40.95496 37.94736 11.91474 7.63896 7.11796
"3 84.82974 4594932 44.86382 7.23292 3.33512 3.09164
90.82974 51.94932 50.86382 13.23292 9.33512 9.09164
3 0 177.69628 69.02626 54.02880 16.23734 7.82040 6.05602
1 177.78674 70.32580 56.94516 15.30200 6.95948 5.74480
179.78674 72.32580 58.94516 17.30200 8.95948 7.74480
"2 179.66006 76.24628 67.07614 14.49612 6.38078 5.44980
183.66006 80.24628 71.07614 18.49612 10.38078 9.44980
"3 183.62184 86.71936 82.07110 13.82010 6.09200 553434
189.62184 92.71936 88.07110 19.82010 12.09200 11.53434
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TABLE . Transverse energy eigenvalues E], | asa function of the parameter m+1, Eq, (29), for
éectron confined in boxes with me 1 b?=~ = 1 and the indicated values of me!a2=~
andsignsof m+1,

me ! a2=~ 0.25 0.04 0.01

m+1 — + — + — +
jm+1j Elm Eln Elm Elm Eln Elm

0 1979178  19.79178 7.46920 746020 565108 5.65108
02 1962901  20.02901 7.33859 773859 554960 594960
04 1954074  20.34074 7.34598 814598 564130 644130
06 1952680  20.72680 748904 868004 591518 7.11518
08 1958724  21.18724 7.76399 936399  6.35476 7.95476
1 1072188  21.72188 816592 1016592  6.94048 8.94048
12 10.93154 2233154 868344 1108844 765207  10.05207
14 2021310  23.01310 932507 1212507 847078  11.27078
16 2056924 2376924 1006840 1326840 938064  12.58064
18 2099979 2459979 1091102 1451102 1036910  13.96910
2 2150142 2550142 ~ 11.84566 1584566 1142684  15.42684
22 2200683 2649683  12.86538  17.26538 1254727  16.94727
24 2272467 2752467 1396385 1876385  13.72507  18.52507
26 2344452 2864452 1513541 2033541  14.95999  20.15999
238 2423603 2083603 1637518 2197518  16.24742  21.84742
3 2500870 3100870  17.67902 2367902  17.58700  23.58700
32 2603209 3243209  19.04350 2544350 1897790  25.37790
34 27.03570 3383570 2046588  27.26588  20.41952  27.21952
36 2810905 3530005  21.94392 2014392 2191144 2911144
38 2925156 3685156 2347590 3107590 2345330  31.05330
4 3046266 3846266 ~ 2506046 3306046 2504484 3304484
42 3174178 4014178 2669655 3500655  26.76582  35.16582
44 3308831 4183831 2838334 3718334 2837600  37.17600
46 3450163 4370163 3012020 3932020  30.11521  39.31521
48 3598110 4558110 3190662 4150662  31.90325  41.50325
5 3752606 4752606 3374222 4374222 3373996  43.739%
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FIG. 1. Lower Landau energy levels EJ., for an electron confined in boxes with (a) me 1h?=~ = 1 and

mela?=~ = 0.25 and (b) Mg 1h?=~ = 15 and m 1a%=~ = 0.15.

for the first set of three small boxes and decresses for the set of larger boxes, additionally, within
each s4t, the effect is more noticeable for the boxes with larger perforations.

Figures 1a and 1b illustrate the change of the confinement effect as well as the magnetic
fidd effects in the energy spectra of the dectron for the boxes of the first and lag columns,
respectively. For the small box with b = 1 in the unit of length (~=m, 1)1 and large perforation
a = 05, the confinement effect is large as illustrated by numericd vaues for the eigenergies of
the m = O states in the box expressed in terms of the corresponding norma Landau eigenergies
El, = 19.79178EL, EJ, = 26.33333EL, EJ, = 35.53925E};, a situation extensive to the other
Eln dates. The reader should notice the different regions in the energy scde in Fig. 1a for the
s = 1 and 2 energy leves due to the large Sze of the confinement effect; the inclusion of the s
= 3 energy levels would require jumping to the region with EJ, | 170. The quasi-degeneracy
of the energy leveds (s;m ., 0) and (s; i m j 1) is readily noticeable, and can be understood
as the result of the combination of the confinement effect and the magnetic effects associated
with the Landau states including the distinct behaviour of the m > 0 and m 0 states due to
the diamagnetic EIergy. On the other hand, Fig. 1b for alarger box withb =~ 15 and a smdll
perfordion a = = 15=10, the energy scde is the same as for the norma Landau states because
the confinement effect is gppreciably reduced. Neverthdess it is still definitdy present as the
comparison E{, = 1.91268E},, EJ, = 1.38849EL,, EJ, = 1.21120E}; indicates. Inthis case dl
the energy levels with s = 1, 2, and 3 can be drawn together. The spacing of the energy levels
for each vdue of s and the successve positive vaues of m is not far from 2, the normal Landau
energy leved spacing. On the other hand, the tendency to degeneracy of the energy levels for
each vaue of s and the successve negativevaduesof m=j 1; 2;j 3;:::, at the norma Landau
energy leve postions 1; 3;5;: :: is explicitly apparent. The energy spectrafor the dectron in the
boxes of columns 2-5 in Teble | illustrate their intermediate behavior between the two Stuations
explicitly discussed in connection with Figs. 1(a), 1(b).
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Table Il presents the transverse energy eigenvaues EJ,, for the Landau states with s = 1
andm =0, 1,7 2,::: for an dectroninboxeswithb = 1and a = 0.5, 0.2 and 0.1, when the
megnetic induction fiddsin the perforation and in the box are different according to Egs. (26) and
(29). The values of ©4 arethe numerica solutions of Eq. (30) and depend on the vaue of jm +1j.
The energy egenvaues themsdves dso depend on the value and sign of m + 1, as distingui shed
in the corresponding columns. The first column gives the values of jm+ 1 j interpolaing between
the integer values of m already consdered in Tablel. Agan the values for ©s, when doubled and
increased by one unit give the entries for the energiesin the fird, third and fifth columns for the
gates with (m+ 1) <0, in which the rotationa and diamagneti c energies cance each other (see
Eg. (29)). The energies for the following columns are obtained by the further addition of 2jm+1j
and correspond to the gates with (m + 1) >0, Eq. (29).

