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2Mathematical Building, Box 87, University of Arizona, Tucson, AZ 85721, USA

(Received September 24, 2001)

The Schrödinger equation for an electron inside an annular cylindrical box and in the
presence of an axial uniform magnetic field is solved in two comparative situations: i) when
the magnetic induction ~B0 = k̂B0 is the same in the central perforation and in the box, and
ii) when its values in the perforation ~Bi = k̂Bi and in the box ~B0 = k̂B0 are different. The
Aharonov-Bohm effect on the Landau states of the confined electron is exhibited through the
analysis of the dependence of the energy eigenvalues and eigenfunctions on the difference of
the magnetic flux in the perforation as B i ¡ B0 changes.

PACS. 03.65.–w – Quantum mechanics.
PACS. 03.65.Bz – Aharonov-Bohm effect.

I. Introduction

This paper deals with the problem of an electron moving under the action of uniform
magnetic fields combining the situations of the Landau problem [1-3] and of the Aharonov-Bohm
(A-B) effect [4-6]. The first situation corresponds to a uniform magnetic induction at all points of
space and to an electron allowed to be at any of those points. The Landau problem has been solved
in both the linear gauge and the symmetric gauge, and the connections between the respective
eigenstates have been exhibited in [3]. The second situation involves a uniform magnetic induction
in a limited region of space from which the electron is excluded. Aharonov and Bohm predicted
that the fringe pattern in an electron interference experiment should be shifted by altering the
amount of magnetic flux passing between two beams, even though the beams themselves pass
only through field-free regions [4]. The experiments performed by Chambers using magnetic
whiskers confirmed this prediction [5]. The A-B effect on the bound states of an electron inside
an annular cylindrical box was analyzed in [6].

The A-B effect on the Landau states of an electron inside an annular cylindrical box is
investigated by comparing two new situations. In Sec. II, the same uniform magnetic induction
~B(0 · ½ · b;';z) = k̂B0 is present in the central perforation (0 · ½ · a) and in the box
(a · ½ · b). In Sec. III, the magnetic induction in the perforation ~B(0 · ½ · b; '; z) =

k̂Bi is different from the one in the box B(a · ½ · b;';z) = k̂B0 . The analysis of both
situations involves identifying the respective vector potentials in the perforation and in the box,
constructing the Hamiltonians via the minimal-coupling prescription, and solving the corresponding
Schrödinger equations. The box is assumed to be impenetrable, which translates into the boundary
condition that the eigenfunctions must vanish at the positions of the walls of the box. Sec. IV
presents numerical and graphical results illustrating the A-B effect through the changes of the
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energy eigenvalues and eigenfunction parameters as the magnetic flux difference in the perforation
(Bi ¡ B0)¼a2 changes, including a discussion of these results. For completeness sake the explicit
forms of the Kummer confluent hypergeometric functions are included in the Appendix.

II. Landau states in an annular cylindrical box

This section presents the formulation and solution of the quantum problem of an electron,
of mass me and electric charge ¡ e, confined inside an annular cylindrical box (a · ½ · b; 0 ·
' · 2¼;0 · z · L), and under the action of an axial uniform magnetic field,

~B(0 · ½ · b; '; z) = k̂B0; (1)

which has the same magnitude in both the perforation and the box. The associated magnetic
vector potential is chosen as the one in the symmetric gauge,

~A(0 · ½ · b; '; z) = '̂
B0½

2
; (2)

congruent with the geometry of the box. The Hamiltonian for the system is constructed by using
the minimal-coupling prescription [2],

H =
(~p + e

c
~A)2

2me
=

p2
½

2me
+

( lz
½ + eB0½

2c )

2me
+

p2
z

2me
; (3)

involving the radial p½, azimuthal lz=p, and axial pz components of the canonical momentum;
lz is the canonical angular momentum. Then the corresponding time-independent Schrödinger
equation becomes

(
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½2 ¡ ~2
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Ã (½; ';z)

= EÃ (½;';z):

(4)

The three terms coming from the square of the binomial in Eq. (3) are identified as the rota-
tional kinetic energy, the diamagnetic energy, and the harmonic oscillator potential energy with a
frequency ! = eB0=2mec.

