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The nonlinear interaction of noncollinear acoustical waves is considered. Conditions of the resonant
backscattering of one wave from the lattice produced by the other two are formulated in analogy
with the four-wave mixing known in optics. The efficiency of the phase-matched interaction of
acoustical waves is calculated in the resonant approximation for a gas media. Such approximation
is constructed on the basis of the expansion of the sound equations preserving up to cubic terms. The
amplitude of the backscattered wave is expressed as the product of the efficiency, the amplitudes of
three waves, the wave number of the backscattered wave, and the size of the region of interaction.
Such backscattering is proposed as an acoustical remote probe. The distance to the interaction
region and the amplitude of initial waves are limited by nonlinear degradation of waves due to the
second-order nonlinearity. For acoustical waves with wave number 10 m21, sources of size 1 m, and
about 100 m to the interaction region, the amplitude of the backscattered wave can be about 10210

of the atmospheric pressure. At the detection with a signal-to-noise ratio about of 10, the resolution
of such method on the wind velocity may be about 1 m/s. ©1999 Acoustical Society of America.
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INTRODUCTION

Acoustic remote probes are efficient tools in atm
spheric physics. Usually one registers a signal scattered f
turbulent inhomogeneities of the atmosphere.1,2 To get effi-
cient phase-matched scattering, one uses waves of diffe
origin, such as radiowaves and acoustical waves with ap
priate relation of wave numbers.3,4

We propose an alternative technique which uses the
teraction of only acoustical waves; here we present the
duction of formulas which appeared in Ref. 5 without pro
In this reference, the present results were proposed to
used as an acoustic remote probe. We briefly discuss su
proposal as well.

In a homogeneous isotropic medium, we need t
acoustical waves to write a lattice, and one probe wave to
reflected from this lattice. Such processes are widely use
optics, where it is known as four-wave mixing.6,7 It takes
place for all types of nonlinearities, even in a gain medium8

Efficient interaction occurs at the phase-matching conditi
This condition depends neither on the nature of waves no
the type of nonlinearity. Here we deal with acoustical wav
in a gas; the medium is isotropic and nondispersive, wh
simplifies the equations.

We should mention that recently J. Berntsenet al. pub-
lished a series of papers~see Ref. 9 and references therein! in
which they analyzed the interaction of Gaussian acoust
beams in the second-order approximation. However, eff
of four-wave mixing mentioned above appear only in t
third order. To keep equations simple we work here w

a!Electronic mail: kusnecov@aleph.cinstrum.unam.mx
b!Electronic mail: garciaa@aleph.cinstrum.unam.mx
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plane waves. The consideration of these effects with w
defined beams could be a continuation of the present wo

The possible geometry of a phase-matched backsca
ing experiment is shown in Fig. 1. Let sources 1 and 2 e
two strong sound beams which produce a lattice within
region of interaction. Here we are interested in the case
which a third wave~the probe beam! emited by source 3 is
backscattered from this lattice. In this case the reflected w
can be registered by a detector located at source 3.

We assume that the frequency of the third source
given. So, we need to calculate, for the given geometry,
frequencies of sources 1 and 2, and the placement of
window of frequency selection of the detector~Sec. I!. Then,
for the case of resonance, we need to calculate the efficie
of the nonlinear interaction~Sec. II!. Finally, we need to
estimate the maximum amplitude of sound, which could
registered with such a scheme~Sec. III!, and, as an example
estimate the sensitivity of such a method to the wind vel
ity.

I. PHASE-MATCHING CONDITION

Consider three plane waves emitted by sources 1, 2,
3 as shown in Fig. 1. Let the corresponding wave vectors
p, q, k.

To have resonant interaction, we need to satisfy the c
ditions of phase synchronism:

p2q1k5r , vp2vq1vk5v r , ~1!

wherer is the wave vector of some scattered wave, and
v’s are the corresponding frequencies. Such conditions
well known in optics.6,7 They are refered as ‘‘phase
matching conditions,’’ or ‘‘phase synchronism conditions.
1584(3)/1584/8/$15.00 © 1999 Acoustical Society of America
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For acoustical waves in isotropic and nondispersive m
dia, vk5vs/uku, where the velocity of soundvs is the same
for all wave vectors.

