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The nonlinear interaction of noncollinear acoustical waves is considered. Conditions of the resonant
backscattering of one wave from the lattice produced by the other two are formulated in analogy
with the four-wave mixing known in optics. The efficiency of the phase-matched interaction of
acoustical waves is calculated in the resonant approximation for a gas media. Such approximation
is constructed on the basis of the expansion of the sound equations preserving up to cubic terms. The
amplitude of the backscattered wave is expressed as the product of the efficiency, the amplitudes of
three waves, the wave number of the backscattered wave, and the size of the region of interaction.
Such backscattering is proposed as an acoustical remote probe. The distance to the interaction
region and the amplitude of initial waves are limited by nonlinear degradation of waves due to the
second-order nonlinearity. For acoustical waves with wave number fpsources of size 1 m, and

about 100 m to the interaction region, the amplitude of the backscattered wave can be a8ut 10

of the atmospheric pressure. At the detection with a signal-to-noise ratio about of 10, the resolution
of such method on the wind velocity may be about 1 m/s. 1899 Acoustical Society of America.
[S0001-496609)04103-X

PACS numbers: 43.25.JMAB]

INTRODUCTION plane waves. The consideration of these effects with well-
defined beams could be a continuation of the present work.
Acoustic remote probes are efficient tools in atmo-  The possible geometry of a phase-matched backscatter-
spheric physics. Usually one registers a signal scattered froing experiment is shown in Fig. 1. Let sources 1 and 2 emit
turbulent inhomogeneities of the atmosphkfelo get effi-  two strong sound beams which produce a lattice within the
cient phase-matched scattering, one uses waves of differerdgion of interaction. Here we are interested in the case in
origin, such as radiowaves and acoustical waves with apprawvhich a third wave(the probe beainemited by source 3 is
priate relation of wave numbe?$. backscattered from this lattice. In this case the reflected wave
We propose an alternative technique which uses the inean be registered by a detector located at source 3.
teraction of only acoustical waves; here we present the de- We assume that the frequency of the third source is
duction of formulas which appeared in Ref. 5 without proof.given. So, we need to calculate, for the given geometry, the
In this reference, the present results were proposed to Heequencies of sources 1 and 2, and the placement of the
used as an acoustic remote probe. We briefly discuss suchwindow of frequency selection of the detect&ec. ). Then,
proposal as well. for the case of resonance, we need to calculate the efficiency
In a homogeneous isotropic medium, we need twoof the nonlinear interactioriSec. ). Finally, we need to
acoustical waves to write a lattice, and one probe wave to bestimate the maximum amplitude of sound, which could be
reflected from this lattice. Such processes are widely used ifegistered with such a scherfgec. ll), and, as an example,
optics, where it is known as four-wave mixifig.It takes estimate the sensitivity of such a method to the wind veloc-
place for all types of nonlinearities, even in a gain medfum. ity.
Efficient interaction occurs at the phase-matching condition.
This condition depends neither on the nature of waves nor on
the type of nonlinearity. Here we deal with acoustical waved: PHASE-MATCHING CONDITION

in a gas; the medium is isotropic and nondispersive, which  ~qnsider three plane waves emitted by sources 1, 2, and

simplifies the equations. 3 as shown in Fig. 1. Let the corresponding wave vectors be
We should mention that recently J. Berntsstral. pub- p, 4, k.
lished a series of papefsee Ref. 9 and references thejem To have resonant interaction, we need to satisfy the con-

which they analyzed the interaction of Gaussian acousticajtions of phase synchronism:
beams in the second-order approximation. However, effects
of four-wave mixing mentioned above appear only in the
third order. To keep equations simple we work here withwherer is the wave vector of some scattered wave, and the
w's are the corresponding frequencies. Such conditions are
¥Electronic mail: kusnecov@aleph.cinstrum.unam.mx well known in optics>’ They are refered as “phase-
PElectronic mail: garciaa@aleph.cinstrum.unam.mx matching conditions,” or “phase synchronism conditions.”

pP—g+k=r, w,—wqtw=o, D
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For acoustical waves in isotropic and nondispersive me-

dia W =Uv /|k| where the velocity of sound. is the same FIG. 2. Wave numbep of one of two phase-matched waves which provide
for ’a” wavse ve'ctors s the effective backscattering of the wave with given wave nunmbas a