Equation (4) admits separable solutions

Ã (½; '; z) = R(½)© (')Z(z): (5)

Each factor satisfies the respective ordinary differential equation in the longitudinal, azimuthal
and radial coordinate:

¡ ~2

2me

d2Z

dz2
= ELZ; (6)

¡ i~
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d'
= m~© ; (7)
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¸
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me!2½2 + m~!

¾
R = ET R: (8)

Here the longitudinal and transverse contributions to the energy add up to the total energy,

EL + ET = E: (9)

The eigensolutions of Eq. (6) are determined by the boundary conditions that they must
vanish at the lower z = 0 and upper z = L walls of the box. Their explicit form is

Zn(z) =

r
2

L
sin

n¼z

L
; n = 1;2; 3; : : : : (10)

The corresponding longitudinal eigenenergy becomes

EL
n =

~2n2¼2

2meL2 : (11)

Equation (7) is the eigenvalue equation for the z-component of the angular momentum,
with eigensolutions

© m(') =
eim'

p
2¼

(12)

and integer eigenvalues

m = 0;§ 1;§ 2; : : : (13)

arising from the periodicity condition © (' +2¼) = © (').
Apart from the diamagnetic energy term, Eq. (8) is identified as the radial Schrödinger

equation for a two-dimensional isotropic harmonic oscillator. Its solutions are well-known; for the
electron inside the annular cylindrical box they must vanish at the inner ½ = a and outer ½ = b
walls. The general solution is

R(½) =½jmje¡ me!½2=2~
½

CM

µ
¡ º; jmj + 1;

me!½2

~

¶

+DU

µ
¡ º; jmj + 1;

me!½2

~

¶ ¾
;

(14)

in terms of the confluent hypergeometric functions M and U [7], where the transverse eigenenergy
contribution has the form

ET
sm = ~![2ºs + jmj +1 + m]: (15)

The radial boundary conditions become:

CM

µ
¡ º; jmj +1;

me!a2

~

¶
+ DU

µ
¡ º; jmj + 1;

me!a2

~

¶
= 0; (16)
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CM
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me!b2

~

¶
+ DU

µ
¡ º; jmj + 1;

me!b2

~

¶
= 0: (17)

The value of the transverse eigenenergy parameter º is determined by the condition that the
determinant of the two linear homogeneous algebraic Eqs. (16) and (17) in C and D vanishes,

M
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¡ U
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¶
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(18)

For an electron confined in an annular cylindrical box with inner and outer radii a and b, under the
action of the uniform magnetic induction field defined by Eq. (1), and in an eigenstate with a chosen
value of m, Eq. (13), the zeros of Eq. (18) for ºs, s = 1;2; 3; : : : determine the corresponding
radial eigenfunctions Rsm(½), Eq. (14), and transverse eigenenergies ET

sm, Eq. (15). Such zeros
are computed numerically using the appropriate representations of the functions M and U [7],
Eqs. (A.1), (A.4) with ® = ¡ º and n = jmj.

The normal Landau problem in which the electron may be at any point in the range
0 · ½ < 1 corresponds to the particular case of a = 0 and b = 1. By recalling that U is
singular at ½ = 0 its presence in Eq. (14) must be eliminated by taking D = 0. On the other hand,
M diverges as exp (me!½2=~) as ½ ! 1, Eq. (A.5), and the only way to make Eq. (14) still
useful is to take º as a non-negative integer N for which M becomes a polynomial of degree
2N. Correspondingly, the Landau energy levels of Eq. (15) become the spectrum of odd integers
in units ~!, each level being infinitely degenerate on account of the cancellation of the rotation
and diamagnetic contributions jmj + m for m = ¡ jmj.