Note that the phase synchronism conditions are satis
for the collinear second-harmonic generation. If we seq
50 and p5k5r /2, Eqs. ~1! hold. We see that only one
incident wave is necessary for the phase-matched interac
but no backscattering is possible in this case. In a dispers
less and isotropic medium we need to have at least th
different waves to generate a wave with its wave vector a
collinear to one of the incident waves.

For the purpose of an acoustical remote probe, we
sume that all initial wave vectors have positive vertical co
ponents: all waves are produced by ground level sources
no initally counter-propagating waves can be realized.

Consider the condition that the wave vectorr of the
scattered sound is anti-collinear to one of inital wave vect
k ~backscattering!. Then Eqs.~1! imply that p, q, k, r are in
the same plane. Therefore, the problem becomes t
dimensional. Using the anglesa, b, k defined in Fig. 1, we
can represent these vectors in Cartesian coordinates:

p5$p cos~a!,p sin~a!%,

q5$q cos~b!,q sin~b!%,
~2!

k5$k cos~k!,k sin~k!%,

r5$2r cos~k!,2r sin~k!%.

~The last equality implies thatk andr are anti-collinear.! We
assume that the wave number of the probe beam,k, and the
anglesa, b, k are given. These angles are defined by
location of the sources of sound and the region from wh
we want to get the backscattered signal.

The question is: for givena, b, k andk, what frequen-
cies should sources 1 and 2 emit so that the resonant
tered wave goes back to source 3?

Since the velocity of sound is constant, we haver 5p
2q1k. Substituting Eqs.~2! into the first of Eqs.~1!, we get

p cos~a!2q cos~b!1k cos~k!52~p2q1k!cos~k!,
~3!

p sin~a!2q sin~b!1k sin~k!52~p2q1k!sin~k!.
~4!

From this system, we may readily expressp andq in terms of
the wave numberk and the anglesa, b, k:

p5
2k sin~b2k!

sin~a2b!1sin~a2k!2sin~b2k!
, ~5!

FIG. 1. Geometry of a nonlinear acoustical remote probe based on
backscattering due to four-wave interaction.
1585 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 D. K
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q5
2k sin~a2k!

sin~a2b!1sin~a2k!2sin~b2k!
. ~6!

Note the rotational invariance: the frequenciesv15vsp
andv25vsq which give rise to the effective backscatterin
depend on the differences between the angles only. So
represent wave numbersp,q graphically, we definex5a
2k, c5b2k ~see Fig. 1! and plot

p5p~x,c!5
2k sin~c!

sin~x2c!1sin~x!2sin~c!

5
k sin~c/2!

sin~x/22c/2!cos~x/2!
, ~7!

q5q~x,c!5
2k sin~x!

sin~x2c!1sin~x!2sin~c!

5
k sin~x/2!

sin~x/22c/2!cos~c/2!
. ~8!

Equilines of p(x,c), q(x,c), and r (x,c)5p(x,c)
2q(x,c)1k are plotted in Figs. 2, 3, and 4 respective
The line of small black squares represents infinite value
x5c. Thus, sources 1 and 2 cannot have the same loca
Note the symmetry:r (p2c,p2x)5k2/r (x,c).

Equations~7! and~8! tell us the frequencies that source
1 and 2 should emit in order to have synchronism and p
duce effective backscattering. Functionr (x,c) expresses the

he

FIG. 2. Wave numberp of one of two phase-matched waves which provi
the effective backscattering of the wave with given wave numberk as a
function of anglesx and c betweenk, p and betweenk, q, respectively
@formula ~7!#.

FIG. 3. Wave numberq of the second phase-matched wave as a function
the anglesx andc @formula ~8!#.
1585ouznetsov and A. Garcı́a-Valenzuela: Backscattering of sound
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wave number of the backscattered wave. To estimate its
plitude, we need first to calculate the efficiency of such ba
scattering. This is the subject of the following section.

II. SOUND EQUATIONS

Now we should calculate the efficiency of the reson
four-wave interaction of acoustical waves starting from
fundamental equations of sound propagation. In the nu
bered equations of this section, we use neither the assu
tion of backscattering (k↓↑r ), nor that vectorsp, q, r are
coplanar, but we will return to these assumptions to p
figures.

Sound propagation in a fluid such as the atmospher
described by Euler’s equation and the continu
equation.10,11

r
]v

]t
1r~v–“ !v1“P50,

]r

]t
1v–“r1r“–v50. ~9!

