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In the simple model of amplifier with gain saturation, the output signal is treated as function of

the input signal. This function is interpreted as transfer function of the system. The idealized case

of uniform (uniformly pumped) amplifier is considered. The specific realistic example of the transfer

function is called “Doya function”. The distribution of signal inside the amplifier along the amplification

is called “superfunction” with respect to the transfer function. For the specific case of Doya function, the

superfunction is called “Tania function”; it is expressed as solution of differential equation Tania′(z) =

Tania(z)/(1+Tania(z)) with boundary condition Tania(0) = 1 . The efficient algorithms for evaluation

of the two functions are suggested. The complex maps and explicit plots of these functions are supplied.

Possible applications of these two functions in the Laser Science are discussed.
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1. Introduction

1.1 Doya and Tania

In this article, two functions are described. They are called Doya and Tania.1) These

functions are specific for laser science, and deserve to have the specific names.

Define function Doya with

Doyaz(a) = F (z) (1)

where function F is solution of equation

F ′(z) =
F (z)

1 + F (z)
(2)

with boundary condition

F (0) = a (3)

If the superscript at the name of function Doya is omitted, it is assumed to be unity;

Doya(z) = Doya1(z) (4)

Equation (2) corresponds to the simple model of the gain medium with saturation;2,3) z

has sense of the normalized coordinate, and F (z) has sense of intensity, measured in units of

saturation intensity.

∗E-mail address: dima@ils.uec.ac.jp
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Define function Tania with

Tania(z) = Doyaz(1) (5)

In such a way, Tania is solution F of equation (2) with boundary condition F (0) = 1. The

solution of equation (2) deserves to have the specific name.

1.2 motivation

This article is motivated by the notes that the mathematical functions, used in the previous

publication,1) are not supplied with the detailed descriptions. Actually, these functions were

described at site TORI (Tools for Outstanding Research and Investigation); but 2013.02.27,

namely during consideration of manuscript of,1) the site http://tori.ils.uec.ac.jp/TORI4) had

been severely vandalized7) (the wikimedia engine had beed damaged), and the recovery hap-

pened to be very difficult, if at all. In order to mitigate the sequences of that attack and

possible future attacks, the description of two functions, typical for the Laser Science, is

presented below. These functions are Tania by (5) and Doya by (4).

1.3 About notations

Name of function Tania is chosen after the first name of the first author of the series

of publications about propagation of monochromatic modulated waves in the gain medium

with simple model of saturation.5,6) After to analyze properties of function Tania, it had been

revealed, that in vicinity of the real axis (and, in particular, for real values of argument),

Tania can be expressed through the known function WrightOmega,10–12) and also through the

function LambertW.13,14) These relation are the following:

Tania(x) = WrightOmega(x+1) (6)

and

Tania(x) = LambertW
(

exp(x)
)

(7)

However, the definition of Tania through the equations (2) and Tania(0) = 1 has certain

advantages. First, the integer value at zero simplifies comparison of Tania with other functions,

that describes evolution of signal in the amplifiers; in particular, with function Shoka, that

describes amplification of short pulses.15,16) Second, the behavior of function WrightOmega,

as it is implemented in Mathematica, in the complex plane has many cutlines. These cut-

lines makes difficult the use of function WrightOmega in other applications, in particular,

in the analysis of the fixed points of logarithm. While, this analysis is presented at TORI

http://tori.ils.uec.ac.jp/TORI/index.php/Filog . As TORI happened to be vulnera-

ble with respect to attacks by vandals, that description also will be presented as a separate

publication.