. . .. function of anglesy and ¢ betweenk, p and betweerk, g, respectively
Note that the phase synchronism conditions are satisfieBormula (7)].

for the collinear second-harmonic generation. If we get
=0 and p=k=r/2, Egs.(1) hold. We see that only one 2k sin( a— k)
incident wave is necessary for the phase-matched interaction, q= — g _ )
but no backscattering is possible in this case. In a dispersion- sin(a— ) +sin(a—x)—sin(f—«)
less and isotropic medium we need to have at least three Note the rotational invariance: the frequencies=v p
different waves to generate a wave with its wave vector antiand w,= v which give rise to the effective backscattering
collinear to one of the incident waves. depend on the differences between the angles only. So, to
For the purpose of an acoustical remote probe, we asepresent wave numbersq graphically, we definey=a
sume that all initial wave vectors have positive vertical com-— «, = 8— « (see Fig. 1 and plot
ponents: all waves are produced by ground level sources and

(6)

no initally counter-propagating waves can be realized. p=p(x, o)== 2k si_n( %) i
Consider the condition that the wave vectonf the sin(x — ) +sin(x) — sin( )
scattered sound is anti-collinear to one of inital wave vectors k sin(/2)
k (backscattering Then Eqs(1) imply thatp, q, k, r are in = S 2= 2 ) )
the same plane. Therefore, the problem becomes two- sin(x yi2)cod x/2)
dimensional. Using the angleg B, « defined in Fig. 1, we 2k sin(x)
can represent these vectors in Cartesian coordinates: a=4d(x.¢)= SN x— )+ Sin( ) — sin )
p={pcoga),psin(a)}, _ K sin(x/2) ®
q={qcogB),qsin(p)}, sin(x/2— yl2)cog ¢l2)
k={k cog «),k sin(k)}, @ Equilines of p(x,#), a(x,#), and r(x,¥)=p(x.¥)
_ —q(x,¥)+k are plotted in Figs. 2, 3, and 4 respectively.
r={-rcog«),—rsin(«x)}. The line of small black squares represents infinite values at

(The last equality implies that andr are anti-collineay.Wwe  X= ¥ Thus, sources 1 and 2 cannotzhave the same location.
assume that the wave number of the probe bdarand the ~ Note the symmetryr (m— ¢, m— x) =k/r (x, ).

anglese, 3, « are given. These angles are defined by the ~ Equations(7) an_d(_8) tell us the frequencies that sources
location of the sources of sound and the region from whicht @nd 2 should emit in order to have synchronism and pro-

we want to get the backscattered signal. duce effective backscattering. Functiofy, ) expresses the
The question is: for givem, B, k andk, what frequen-
cies should sources 1 and 2 emit so that the resonant scat- W
tered wave goes back to source 3? .
Since the velocity of sound is constant, we hawep Ca
—qg+Kk. Substituting Egs(2) into the first of Eqs(1), we get - '/ g=10k
pcos(a)—qcos(ﬁ>+kcosw=—(p—q+k>cos<f<>,() A T sk
3 T u|
. . . . 2 » 3 = 3
p sin(a) —qgsin(B) +ksin(k)=—(p—qg+k)sin(«). . q=3k
4 ie =T L1
Y L4 g=1.
From this system, we may readily exprgsandq in terms of aaBEa T T lo=1.01k
the wave numbek and the angleg, 3, «: o EE=== =7 =T x
p= 2k Sin(B— «) (5) FIG. 3. Wave numbeq of the second phase-matched wave as a function of
sin(a— B)+sin(a— k) —sin(B—«)’ the anglesy and ¢ [formula (8)].
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(0 V(1+9)?"=yVy+y(y=1)nVp+iy(y—1)
i - X (y=2) PPVt (13
=10k . . .
r=10 Now we can rewritg9) in the new variables:
r=2k an
Gl r=Fk E+V-u=—nV-u—u-Vn, 14
r=k/2 \
\‘ Jdu
r=Fk/10 N | E+V7;=—(U-V)u—(y—2)77V77
|
05— o X —2)(y-3
0 2 " (y )Zw ) s

FIG. 4. Wave number =p—q+k of the reflected wavéformulas(7) and
81 Searching for an approximate solution to the above
equations we use the perturbation series:
wave number of the backscattered wave. To estimate its am- SN BN ) BN )
. . . n=n 7 n )
plitude, we need first to calculate the efficiency of such back- (16)
scattering. This is the subject of the following section. u=uV+u@+u®+....