Herer is the density of the fluid,v is the wave velocity,P is
the pressure, andt is time. Operator“ differentiates with
respect to the vectorx of spatial coordinates. We assume th
the process is adiabatic, and

P5P0S r

r0
D g

, ~10!

whereP0 andr0 are the pressure and density in the abse
of waves. To be more concrete, we assume thatg5const.12

For a monoatomic gas,g55/3; for a diatomic gas with a
rigid molecule~the case of the atmosphere!, g57/5. We as-
sume that the vibrational degrees of freedom are not exc
for air at room temperature. For the limit of multiatomic g
with soft molecules,g'1. Note that the generalization to th
case of any smooth functionP(r) is straightforward.

It is convenient to define the normalized variablest
5t/vs, u5v/vs, where

vs5Ag
P0

r0
~11!

is the velocity of sound. Letr5r0(11h), where h is
treated as a new variable. We assume thatuhu!1. Then

1

11h
512h1h21¯ , ~12!

FIG. 4. Wave numberr 5p2q1k of the reflected wave@formulas~7! and
~8!#.
1586 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 D. K
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“~11h!g5g“h1g~g21!h“h1 1
2g~g21!

3~g22!h2
“h1¯ . ~13!

Now we can rewrite~9! in the new variables:

]h

]t
1“–u52h“–u2u–“h, ~14!

]u

]t
1“h52~u–“ !u2~g22!h“h

2
~g22!~g23!

2
h2

“h2¯ . ~15!

Searching for an approximate solution to the abo
equations we use the perturbation series:

h5h~1!1h~2!1h~3!1¯ ,
~16!

u5u~1!1u~2!1u~3!1¯ .

Let the first-order approximation be the superposition of
three plane waves emitted by the three sources:

h~1!5A1B1C1A* 1B* 1C* ,
~17!

u~1!5 p̂A1q̂B1 k̂C1 p̂A* 1q̂B* 1 k̂C* ,

where

A5a exp~ ip•x2 ipt!, B5b exp~ iq•x2 iqt!,
~18!

C5c exp~ ik•x2 ikt!,

and p̂5p/p, q̂5q/q, k̂5k/k. In what follows, we also use
r̂ 5r /r and treata, b, cas constants. It is easy to see thath (1)

andu(1) satisfy the linearized equations

]h~1!

]t
1“–u~1!50,

]u~1!

]t
1“h~1!50. ~19!

Four-wave mixing is due to the third-order terms, b
first we need to construct the second-order approximat
To get the equations forh (2) and u(2), we substitute the
first-order approximations in the right-hand part of Eqs.~14!
and ~15!, and keep only quadratic terms:

]h~2!

]t
1“•u~2!52“–~u~1!h~1!!, ~20!

]u~2!

]t
1“h~2!52~u~1!

–“ !u~1!2~g22!h~1!
“h~1!.

~21!

We take the divergence of~21! and subtract~20! differenti-
ated with respect tot. It gives

¹2h~2!2
]2h~2!

]t2 52“–„~u~1!
–“ !u~1!

1~g22!h~1!
“h~1!

…

1
]

]t
“–~h~1!u~1!!. ~22!

After solving this equation, we can getu(2), upon integrating
~21! with respect tot. Similarly we find the equation to third
order:
1586ouznetsov and A. Garcı́a-Valenzuela: Backscattering of sound
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¹2h~3!2
]2h~3!

]t2 52“–„~u~2!
–“ !u~1!1~u~1!

–“ !u~2!
…

1~g22!¹2S h~2!h~1!1
g23

6
h~1!3D

1“–S ]

]t
~h~2!u~1!1h~1!u~2!! D . ~23!

Equations~22! and~23! are inhomogeneous Helmholtz equ
tions where the right-hand side represent sources. Direct
stitution of ~17! in ~22! results in many terms. Fortunatel
we have no need to consider all these terms, but only th
that yield resonating contributions to the third-order appro
mation.

As we shall see, the amplitude of the acoustical wa
should be much less than the atmospheric pressure. The
linear income per wavelength is small; so, only the reson
terms are important.