It isimportant to understand that the entriesin each pair of columns of Table Il arevalid for
the energies Ed,(2) for the different combinations of the vaues of m of the chosen dtates, and of
the differences 1 of the magnetic induction fidd in the perforation with regpect to the one in the
box. For the sake of illustration let us cond der the specific vdue jm+1j=0.2, commontom+1
=-02and m+1 =0.2. The negative value can be obtained from the following combinations
(m;2): (0, i02),(i1,08),(1 jl12, (i 2 18), (2, j 22 :::; and the podtive vdue from:
0,02), (i 1, 1.2, (1, 08, (i 2,22, (2, i 1.8), :::. All of them have the common vaue of
o, obtained from Eq. (30) with (m +1) = 0.2, and, as dready staed, the enegies for the states
with the negative vdue of (m + 1) is the entry in the odd column, and the energy for the states
with podtive vadues of (m +1) is twice this va ue dove. The generalization of this reault is

Edn(m+2) = El .M+ N)+ @i N)); (31)

with N = 0;81;82;::: expressing the periodic repetition of the Landau energy levels of the
eectron in the annular box when the magnetic flux in the perforation changes by one fluxon,
accompanied by a compensating shift of one unit in the angular momentum quantum number.
This behaviour is graphicdly illustrated in Figs. 2(a) and 2(b) for the boxes with larger and
gnaller perforaions

For * =0, the energy leves coincide with those of Fig. 1(a) and the third column of Table
I. As 1 increases from its initid value the states with zero and positive values of m increase
their energies while the states with negative va ues of m decresse their energies; the state s = 1,
m = j 1 energy reaches its minimum value for * % 05 in Fig. 2(8 and * % 0.8 in Fig. 2(b).
When  reaches the value of 1, the first periodic repetition of Eg. (31) with N = 1 is redized,
and continues as 1 keeps on increasng. On the other hand, as 1 decreases from zero, the states
with zero and postive vadues of m decrease ther enagies, and the states with negative values
of 1 increase their energies, the state s = 1, m = 0 reaches its minimum value for * % j 05 in
Fig. 2@ and 1 % j 0.2inFig. 2(b). When * reachesthe vdue of j 1, the first periodic repetition
of Eqg. (31) with N = j 1 isredized, and continues as * keeps on decreasng moving to the left
in the graph. By drawing the energy curve E1g(*) from the data of Table Il, the other curves for
E]., are obtained from horizontal translaions of that curve by m units, to the right for negative
m and to theleft for positive m. Here we have illustrated the A-B effect on the Landau dates for
the energy levedswith s = 1, but it holds in generd for any sm gdates, as expressed by Eq. (31).
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FIG. 2. Aharonov-Bohm effect on Landau energy levels EJ (%), as illustrated through their periodic
dependence on the change of magnetic flux * in the perforation of annular cylindrical boxes with
melb?=~ =1, and @) m!.1a?=~ = 0.25 and b) m¢1a?=~ = 0.01.

In conclusion, this paper has presented an analysis of the confinement effect in annular
cylindrical boxes on the Landau states and of the A-B effect on such states. The sgnature of
the Landau states in the first system is manifesed through the higher energies of the podtive m
gates and lower energies of the negative m gaes, induding the evolution of their degeneracy as
the boxes get larger. The A-B effect is manifested through the periodic repetition of the energy
ectrum as a function of the variatiion of the magnetic flux in the perforation of the box with the
corresponding shifts in the angular quantum number of the Landau stetes, and with a period of
one fluxon.

APPENDIX A

The Kummer confluent hypergeometric functions M and U are defined by

M(®: ;2) = : (((?gfl (A1)
in terms of the Pochhammer symbal,

@=1 @)=00+D::@+si n=CL (A2)
and

U@:":2) = w M@®; ;2) . _,-MA+0 i ;2j _;Z)% (A3)

“Snt i@+e i) C i @®i2i )
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The series of Eq. (A.1) is convergent for dl vauesof z and dl vauesof ® and  which are
not negative integers. It becomes a polynomid of degree N when ® = j N is a negative integer.
When  is a podtive integer, Eq. (A.3) leads to the logarithmic form

U ®. +1. J— (i )n+1 ®. +1. I
®;n ,z)—mm( 'n+1;z)Inz
X r ©,
—((i)f CA@+1)
g (N+1)rr! ag (A.4)
iA@Q+nij AQ+n+r)
(ni ) .,
+ ZV"™M@® i n;lj Nn;2)n;
i(®) ( | | )n
forn=0,1,2 ..., whereA(X)=i'x)=j(x) and the last factor is the sum of n terms with
the va ue zero for n = 0. Their asymptotic foomsforz ¥ 1 ae
M@; ;2) = %ezz@i_[l+0(jzj‘1)]; (A.5)
i
U®; :z) =z ®[1+ 0(jzji 1)]: (A.6)
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