Let the first-order approximation be the superposition of the
Il. SOUND EQUATIONS three plane waves emitted by the three sources:

.. 1)
Now we should calculate the efficiency of the resonant 7' =A+B+C+A*+B*+C*,

four-wave interaction of acoustical waves starting from the UD = pA+§B+KC -+ PA* +GB* +KC*, 17)
fundamental equations of sound propagation. In the num-

bered equations of this section, we use neither the assumpthere

tion of backscatteringk] 1r), nor that vectorg, g, r are A=aexgip-x—ip7), B=bexgig-x—iq7)
coplanar, but we will return to these assumptions to plot ' ' (18

figures. C=cexpik-x—ikr),

Sound propagation in a fluid such as the atmosphere is A &

described by Eulers equation and the continuity@"dP=P/P, G=0a/q, k=k/k. In what follows, we also use
f=r/r and tream, b, cas constants. It is easy to see thét

equation®?
q andu'®) satisfy the linearized equations
pa—v+p(v-V)v+VP=o ’9—”+v-vp+pv-v=o 9 an't ou®
at Coat ' ——+Vu=0, ——+Vy=0. (19

Herep is the density of the fluidy is the wave velocityP is
the pressure, antis time. OperatorV differentiates with
respect to the vector of spatial coordinates. We assume that
the process is adiabatic, and

Four-wave mixing is due to the third-order terms, but
first we need to construct the second-order approximation.
To get the equations fo® and u‘®, we substitute the
first-order approximations in the right-hand part of Edsl)

p ) y (10) and (15), and keep only quadratic terms:

Po an'?
whereP, andpg are the pressure and density in the absence I
of waves. To be more concrete, we assume thatonst'?

P=PO

+V. U@ =—V.(uV 5Dy, (20)

: : i . (2)

For a monoatomic gasy=>5/3; for a diatomic gas with a ou @ (1) D) (o oy (1w (1)
rigid molecule(the case of the atmosphgre=7/5. We as- ar Vg T=— (U V)u (y=2)7 V™.
sume that the vibrational degrees of freedom are not excited (22

for air at room temperature. For the limit of multiatomic gas\ye take the divergence @21) and subtract20) differenti-
with soft moleculesy~1. Note that the generalization to the a4 with respect ta. It gives

case of any smooth functidf(p) is straightforward.
It is convenient to define the normalized variables I°n
=t/vg, u=vlvg, Where Fre

Po +(y—2) PV )
ve=\ 7o (11 veemy

J
.+ (D)
+o-V-(nPu®). (22)

2, (2)
= —V.((u(l).V)u(l)

v2p(2) -

is the velocity of sound. Lepp=po(1+ %), where 7 is

treated as a new variable. We assume fh@t 1. Then _ . . _ _
After solving this equation, we can get), upon integrating

(21) with respect tor. Similarly we find the equation to third

1
—  =1—p+ Pt
1=ntn ' (12 order:

1+79
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2. (3)

°n k+plA(p-kt y—2)+(p-k+ 1) (p+k)?