The zeros of ºs in Eq. (18) depend on the values of the other parameters of M and U,
namely jmj, (me!a2=~), and (me!b2=~) and in general are not integers. The dimensionless
parameter me!b2=~ can be rewritten in terms of the magnetic induction field as B0¼b2=(hc=e),
which can be identified as the magnetic flux in the circular cross-section of radius b expressed in
the fluxon unit, hc=e = 4.135 £ 10¡ 7 gauss-cm2. The result of the confinement of the electron
inside the annular cylindrical box is to remove the infinite degeneracy of the normal Landau
energy levels described in the previous paragraph. Explicit numerical illustrations of these results
are shown in Sec. IV.

III. Aharonov-bohm effect on the landau states in an annular cylindrical box

In this section we analyze the changes in the eigenenergies and eigenfunctions of the Landau
states when the magnetic induction field has a value in the perforation different form its value in
the box. Let the respective values be

~B(0 · ½ · a;';z) = k̂Bi (19)

and

~B(a · ½ · b;';z) = k̂B0: (20)
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The corresponding magnetic vector potential is

~A(0 · ½ · a;';z) = '̂
Bi½

2
;

~A(a · ½ · b;';z) = '̂

·
B0½

2
+

(Bi ¡ B0)a
2

2½

¸
:

(21)

This potential is continuous at the boundary ½ = a, and its curl reproduces the magnetic induction
fields in the perforation and in the box. The Hamiltonian for the electron in the box becomes

H =
p2

½

2me
+

[ lz
½ +

e(Bi¡ B0)a2

2c½ + eB0½
2c ]2

2me
+

p2
z

2me
: (22)

The difference of the magnetic induction in the perforation, Eq. (19), compared to the one in
the box, Eq. (20), is translated into the difference of the magnetic vector potential of Eq. (21)
compared to that of Eq. (2) and correspondingly to the difference between the Hamiltonian of
Eq. (22) compared to that of Eq. (3). The latter consists in the replacement

lz ! lz +
e(Bi ¡ B0)a2

2c
(23)

in going from Eq. (3) to Eq. (22), in the terms inversely proportional to the radial coordinate ½.
Then the new time-independent Schrodinger equation is
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instead of Eq. (4). It also admits separable solutions of the same type of Eq. (5), with the
same longitudinal and azimuthal eigenfunctions and eigenvalues of Eqs. (10)-(13) satisfying the
corresponding differential Eqs. (6) and (7). The radial differential equation becomes

½
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d
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½
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¡ (m + ¹)2

½2
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2
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where

¹ =
e(Bi ¡ B0)a

2

2~c
=

(Bi ¡ B0)¼a2

(hc=e)
(26)

is the change in the magnetic flux in the perforation in the fluxon unit when the magnetic induction
changes from its value of Eq. (1) to that of Eq. (19). The difference in going from the radial
Eq. (8) to that of Eq. (25) is the replacement

m ! m + ¹; (27)



VOL. 40 E. LEY-KOO, G. VILLA-TORRES, AND D. KOUZNETSOV 135

which follows from that of Eq. (22).
The solutions of the radial Eq. (25) are of the same type as those of Eq. (8) with the

replacement of Eq. (27). Their explicit forms are

Rsm(½;¹) =½jm+¹ je¡ me!½2=2~
½

CM

µ
¡ º; jm + ¹ j + 1;

me!½2

~

¶

+DU

µ
¡ º; jm + ¹ j + 1;

me!½2

~

¶ ¾ (28)

instead of Eq. (14), with the new transverse eigenenergy

ET
sm(¹) = ~![2ºs + jm + ¹ j + 1 + m + ¹ ]; (29)

instead of Eq. (15), and the ratio of the C and D coefficients and the parameter º being determined
by

C

D
= ¡ U(¡ º; jm + ¹ j +1; me!a2

~ )

M(¡ º; jm + ¹ j +1; me!a2

~ )
= ¡ U (¡ º; jm + ¹ j + 1; me!b2

~ )

M(¡ º; jm + ¹ j + 1; me!b2

~ )
(30)

instead of Eqs. (16)-(18). Of course, for the case in which Bi = B0 the value of ¹ vanishes,
Eq. (26), and the results of Sec. II are recovered. For the general case of interest here Bi 6= B0,
and the A-B effect on the Landau states in the annular cylindrical box is associated with the
¹ dependence of the radial eigenfunctions, Eq. (28), and the transverse eigenenergies, Eq. (29),
determined by the values of ºs solutions of Eq. (30), with s = 1; 2;3; : : : . Here the Eq. (A.3) for
U must be used for non integer values of ¹ . Numerically computed values of ºs and ET

sm(¹) for
different chosen values of ¹ are presented in the following section.