For functions WrightOmega and LambertW, no efficient C++ algorithms were available;
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the complex(double) implementation of Tania in C++ allows to use relations (6) and (7)

for implementation of functions WrightOmega and LambertW. The C++ implementations of

these functions are important, because the plotting of complicated pictures with Mathemat-

ica is slow, and often, the Mathematica’s plots have poor resolution in compare to the direct

graphics from C++ code, at the same size of the resulting picture. In addition, the C++

implementation allows the figures to be reproduced by colleagues who do not have Mathe-

matica installed, while the C++ compilers are distributed for free. In such a way, the C++

implementation of functions simplifies verification and refutation of scientific concepts and

correspond to the general methodology of Science, based on the TORI axioms, see.4,9) The

draft of the TORI axioms had been described in the first issue of the Far East Journal for

Mechanical Engineering.8)

Name of function Doya is chosen after the last name of Valerie Doya from the Universite

de Nice. Discussions with Valerie Doya had stimulated the analysis of superfunctions, specific

for the nonlinear optical materials. The optical amplifier with saturation is a special case of

such a material; the Doya function appears as the transfer function of the idealized amplifier.

1.4 Goal of this article

The general goal of this article is to pop-up the status of functions Tania and Doya

closer to those of elementary functions. Below, the properties of functions Tania and Doya by

equations (5) and (4) are described. The inverse function ArcTania = Tania−1 is considered. It

happens to be expressed through elementary function. These properties are used to construct

the efficient (id est, fast, stable and precise) algorithm for evaluation of Tania and Doya. The

algorithms for the complex(double) precision are presented at TORI; the improvement of the

precision is straightforward, these functions can be evaluated with so many decimal digits as

necessary. The representation of physical quantities through these functions is exact, in the

same sense, as exact is representation of the coordinate of the idealized harmonic oscillator

through function sin.

Function Doya has sense of the transfer function of the optical amplifier, in the simple

model, that still takes into account the saturation of gain. Then, function Tania can be

interpreted as the superfunction17) . The use of superfunctions is expected to improve the

precision of characterization of the optical materials. For demonstration of the efficiency of

this algorithm, it is important to consider examples, where the exact, precise expression for

the superfunction is already known. Functions Doya and Tania provide one of such examples.

In many cases, behavior of a superfunction in the complex plane is important to establish

its uniqueness. For this reason, it is important to analyze properties of superfunctions in the

complex plane (although, for the intermediate applications in the Laser Science, perhaps, only

the real values of the argument are used). In this article, properties of functions Tania and

Doya are analyzed for complex values of the argument.
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Fig. 1. Complex map of f=ArcTania(x+iy) ; u = <(f) , v = =(f)
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Fig. 2. y=ArcTanya(x)

Let ArcTania be the inverse function of Tania; id est,

ArcTania = Tania−1. Complex map of this function is shown

in Figure 1; the real-real plot is shown in Figure 2. ArcTania

can be expressed in terms of elementary functions:

ArcTania(z) = z + ln(z)− 1 (8)

Expression (8) is valid for z ∈ C\{z ∈ R, z ≤ 0} and rep-

resents the specific case of the general rule, that the inverse

function for the solution F of equation

F ′(z) = H(F (z)) (9)
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can be expressed with the integral (id est, quadrature) of the simple expression of function H.

In order to see that, consider two variables, x and y, related with equation y = F (x). Then,

the differentials dx and dy for these variables are related with

dy = H(y) dx (10)

which is in certain sense simpler than (9); this leads to

dx =
dy

H(y)
(11)

The integration from x0 to x1gives

x1 − x0 =

∫ y1

y0

dy

H(y)
(12)

where y0=F (x0) and y1=F (x1) . In particular, for

H(z) =
z

1 + z
(13)

and x0 = 0, y0 = 1, the integral in (12) can be simplified, and the straightforward algebra

leads to relation x=ArcTania(y) with function ArcTania defined with (8). In wide range of

values of z, the relation Tania
(
ArcTania(z)

)
=z holds.