2_(3 - 2 1 1 2
v, 77( ) . =—V-(uU?.V)uV+u®.v)u?) . (p_k)2_|p_k|2
+(7_2)V2( ,7<2>,,<1>+7’;3,7(1>3) _(k+p?2p-k+y-2) i 28
6 - 2(pk—pk) p- 7+ ’ ( )
+v. ﬁi(y,wum ,7<1>u<2>>). 23 ¢ [P aP(P-Gt y=2)+(p-a+ L)(p=a)
T ¢ —(a=p)>+[a-pl?
Equationg22) and(23) are inhomogeneous Helmholtz equa- (p+q)2(2p- 4+ y—2)
tions where the right-hand side represent sources. Direct sub- = —Spg-p-a) p-g—vy+2, (29
stitution of (17) in (22) results in many terms. Fortunately,
we have no need to consider all these terms, but only those |k—q|2(R-q+ y—2)+ (k-§+1)(k—q)2
that yield resonating contributions to the third-order approxi-  £,= > =
mation. ~(g=k)*+[a—K|
As we shall see, the amplitude of the acoustical waves (k—)%(2§-k+ y—2) A
should be much less than the atmospheric pressure. The non- = o (ak—a K —q-k—y+2, (30)
linear income per wavelength is small; so, only the resonant (ak=q-k)
terms are important. where we usedf+k)%—|p+k|?=2(pk—p-k) in Eq. (28),

The resonant terms arise from the prodd&* C, pro-  and similar expressions in Eq&9) and (30). Substituting
portional to expifx —ir 7), and from its complex conjugate. () and %) into (21) yields
Thus, on the right-hand side ¢22) we may keep only terms @
containing the productdB*, AC, B*C and their complex u’
conjugate. Such resonant approximation is used commonly  J7
in optics to calculate the efficiency of harmonics

=—i(&+y—2+p-k)(p+k)AC

—i _ B.8)(0D— *
generatiorf” i(§pty—2+p-9)(p—q)AB
In this resonant approximation we get frq@g) —i(&+y—2+k-)(k—q)CB* +c.c. (31)
2 @ #n'? The integration with respect to adds the factors/(k+ p),
Vin't-—3 i/(p—q), andi/(k—q) to the terms withAC, AB*, and
CB*, respectively. Using Eq$28)—(30), we get
=((k-p+y—2)|k+p|?>+(1+p-k)(p+k)?)AC
« Fj 7 Ikt 2( P A)(Ap ) ) U@ = i AC+ uAB* + uB*C+c.c., (32)
+((P-a+y=2)[p—al*+(1+p-G)(p—a))AB* where

k-g+y—2)|k—p|?+(1+k-§)(k—q)?)B*C K
+((k-q+y=2)|k—p[*+(1+k-§)(k—a)?) (2p-k+ y=1)(k+p)(p+k)

+c.c., (24) Mp= 2(Kp—p-K) : (33

where “c.c.” denotes the complex conjugate terms. (2p-g+vy—1)(p—q)(p—Qq)

To calculate the contribution from each source term in M= ~2(pg-p-9) ) (34)
(24) to 5?, consider equation

V25— P77 =Qexpisx—iQr) (25) ”a:(2k' q+—722k1)(—kk_. q; L (35

7 e ) q q
. Using the above results we may calculate the resonant
whereQ=const. One can readily check that contribution to(®) from (23). Direct substitution of;‘?) and
o u®® on the right-hand side @B3) also results in many terms.
¥ = expisx—iQr) (26)  We keep only those wittAB*C, and rewrite(23) in the
Q% following form:

is a solution of(25). To solve(24), we apply(26) as solution 2 (3 7 S
of (25) with s=k+p, Q=k+p; s=p—q, Q=p—q; s=k Vi ¥ = — 5 =Fr"AB*C+c.c.
—p, Q=k—p; and their complex congugations. We write
no additional solution of the homogeneous equation, since it =Fab*cr’explirx—ir7)+c.c., (36)
would not contribute to the resonant third-order terms. where

Calculating the corresponding contributions #) as
indicated above, we get F=&y(G-P+y—2)+édk-T+y—2)+&(p-F+y—2)

72 =EACHEABH +EB*C+ec, (27) + - (04 ) + pre (K1) + e (P+T)
where +(y—2)(y—3). (37)
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While we treatea, b, and c as constants, the product P v = 5/3
Fab*cr? does not depend on coordinates, %) has the p

solution F =0.5
F = O
3 ab*c F =05 =05
73 =(r-x)F > explirx—ir 7)+c.c. (38 F=—1 o
. . - . ] <05
This solution corresponds to the case in which the nonlinear
; ; ; ; F = —0.5- 1 -1
interaction generates the wave with wave vegtoand its a
amplitude is proportional to the length of interaction. We 0.5\ { .
assume that this third wave is absent at the origin of coordi- - AV \
nates. The origin of coordinates corresponds to the beginning 0 =2 T X

of the region of interaction, if we approximate it with an N _ _
abrupt function. For more accurate calculus, one should d%:)fr']jl‘a'(E;fé)c]"efgffmogngii'g;ﬁi“ge;gi2/53“”“'0” of the anglesand ¢
fine the smooth spatial structure &f b, andc and construct '

the paraxial approximation of Eq(36) with given F
=const. We write a closed expression for tRidbelow.