IV. Numerical results and discussion

This section contains some numerical and graphical results illustrating the confinement
effect of the annular box on the Landau states, and the A-B effect on the same states, from the
analysis in Section II and III, respectively. For the first one, the zeros of Eq. (18) in º are based
on the logarithmic form of the U function, Eq. (A.4). For the second one, Eq. (30) requires the
use of the form of U of Eq. (A.3) for non-integer values of ¹. Table I and Fig. 1 illustrate the
confinement effect, and Table II and Fig. 2 the A-B effect on the Landau states, as explained and
discussed next.

Table I presents the transverse energy eigenvalues ET
sm for the Landau states with s = 1,

2, and 3, and m = 0;§ 1;§ 2; : : : obtained from Eqs. (15) and (18), for the electron confined in
boxes with b = 2a, 5a and 10a, in different magnetic induction fields producing magnetic fluxes
of 1 and 15 fluxons in the circular cross sections of radius b. The values of ºs from the numerical
solution of Eq. (18), when doubled and increased by one unit, give the energy eigenvalues for the
zero and negative m states; for the positive m states the further addition of 2m is required.

The confinement effect of the box on the electron Landau states is obviously manifested by
the departure of the energy levels from the equally spaced and infinitely degenerate (2N + 1)~!
spectra with integer values of N. The data in Table I indicate that such an effect is dominant
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TABLE I. Radial s and angular momentum m quantum numbers and transverse energy eigen-
values ET

sm in units ~!, for an electron confined in boxes with b = 2a, 5a and 10a,
in magnetic induction fields defined by the dimensionless magnetic flux parameter
me!b2=~.

me!b2=~ 1 1 1 15 15 15

me!a2=~ 0.25 0.04 0.01 3.75 0.6 0.15

s m ET
sm ET

sm ET
sm ET

sm ET
sm ET

sm

1 0 19.79178 7.46920 5.65108 5.33410 2.46994 1.91268
¨ 1 19.72188 8.16592 6.94048 4.40352 1.76000 1.23668

21.72188 10.16592 8.94048 6.40352 3.76000 3.23668

¨ 2 21.50142 11.84566 11.42684 3.61104 1.29718 1.03460

25.50142 15.84566 15.42684 7.61104 5.29718 5.03460

¨ 3 25.09870 17.67902 17.58700 2.95458 1.09156 1.00632

31.09870 23.67902 23.58700 8.95458 7.09156 7.00632

¨ 4 30.46266 25.06046 25.04484
38.46266 33.06046 33.04484

¨ 5 37.52606 33.74222 33.73996

47.52606 43.74222 43.73996

2 0 79.00098 30.51030 23.69370 9.06064 5.06776 4.16546

¨ 1 78.98152 31.64624 26.04792 8.72414 4.21142 3.41790
80.98152 33.64624 28.04792 10.72414 6.21142 5.41790

¨ 2 80.92192 36.95496 33.94736 7.91474 3.63896 3.11796

84.92192 40.95496 37.94736 11.91474 7.63896 7.11796

¨ 3 84.82974 45.94932 44.86382 7.23292 3.33512 3.09164

90.82974 51.94932 50.86382 13.23292 9.33512 9.09164

3 0 177.69628 69.02626 54.02880 16.23734 7.82040 6.05602

¨ 1 177.78674 70.32580 56.94516 15.30200 6.95948 5.74480
179.78674 72.32580 58.94516 17.30200 8.95948 7.74480