The resonant terms arise from the productAB* C, pro-
portional to exp(irx2 ir t), and from its complex conjugate
Thus, on the right-hand side of~22! we may keep only terms
containing the productsAB* , AC, B* C and their complex
conjugate. Such resonant approximation is used comm
in optics to calculate the efficiency of harmoni
generation.6,7

In this resonant approximation we get from~22!

¹2h~2!2
]2h~2!

]t2

5„~ k̂• p̂1g22!uk1pu21~11 p̂• k̂!~p1k!2
…AC

1„~ p̂•q̂1g22!up2qu21~11 p̂•q̂!~p2q!2
…AB*

1„~ k̂•q̂1g22!uk2pu21~11 k̂•q̂!~k2q!2
…B* C

1c.c., ~24!

where ‘‘c.c.’’ denotes the complex conjugate terms.
To calculate the contribution from each source term

~24! to h (2), consider equation

¹2h~2!2
]2h~2!

]t2 5Q exp~ is–x2 iVt!, ~25!

whereQ5const. One can readily check that

h~2!5
Q

V22usu2
exp~ isx2 iVt! ~26!

is a solution of~25!. To solve~24!, we apply~26! as solution
of ~25! with s5k1p, V5k1p; s5p2q, V5p2q; s5k
2p, V5k2p; and their complex congugations. We wri
no additional solution of the homogeneous equation, sinc
would not contribute to the resonant third-order terms.

Calculating the corresponding contributions toh (2) as
indicated above, we get

h~2!5jbAC1jcAB* 1jaB* C1c.c., ~27!

where
1587 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 D. K
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uk1pu2~ p̂• k̂1g22!1~ p̂• k̂11!~p1k!2

~p2k!22up2ku2

5
~k1p!2~2p̂• k̂1g22!

2~pk2p–k!
2 p̂• k̂2g12, ~28!

jc5
up2qu2~ p̂•q̂1g22!1~ p̂•q̂11!~p2q!2

2~q2p!21uq2pu2

5
~p1q!2~2p̂•q̂1g22!

22~pq2p•q!
2 p̂•q̂2g12, ~29!

ja5
uk2qu2~ k̂•q̂1g22!1~ k̂•q̂11!~k2q!2

2~q2k!21uq2ku2

5
~k2q!2~2q̂• k̂1g22!

22~qk2q•k!
2q̂• k̂2g12, ~30!

where we used (p1k)22up1ku252(pk2p•k) in Eq. ~28!,
and similar expressions in Eqs.~29! and ~30!. Substituting
h (2) andh (1) into ~21! yields

]u~2!

]t
52 i ~jc1g221 p̂• k̂!~p1k!AC

2 i ~jb1g221 p̂•q̂!~p2q!AB*

2 i ~ja1g221 k̂•q̂!~k2q!CB* 1c.c. ~31!

The integration with respect tot adds the factorsi /(k1p),
i /(p2q), and i /(k2q) to the terms withAC, AB* , and
CB* , respectively. Using Eqs.~28!–~30!, we get

u~2!5mbAC1mcAB* 1maB* C1c.c., ~32!

where

mb5
~2p̂• k̂1g21!~k1p!~p1k!

2~kp2p•k!
, ~33!

mc5
~2p̂•q̂1g21!~p2q!~p2q!

22~pq2p•q!
, ~34!

ma5
~2k̂•q̂1g21!~k2q!~k2q!

22~kq2k•q!
. ~35!

Using the above results we may calculate the reson
contribution toh (3) from ~23!. Direct substitution ofh (2) and
u(2) on the right-hand side of~23! also results in many terms
We keep only those withAB* C, and rewrite~23! in the
following form:

¹2h~3!2
]2h~3!

]t2 5Fr 2AB* C1c.c.

5Fab* cr2 exp~ i rx2 ir t!1c.c., ~36!

where

F5jb~ q̂• r̂ 1g22!1jc~ k̂• r̂ 1g22!1ja~ p̂• r̂ 1g22!

1mb•~ q̂1 r̂ !1mc•~ k̂1 r̂ !1ma•~ p̂1 r̂ !

1~g22!~g23!. ~37!
1587ouznetsov and A. Garcı́a-Valenzuela: Backscattering of sound
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While we treatea, b, and c as constants, the produc
Fab* cr2 does not depend on coordinates, so,~37! has the
solution

h~3!5~r–x!F
ab* c

2i
exp~ i rx2 ir t!1c.c. ~38!