The phase-matching conditions enable us to simplify th
scalar products with thg's that appear upon substitution of
Egs. (33)—(35) into Eq. (37). Sincep+k=q+r andp+k
=qg+r, we have foru, - (q+r) that (p+k)-(§+7)=(q
+r)-(q+¢f)=q+r+qqQ-f+rp-f=(q+r)(1+p-r), with
similar expressions fou.- (k+r) and u,- (p+r). Substitut-
ing the &s from (28)—(30) and some algebra, we get

Now let us return to our original problem on the back-
escattering of the wav€: Let k andr be anticollinear. Then
the efficiencyF depends only on the anglgsand , defined
in Sec. |. So, we treat it aB=F(y,#). This function is
represented in Fig. 5 for a monoatomic gas, in Fig. 6 for
diatomic gas(case of the atmosphereand in Fig. 7 for a
multiatomic gas.

Note the symmetryF(x,y)=F(7— ¢, 7— ). It fol-
lows from the symmetrieg40) and the symmetry of the

(p+k)2(2p-k+y—1)(2§-F+y—1) wave numbers as functions gf #, discussed in Sec. I.
= 2(pk—p-K) The level F=0 corresponds to the absence of back-
scattering. To make it noticeable we plot also levels
(p—2(2p-g+y—1)(2k-F+y—1) ==*0.1; so, in Figs. 5 and 6 the lev&él=0 appears as a
- 2(pq—p-q) triple line. The disappearance of backscattered waves at
some values of angleg ¢ can be interpreted as the destruc-
(k—q)2(2k-g+y—1)(2p-F+y—1) tive interference of waves reflected by the lattices produced
- by each pair of incident waves.

2(kg—k-a) The efficiency of the backscattering depends on the con-
—(p-k)(@-F)— (k-g)(k- )= (§-p)(P-T) stanty. Thus, the four-wave mixing gives also an extrava-
R R R gant acoustical method to measure the mean number of at-
—(p-k+§-?+k-g+k-7+q§-p+p-t)(y—2) oms in the molecules of the gas: location of the 0 line is

very different in Figs. 5-7.
+(y=2)(3-27). @9 J

This is our main result: The efficiency of the phase-matchedl!l. NUMERICAL ESTIMATIONS

four-wave interaction is expressed in terms of the wave vec- The fundamental result of the previous section expresses

tors and thﬁ adiabatic constapt der the oh hi the amplitude of the phase-matched reflected wave in terms
Ngte the symmetry 0(,39)' Under the phase-matc 'Y of the wave numbers of the incident waves and the angles

condmons,E Is invariant with respect to each of following pe(yeen their wave vectors; it increases with the wave num-

transformations: ber. So, the efficiency of this effect is limited by the maximal

(A) psk, psk,

Y y=T7/5
(B) p:q1 p:_qv T —
~ ~ F_1_¥
(C) psf, ps-—r, F=05 -
k k 9 ] 10e
D) g5k, g —Kk, _ \\\\ :
(b) a a x FF—O 0T r=0
E) §sf, gsr, 2 =-05 FT=~—0.5
(B) g q i Feo : B
o =0.5,
(F) ks, ks—r. i \\ = 15
To see the invariance & with respect taC), (E), and(F), oL | \ \\\ {
0 7r/2 m X

note that the phase-matching condition leadspto-p-k

=qr—q-, and similar expressions for the other denomina-rg. 6. EfficiencyF of backscattering as function of the anglesand ¢
tors in (39). [formula (39)] for diatomic gas;y=7/5.
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'Lp "y:]. H(va)

7 /
=1.5 ]
F= 1.5
F=05 P =1 0 T 2m kx
F=0.1.] ~—0.5
—— F=0
2 F=0.117T] 0.5 -
F=0.5 M/ ] 1 —Hy
F=1 |
1 1.5 . - .
1.5 it ] - FIG. 8. Deformation of the initial waveform of the monochromatic acous-
I 1 I tical wave due to higher-harmonics generation: initial wavefdifx,0)
0g [l I7r/2l =X =H, coskx) (thin line) and deformed wavefornH(x,7) at 7=0.95r;

[thick line, formula(48)].