¨ 2 179.66006 76.24628 67.07614 14.49612 6.38078 5.44980

183.66006 80.24628 71.07614 18.49612 10.38078 9.44980

¨ 3 183.62184 86.71936 82.07110 13.82010 6.09200 5.53434

189.62184 92.71936 88.07110 19.82010 12.09200 11.53434
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TABLE II. Transverse energy eigenvalues ET
1m as a function of the parameter m+¹ , Eq. (29), for

electron confined in boxes with me!b2=~ = 1 and the indicated values of me!a2=~
and signs of m + ¹ .

me!a2=~ 0.25 0.04 0.01

m + ¹ – + – + – +

jm + ¹ j ET
1m ET

1m ET
1m ET

1m ET
1m ET

1m

0 19.79178 19.79178 7.46920 7.46920 5.65108 5.65108
0.2 19.62901 20.02901 7.33859 7.73859 5.54960 5.94960
0.4 19.54074 20.34074 7.34598 8.14598 5.64130 6.44130

0.6 19.52680 20.72680 7.48904 8.68904 5.91518 7.11518

0.8 19.58724 21.18724 7.76399 9.36399 6.35476 7.95476

1 19.72188 21.72188 8.16592 10.16592 6.94048 8.94048

1.2 19.93154 22.33154 8.68844 11.08844 7.65207 10.05207

1.4 20.21310 23.01310 9.32507 12.12507 8.47078 11.27078

1.6 20.56924 23.76924 10.06840 13.26840 9.38064 12.58064
1.8 20.99979 24.59979 10.91102 14.51102 10.36910 13.96910

2 21.50142 25.50142 11.84566 15.84566 11.42684 15.42684

2.2 22.09683 26.49683 12.86538 17.26538 12.54727 16.94727

2.4 22.72467 27.52467 13.96385 18.76385 13.72597 18.52597

2.6 23.44452 28.64452 15.13541 20.33541 14.95999 20.15999

2.8 24.23603 29.83603 16.37518 21.97518 16.24742 21.84742
3 25.09870 31.09870 17.67902 23.67902 17.58700 23.58700

3.2 26.03209 32.43209 19.04350 25.44350 18.97790 25.37790

3.4 27.03570 33.83570 20.46588 27.26588 20.41952 27.21952

3.6 28.10905 35.30905 21.94392 29.14392 21.91144 29.11144

3.8 29.25156 36.85156 23.47590 31.07590 23.45330 31.05330

4 30.46266 38.46266 25.06046 33.06046 25.04484 33.04484

4.2 31.74178 40.14178 26.69655 35.09655 26.76582 35.16582
4.4 33.08831 41.88831 28.38334 37.18334 28.37600 37.17600

4.6 34.50163 43.70163 30.12020 39.32020 30.11521 39.31521

4.8 35.98110 45.58110 31.90662 41.50662 31.90325 41.50325

5 37.52606 47.52606 33.74222 43.74222 33.73996 43.73996
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(a) (b)

FIG. 1. Lower Landau energy levels ET
sm for an electron confined in boxes with (a) me!b2=~ = 1 and

me!a2=~ = 0.25 and (b) me!b2=~ = 15 and me!a2=~ = 0.15.

for the first set of three small boxes and decreases for the set of larger boxes; additionally, within
each set, the effect is more noticeable for the boxes with larger perforations.

Figures 1a and 1b illustrate the change of the confinement effect as well as the magnetic
field effects in the energy spectra of the electron for the boxes of the first and last columns,
respectively. For the small box with b = 1 in the unit of length (~=me!)1=2 and large perforation
a = 0.5, the confinement effect is large as illustrated by numerical values for the eigenergies of
the m = 0 states in the box expressed in terms of the corresponding normal Landau eigenergies
ET