This solution corresponds to the case in which the nonlin
interaction generates the wave with wave vectorr , and its
amplitude is proportional to the length of interaction. W
assume that this third wave is absent at the origin of coo
nates. The origin of coordinates corresponds to the begin
of the region of interaction, if we approximate it with a
abrupt function. For more accurate calculus, one should
fine the smooth spatial structure ofa, b, andc and construct
the paraxial approximation of Eq.~36! with given F
5const. We write a closed expression for thisF below.

The phase-matching conditions enable us to simplify
scalar products with them’s that appear upon substitution o
Eqs. ~33!–~35! into Eq. ~37!. Sincep1k5q1r and p1k
5q1r , we have for mb•(q1r ) that (p1k)•(q̂1 r̂ )5(q
1r )•(q̂1 r̂ )5q1r 1qq̂• r̂ 1r p̂• r̂ 5(q1r )(11 p̂•r ), with
similar expressions formc•(k1r ) andma•(p1r ). Substitut-
ing thej’s from ~28!–~30! and some algebra, we get

F5
~p1k!2~2p̂• k̂1g21!~2q̂• r̂ 1g21!

2~pk2p–k!

2
~p2q!2~2p̂•q̂1g21!~2k̂• r̂ 1g21!

2~pq2p–q!

2
~k2q!2~2k̂•q̂1g21!~2p̂• r̂ 1g21!

2~kq2k–q!

2~ p̂• k̂!~ q̂• r̂ !2~ k̂•q̂!~ k̂• r̂ !2~ q̂• p̂!~ p̂• r̂ !

2~ p̂• k̂1q̂• r̂ 1 k̂•q̂1 k̂• r̂ 1q̂• p̂1 p̂• r̂ !~g22!

1~g22!~322g!. ~39!

This is our main result: The efficiency of the phase-match
four-wave interaction is expressed in terms of the wave v
tors and the adiabatic constantg.

Note the symmetry of~39!. Under the phase-matchin
conditions,F is invariant with respect to each of followin
transformations:

~A! p̂� k̂, p�k,

~B! p̂�q̂, p�2q,

~C! p̂� r̂ , p�2r ,
~40!

~D! q̂� k̂, q�2k,

~E! q̂� r̂ , q�r ,

~F! k̂� r̂ , k�2r .

To see the invariance ofF with respect to~C!, ~E!, and~F!,
note that the phase-matching condition leads topk2p–k
5qr2q–r , and similar expressions for the other denomin
tors in ~39!.
1588 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 D. K
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Now let us return to our original problem on the bac
scattering of the waveC: Let k and r be anticollinear. Then
the efficiencyF depends only on the anglesx andc, defined
in Sec. I. So, we treat it asF5F(x,c). This function is
represented in Fig. 5 for a monoatomic gas, in Fig. 6
diatomic gas~case of the atmosphere!, and in Fig. 7 for a
multiatomic gas.

Note the symmetry:F(x,c)5F(p2c,p2c). It fol-
lows from the symmetries~40! and the symmetry of the
wave numbers as functions ofx, c, discussed in Sec. I.

The level F50 corresponds to the absence of bac
scattering. To make it noticeable we plot also levelsF
560.1; so, in Figs. 5 and 6 the levelF50 appears as a
triple line. The disappearance of backscattered waves
some values of anglesx, c can be interpreted as the destru
tive interference of waves reflected by the lattices produ
by each pair of incident waves.

The efficiency of the backscattering depends on the c
stantg. Thus, the four-wave mixing gives also an extrav
gant acoustical method to measure the mean number o
oms in the molecules of the gas: location of theF50 line is
very different in Figs. 5–7.

III. NUMERICAL ESTIMATIONS

The fundamental result of the previous section expres
the amplitude of the phase-matched reflected wave in te
of the wave numbers of the incident waves and the ang
between their wave vectors; it increases with the wave nu
ber. So, the efficiency of this effect is limited by the maxim

FIG. 5. EfficiencyF of backscattering as function of the anglesx and c
@formula ~39!# for a monoatomic gas,g55/3.

FIG. 6. EfficiencyF of backscattering as function of the anglesx and c
@formula ~39!# for diatomic gas,g57/5.
1588ouznetsov and A. Garcı́a-Valenzuela: Backscattering of sound
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wave number that can propagate without significant abs
tion. For air at 20 °C and a water fraction of 531023, the
absorption coefficient reaches 331024 m21 at k510 m21

~see, for example, Ref. 12!; so, the natural limit for the wave
numbers where we still can neglect absorption at a few h
dred meters isk'10 m21.