FIG. 7. EfficiencyF of backscattering as function of the anglesand ¢
[formula (39)] for extremally multiatomic gasy=1.

y+1

H| x+ TH(X,O)T,T =H(x,0). (48)
wave number that can propagate without significant absorpNote that heres has the sense of the local space coordinate of
tion. For air at 20°C and a water fraction o802, the  the wave as it is moving. This solutigand the initial equa-
absorption coefficient reachesx@0 “m™* at k=10m*  tiong become invalid ifH’ becomes infinite. The distance
(see, for example, Ref. 1250, the natural limit for the wave traveled as this takes place is defined in nonlinear acoustics
numbers where we still can neglect absorption at a few hunas the discontinuity distance. We denotet. Note that we
dred meters i&k~10m . may interpretr as the distance of propagation.

Another important concern is regarding the nonlinear  To estimate value ofg,, We take the derivative q#8)
degradation of plane waves as they travel to the region ofyith respect tax:
interaction. This process begins with the phase-matched

second-harmonic generation, discussed in Sec. I. To estimajgr | y 4 v+1 H(x,0)7,7|| 1+ v+l H' (x 0)7-) —H'(x,0).
this effect, consider the case of one-dimensional propagation. 2 T 2 ’ ’

In analogy with Ref. 10, we rewrite Eq&l4) and (15) (49
as Hence,

n+u’'+(yu)’ =0, 41 +1 H’(x,0

’ o o H'(X’L yz H(X’O)T’T): 1+[(y+1)(/2]i|'(x 07

U+n'+uu' +(y—2)nn'=0, (42 ' (50)

where n=7(x,7) and u=u(x,7); the prime indicates the The denominator becomes zero Bty+1)/2]H'(x,0)7
derivative with respect to the first argument, and the dot=—1. |f the initial wave is monochromaticH(x,0)

denotes the derivative with respect to the last one. Note that H, coskx), then the shock waves appear at 74

we define neither prime as the derivative with respect,to =2/ (y+1)kH,]. The solution(48) is plotted in Fig. 8 by
nor the dot as the derivative with respectridecause below, the thick line atr=0.95r4s. To compare, we plot in the

we use this notation also for the case when the first argumefame graph the initial wavid (x,0)=H, coskx) with a thin
is not simplyx. line.

Here we keep only the quadratic terms with respect to At values of r larger thanry, the solution becomes in-
the amplitude of the wave: the second-order contribution isalid. This gives the natural limit to the amplitude. For ex-
largest. We search the solution of E¢41) and (42) as the  ample, if the distance of propagatidn~100m, and the
sum of counter-propagating wavesandJ: wave numbek~10m %, then the amplitude of waves can-

e not be greater thal =2 (y+1)kL]~10"3
7=HX=nn)+Jx+77), “3 If we make the initial amplitude greater that,,y,
u=H(x—7,7)—J(x+7,7). (44) shock waves appear at the distangg. They consume the

o ) energy of the wave before it reaches the region of interaction

Substituting Eqs(43) and (44) into (41) and (42), we get (Fig. 1. At the given initial amplitude, the length of adia-
batic propagation can be doubled, if we také—x, 74 as

H+J+2HH'+2JJ =0, (45) C -
the initial condition.
HeJ4HH 433 —H'J—HJ’ . In what' follows we co.llect the resu'lts of previous sec-
tions to estimate the amplitude of the signal reflected by the
+(y—2)(HH'+JJ +H'J+HJ")=0. (46)  four-wave interaction in the atmosphere for the case of Fig.