10 = 19.79178EL
10, ET

20 = 26.33333EL
20 , ET

30 = 35.53925EL
30, a situation extensive to the other

ET
sm states. The reader should notice the different regions in the energy scale in Fig. 1a for the

s = 1 and 2 energy levels due to the large size of the confinement effect; the inclusion of the s
= 3 energy levels would require jumping to the region with ET

sm ¸ 170. The quasi-degeneracy
of the energy levels (s; m ¸ 0) and (s; ¡ m ¡ 1) is readily noticeable, and can be understood
as the result of the combination of the confinement effect and the magnetic effects associated
with the Landau states, including the distinct behaviour of the m > 0 and m < 0 states due to
the diamagnetic energy. On the other hand, Fig. 1b for a larger box with b =

p
15 and a small

perforation a =
p

15=10, the energy scale is the same as for the normal Landau states because
the confinement effect is appreciably reduced. Nevertheless it is still definitely present as the
comparison ET

10 = 1.91268EL
10, ET

20 = 1.38849EL
20 , ET

30 = 1.21120EL
30 indicates. In this case all

the energy levels with s = 1, 2, and 3 can be drawn together. The spacing of the energy levels
for each value of s and the successive positive values of m is not far from 2, the normal Landau
energy level spacing. On the other hand, the tendency to degeneracy of the energy levels, for
each value of s and the successive negative values of m = ¡ 1; ¡ 2; ¡ 3; : : : , at the normal Landau
energy level positions 1; 3;5; : : : is explicitly apparent. The energy spectra for the electron in the
boxes of columns 2-5 in Table I illustrate their intermediate behavior between the two situations
explicitly discussed in connection with Figs. 1(a), 1(b).
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Table II presents the transverse energy eigenvalues ET
sm for the Landau states with s = 1

and m = 0, ¨ 1, ¨ 2, : : : for an electron in boxes with b = 1 and a = 0.5, 0.2 and 0.1, when the
magnetic induction fields in the perforation and in the box are different according to Eqs. (26) and
(29). The values of ºs are the numerical solutions of Eq. (30) and depend on the value of jm+¹j.
The energy eigenvalues themselves also depend on the value and sign of m + ¹ , as distinguished
in the corresponding columns. The first column gives the values of jm+ ¹ j interpolating between
the integer values of m already considered in Table I. Again the values for ºs, when doubled and
increased by one unit give the entries for the energies in the first, third and fifth columns for the
states with (m+ ¹) < 0, in which the rotational and diamagnetic energies cancel each other (see
Eq. (29)). The energies for the following columns are obtained by the further addition of 2jm+¹ j
and correspond to the states with (m + ¹) > 0, Eq. (29).

It is important to understand that the entries in each pair of columns of Table II are valid for
the energies ET

sm(¹) for the different combinations of the values of m of the chosen states, and of
the differences ¹ of the magnetic induction field in the perforation with respect to the one in the
box. For the sake of illustration let us consider the specific value jm+¹ j = 0.2, common to m+¹
= -0.2 and m + ¹ = 0.2. The negative value can be obtained from the following combinations
(m;¹) : (0, ¡ 0.2), (¡ 1, 0.8), (1, ¡ 1.2), (¡ 2, 1.8), (2, ¡ 2.2) : : : ; and the positive value from:
(0, 0.2), (¡ 1, 1.2), (1, ¡ 0.8), (¡ 2, 2.2), (2, ¡ 1.8), : : : . All of them have the common value of
ºs obtained from Eq. (30) with (m + ¹) = 0.2, and, as already stated, the energies for the states
with the negative value of (m + ¹) is the entry in the odd column, and the energy for the states
with positive values of (m + ¹) is twice this value above. The generalization of this result is

ET
sm(m + ¹) = ET

sm+N((m + N) + (¹ ¡ N)); (31)

with N = 0; § 1;§ 2; : : : expressing the periodic repetition of the Landau energy levels of the
electron in the annular box when the magnetic flux in the perforation changes by one fluxon,
accompanied by a compensating shift of one unit in the angular momentum quantum number.
This behaviour is graphically illustrated in Figs. 2(a) and 2(b) for the boxes with larger and
smaller perforations.