Another important concern is regarding the nonline
degradation of plane waves as they travel to the region
interaction. This process begins with the phase-matc
second-harmonic generation, discussed in Sec. I. To estim
this effect, consider the case of one-dimensional propaga

In analogy with Ref. 10, we rewrite Eqs.~14! and ~15!
as

ḣ1u81~hu!850, ~41!

u̇1h81uu81~g22!hh850, ~42!

where h5h(x,t) and u5u(x,t); the prime indicates the
derivative with respect to the first argument, and the
denotes the derivative with respect to the last one. Note
we define neither prime as the derivative with respect tox,
nor the dot as the derivative with respect tot, because below
we use this notation also for the case when the first argum
is not simplyx.

Here we keep only the quadratic terms with respec
the amplitude of the wave: the second-order contribution
largest. We search the solution of Eqs.~41! and ~42! as the
sum of counter-propagating wavesH andJ:

h5H~x2t,t!1J~x1t,t!, ~43!

u5H~x2t,t!2J~x1t,t!. ~44!

Substituting Eqs.~43! and ~44! into ~41! and ~42!, we get

Ḣ1 J̇12HH812JJ850, ~45!

Ḣ2 J̇1HH81JJ82H8J2HJ8

1~g22!~HH81JJ81H8J1HJ8!50. ~46!

Adding these two equations and neglecting the nonlinear
teraction with the counter-propagating waveJ, we get

2Ḣ1~g11!HH850. ~47!

The solution of this equation can be written as13

FIG. 7. EfficiencyF of backscattering as function of the anglesx and c
@formula ~39!# for extremally multiatomic gas,g51.
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g11

2
H~x,0!t,t D5H~x,0!. ~48!

Note that herex has the sense of the local space coordinate
the wave as it is moving. This solution~and the initial equa-
tions! become invalid ifH8 becomes infinite. The distanc
traveled as this takes place is defined in nonlinear acous
as the discontinuity distance. We denote ittdis. Note that we
may interprett as the distance of propagation.

To estimate value oftdis, we take the derivative of~48!
with respect tox:

H8S x1
g11

2
H~x,0!t,t D S 11

g11

2
H8~x,0!t D5H8~x,0!.

~49!

Hence,

H8S x1
g11

2
H~x,0!t,t D5

H8~x,0!

11@~g11!/2#H8~x,0!t
.

~50!

The denominator becomes zero at@(g11)/2#H8(x,0)t
521. If the initial wave is monochromatic,H(x,0)
5H0 cos(kx), then the shock waves appear att5tdis

52/@(g11)kH0 #. The solution~48! is plotted in Fig. 8 by
the thick line att50.95tdis. To compare, we plot in the
same graph the initial waveH(x,0)5H0 cos(kx) with a thin
line.

At values oft larger thantdis the solution becomes in
valid. This gives the natural limit to the amplitude. For e
ample, if the distance of propagationL'100 m, and the
wave numberk'10 m21, then the amplitude of waves can
not be greater thanHmax52/@(g11)kL#'1023.

If we make the initial amplitude greater thanHmax,
shock waves appear at the distancetdis. They consume the
energy of the wave before it reaches the region of interac
~Fig. 1!. At the given initial amplitude, the length of adia
batic propagation can be doubled, if we takeH(2x,tdis) as
the initial condition.

In what follows we collect the results of previous se
tions to estimate the amplitude of the signal reflected by
four-wave interaction in the atmosphere for the case of F
1. From here on we retain the orders of magnitude only.

Suppose that all wave numbersp, q, k, andr are of the
same order of magnitude. So, we may writek instead ofp, q,
r. Suppose that all distances of propagation are of the s
order of magnitude,L. Then, since 2/(g11)'1, the initial
amplitudes should be about

FIG. 8. Deformation of the initial waveform of the monochromatic acou
tical wave due to higher-harmonics generation: initial waveformH(x,0)
5H0 cos(kx) ~thin line! and deformed waveformH(x,t) at t50.95tdis

@thick line, formula~48!#.
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1

kL
. ~51!