Adding th . d lecting th i . 1. From here on we retain the orders of magnitude only.
ing these two equations and neglecting the nonlinear in- Suppose that all wave numbassg, k andr are of the

teraction with the counter-propagating wakene get same order of magnitude. So, we may wktmstead ofp, q,

. r_ . Suppose that all distances of propagation are of the same
2H+(y+1)HH'=0. 4 r
(y+1) “9 order of magnitudel.. Then, since 2§+ 1)~1, the initial
The solution of this equation can be writterths amplitudes should be about
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1 dephasement,~ mrv¢/(kl)~mvD/L. The limit v of reso-

Hi~ i (51)  |ution will be better by the signal-to-noise ratio factar
At larger amplitudes, shock waves appear: The tangent of the 5, ~ Us E (56)
front of acoustical waves becomes infinite; definitely, we are v L

out of our approximation. Of course, physically, the gradientzor example, foD~1 m andL~10m as in the previous
of density remains finite, but so high that the diffusion of example, and taking ~340 m/s, andv~10, we havesv
molecules of the gas causes strong dissipation, and wavesq| m/s.
lose their power before they reach the region of interaction.  Note that wind parallel to the plane of Fig. 1 causes
Suppose that the transversal size of all sourceB.is pending of the reflected beam; however, in this case, the
During propagation, each beam becomes larger due to dieam still lies within the same plane. Such bending can be
fraction. At distance., its size becomes corrected(and, therefore, measuretly the adjustment of
L wave numberg and g. As for the bending caused by the
|~—, (520  orthogonal component of wind, it cannot be compensated in
kD such a manner, and the detector should be displaced from the
where we assume tha&L . location of source 3, giving us the measure of the component
Due to the expansion of each beam, the amplitude off the wind orthogonal to the plane Fig. 1.
each wave becomdd/I times less, and the amplitude of the

interacting waves is about IV. CONCLUSIONS
D D2 The resonant nonlinear interaction of acoustic waves is
H~ THi% 12 (53 analyzed. Wave numbers of two waves which result in the
efficient backscattering of the third wayEig. 1) are calcu-
The amplitude of the backscattered sound is about lated(Figs. 2 and Bas functions of angles between the wave
5 vectors. The efficiency of this process is calculated and pre-
H,~FkIH3~F (54) sented graphically for various values of the adiabatic con-

15
L stanty (Figs. 5-7.
whereF is the angular factor calculated in Sec. II. The possible application of the phase-matched four-

If the reflected signal is detected with an antenna of thevave interaction as a remote acoustic probe is suggested.
same sizeD, an additional factokD should be used to cal- The nonlinear degradation of acoustical waves limits the val-

culate the amplitude in the focus; so, the amplitude at thé!€s of the wave number, initial amplitude and the distance of

receiver should be about propagation in such probe. For wave numbers of about 10
m~1, with sources of size of abbd m and a distance to the
H %FK_DB (55) intersection of 100 m, the relative pressyrelative to the
D L atmospheric pressuran the backscattered wave can be

about 100 The frequency of the backscattered signal is

. — — _l N
For example, ifF~1, k~10m™, D~1m, andL o lated(Fig. 4), so angular and spectral filters can be
~100m, we have that the amplitude of the signal at th%sed.

detector should be about 18 This means that the receiver The qualitative calculation of the distribution of ampli-

shoul?l be 2ble tfjg detect sound of pressures aboU?F](Q. tude in the backscattered beam should imply the consider-
~10""N/m°~10"° umHg. The resolution of detectors is 445 of the transversahnd, maybe, longitudinatructure

Iim_it3ed by thermal noise pressure. Pressure resolutions Qf¢ incigent beams. Such calculations are a possible continu-
10~2 umHg have been reportédand it is still far from the ation of this work.

i Al fimitl5
theoretical limit. The resolution on the measurement of the velocity of
From Sec. | we know the frequency of the backscatteredin g js estimated to be in the order of 1 m/s. The complete

signal. Thus, a narrow spectral filter can be used to improv%nalysis of an acoustical remote probe based on four-wave
the signal to noise ratio. This makes it possible to extend th%teraction in moving media can be made using the proper

distance to the region of interaction for a few hundredsy,nstormation of the wave vectors and also could become a
meters more for the same size of sources. subject for future investigations.
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