For ¹ = 0, the energy levels coincide with those of Fig. 1(a) and the third column of Table
I. As ¹ increases from its initial value, the states with zero and positive values of m increase
their energies, while the states with negative values of m decrease their energies; the state s = 1,
m = ¡ 1 energy reaches its minimum value for ¹ ¼ 0.5 in Fig. 2(a) and ¹ ¼ 0.8 in Fig. 2(b).
When ¹ reaches the value of 1, the first periodic repetition of Eq. (31) with N = 1 is realized,
and continues as ¹ keeps on increasing. On the other hand, as ¹ decreases from zero, the states
with zero and positive values of m decrease their energies, and the states with negative values
of ¹ increase their energies; the state s = 1, m = 0 reaches its minimum value for ¹ ¼ ¡ 0.5 in
Fig. 2(a) and ¹ ¼ ¡ 0.2 in Fig. 2(b). When ¹ reaches the value of ¡ 1, the first periodic repetition
of Eq. (31) with N = ¡ 1 is realized, and continues as ¹ keeps on decreasing moving to the left
in the graph. By drawing the energy curve E10(¹) from the data of Table II, the other curves for
ET

1m are obtained from horizontal translations of that curve by m units, to the right for negative
m and to the left for positive m. Here we have illustrated the A-B effect on the Landau states for
the energy levels with s = 1, but it holds in general for any sm states, as expressed by Eq. (31).
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(a) (b)

FIG. 2. Aharonov-Bohm effect on Landau energy levels ET
sm(¹), as illustrated through their periodic

dependence on the change of magnetic flux ¹ in the perforation of annular cylindrical boxes with
me!b2=~ = 1, and a) m!e!a2=~ = 0.25 and b) me!a2=~ = 0.01.

In conclusion, this paper has presented an analysis of the confinement effect in annular
cylindrical boxes on the Landau states, and of the A-B effect on such states. The signature of
the Landau states in the first system is manifested through the higher energies of the positive m
states and lower energies of the negative m states, including the evolution of their degeneracy as
the boxes get larger. The A-B effect is manifested through the periodic repetition of the energy
spectrum as a function of the variation of the magnetic flux in the perforation of the box with the
corresponding shifts in the angular quantum number of the Landau states, and with a period of
one fluxon.

APPENDIX A

The Kummer confluent hypergeometric functions M and U are defined by

M(®;¯; z) =
1X

s=0

(®)szs

(¯)ss!
(A.1)

in terms of the Pochhammer symbol,

(®)0 = 1; (®)s = ®(® +1) : : : (® + s ¡ 1) =
¡(® + s)

¡ (® )
; (A.2)

and

U (® ;¯; z) =
¼

sin ¼¯

½
M(® ;¯; z)

¡(1 + ® ¡ ¯)¡(¯)
¡ z1¡ ¯ M(1 + ® ¡ ¯; 2 ¡ ¯;z)

¡(®)¡(2 ¡ ¯)

¾
: (A.3)



VOL. 40 E. LEY-KOO, G. VILLA-TORRES, AND D. KOUZNETSOV 141

The series of Eq. (A.1) is convergent for all values of z and all values of ® and ¯ which are
not negative integers. It becomes a polynomial of degree N when ® = ¡ N is a negative integer.

When ¯ is a positive integer, Eq. (A.3) leads to the logarithmic form

U(®; n+ 1; z) =
(¡ )n+1

n!¡ (® ¡ n)

£
m(®; n +1; z) ln z

+
1X

r=0

(®)rzr

(n +1)rr!

©
Ã (® + r)

¡ Ã (1 + r) ¡ Ã (1 + n + r)
ª¤

+
(n ¡ 1)!

¡(® )
z¡ nM(® ¡ n;1 ¡ n;z)n;

(A.4)

for n = 0, 1, 2, . . . , where Ã (x) = ¡ 0(x)=¡(x) and the last factor is the sum of n terms with
the value zero for n = 0. Their asymptotic forms for z ! 1 are

M(® ;¯; z) =
¡(¯)

¡(® )
ezz® ¡ ¯ [1 +0(jzj¡ 1)]; (A.5)

U(®; ¯;z) = z¡ ® [1 + 0(jzj¡ 1)]: (A.6)
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