At larger amplitudes, shock waves appear: The tangent o
front of acoustical waves becomes infinite; definitely, we
out of our approximation. Of course, physically, the gradie
of density remains finite, but so high that the diffusion
molecules of the gas causes strong dissipation, and w
lose their power before they reach the region of interacti

Suppose that the transversal size of all sources isD.
During propagation, each beam becomes larger due to
fraction. At distanceL, its size becomes

l'
L

kD
, ~52!

where we assume thatl !L.
Due to the expansion of each beam, the amplitude

each wave becomesD/ l times less, and the amplitude of th
interacting waves is about

H'
D

l
H i'

D2

L2 . ~53!

The amplitude of the backscattered sound is about

H r'FklH3'F
D5

L5 , ~54!

whereF is the angular factor calculated in Sec. II.
If the reflected signal is detected with an antenna of

same sizeD, an additional factorkD should be used to cal
culate the amplitude in the focus; so, the amplitude at
receiver should be about

HD'F
kD6

L5 . ~55!

For example, if F'1, k'10 m21, D'1 m, and L
'100 m, we have that the amplitude of the signal at
detector should be about 1029. This means that the receive
should be able to detect sound of pressures about 1029P0

'1024 N/m2'1023 mm Hg. The resolution of detectors i
limited by thermal noise pressure. Pressure resolution
1023 mmHg have been reported,14 and it is still far from the
theoretical limit.15

From Sec. I we know the frequency of the backscatte
signal. Thus, a narrow spectral filter can be used to impr
the signal to noise ratio. This makes it possible to extend
distance to the region of interaction for a few hundre
meters more for the same size of sources.

In Ref. 5 we presented some additional speculati
about the nonplanar geometry of waves, which causes
partial focusing of the backscattered wave and increases
amplitude of registered signal for an order of magnitude.

Finally, let us estimate the sensitivity of such a probe
the wind velocity. The angular deviationf of an acoustical
beam by a wind of velocityv follows from the analysis in
Chap. 8 of Ref. 11. Roughly,f'v/vs. At the region of
interaction, of sizel, such angular deviation causes a dras
dephasement of the interacting waves whenklf'p. Taking
l from Eq. ~52!, we find the wind velocity that causes suc
1590 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 D. K
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dephasement,v'pvs /(kl)'pvsD/L. The limit dv of reso-
lution will be better by the signal-to-noise ratio factorn:

dv'p
vs

n

D

L
. ~56!

For example, forD'1 m andL'10 m as in the previous
example, and takingvs'340 m/s, andn'10, we havedv
'1 m/s.

Note that wind parallel to the plane of Fig. 1 caus
bending of the reflected beam; however, in this case,
beam still lies within the same plane. Such bending can
corrected~and, therefore, measured! by the adjustment of
wave numbersp and q. As for the bending caused by th
orthogonal component of wind, it cannot be compensate
such a manner, and the detector should be displaced from
location of source 3, giving us the measure of the compon
of the wind orthogonal to the plane Fig. 1.

IV. CONCLUSIONS

The resonant nonlinear interaction of acoustic waves
analyzed. Wave numbers of two waves which result in
efficient backscattering of the third wave~Fig. 1! are calcu-
lated~Figs. 2 and 3! as functions of angles between the wa
vectors. The efficiency of this process is calculated and p
sented graphically for various values of the adiabatic c
stantg ~Figs. 5–7!.

The possible application of the phase-matched fo
wave interaction as a remote acoustic probe is sugges
The nonlinear degradation of acoustical waves limits the v
ues of the wave number, initial amplitude and the distance
propagation in such probe. For wave numbers of about
m21, with sources of size of about 1 m and a distance to th
intersection of 100 m, the relative pressure~relative to the
atmospheric pressure! in the backscattered wave can b
about 10210. The frequency of the backscattered signal
calculated~Fig. 4!, so angular and spectral filters can b
used.

The qualitative calculation of the distribution of ampl
tude in the backscattered beam should imply the consi
ation of the transversal~and, maybe, longitudinal! structure
of incident beams. Such calculations are a possible cont
ation of this work.

The resolution on the measurement of the velocity
wind is estimated to be in the order of 1 m/s. The compl
analysis of an acoustical remote probe based on four-w
interaction in moving media can be made using the pro
transformation of the wave vectors and also could becom
subject for future investigations.
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