The complex map of function ArcTania is shown in Figure 1 with lines u=<(ArcTania
(
x+

iy)
)

= const and lines v = =(ArcTania
(
x + iy)

)
= const . ArcTania has the cut

among the negative part of the real axis. Before the attack 2013.02.27, this image and

its C++ generator (id est, the C++ code that draws the curves) were available also at

http://tori.ils.uec.ac.jp/TORI/index.php/File:ArcTaniaMap.png.

The explicit plot y=ArcTania(x) is shown in Figure 2. It shows the vertical asymptotic

at x→0 and almost linear growth at large positive values of abscissa.

Various expansions for function Tania and the resulting algorithm for the evaluation uses

the simple representation (8) for the inverse function. Similar approach can be used for the

phenomenological description of various hompogeneous laser media, where the gain is ex-

pressed as function of intensity.

3. Tania function

In principle, the Tania function can be evaluated, inverting ArcTania numerically. At a

poor initial approach, generally, such evaluation is slow and does not correspond to the goal to

pop up the Tania function to the status of special function. The suitable initial approximation

is important for the precise numerical adjustment of solution f of equation ArcTania(f) = z

for given z. In this section, the approximations of the Tania function with elementary functions

are suggested and supplied with their complex maps.

The complex map of Tania function is shown in Figure 3, in the similar way as ArcTania

is shown in Figure 1. In Figure 3, f = Tania(x+iy) is shown in the x, y plane with lines
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u=<(f)=const and lines v=<(f)=const .

Function Tania has two branch points, at −2±πi . Following theTORI tradition, the cut

lines are oriented along the real axis toward negative values of real part of the argument; in

the figure, to the left.

The real-real plot of Tania function is shown in Figure 4. At negative values of the ar-

gument, Tania function shows almost exponential growth. The graphic passes through point

(0,1). At large values of the argument, Tania function shows almost linear growth.

In order to plot Figures 3 and 4, the C++ implementation of the Tania function with 14

decimal digits is used. Before the attack 2013.02.27, that implementation was available for

free at http://tori.ils.uec.ac.jp/TORI. The implementation uses the expansions below.

3.1 Tania at large values of the argument

The complex maps of Tania and ArcTania above show that asymptotically each of these

functions becomes similar to its argument. Being far from the branch points (and outside the

cut lines), the grid of the lines of constant real and constant imaginary part looks similar to

that of the identity function. This indicates that the leading term of the expansion at infinity

of Tania(z) should be just z. Such an expansion is suggested in this section.

At large values of the argument, Tania can be expanded as follows:

Tania(z) = z + 1−ln(z) +
ln(z)−1

z
+

ln(z)2 − 4 ln(z) + 3

2z2

+
2 ln(z)3 − 15 ln(z)2 + 30 ln(z)− 17

6z3
+O

( ln(z)

z

)4
(14)

At |z| � 1, the truncated series (14) can be used for the evaluation of Tania(z), while the

argument is not between the cut lines in figure 3. Similar expansion can be written also as

follows:

Tania(z) = (z+1)−ln(z+1) +
ln(z+1)

z + 1
+

(
ln(z+1)

z + 1

)2(1

2
− ln(z+1)−1

)
+

(
ln(z+1)

z + 1

)3(1

3
− 3

4
ln(z+1)−1 + ln(z+1)−2

)
+

(
ln(z+1)

z + 1

)4(1

4
− 11

5
ln(z+1)−1 + 3 ln(z+1)−2 − ln(z+1)−3

)
+O
( ln(z+1)

z + 1

)5
(15)

Such an expression shows that the effective small parameter of the expansion is ln(z+1)
z+1 .

The complex map of the truncation of expression in the right hand side of (15) is plotted in

the figure at right in the same notations as in the previous maps.

In figure 5, the shaded region indicates the range, where the precision of the approximation

(15) is less than 3. In particular, the approximation fails between the cut lines of function
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Fig. 5. Map of approximation (15) of Tania function at large values of the argument in the same

notation as in previous maps

Tania, and, in addition, has an additional cut line along the negative part of the real axis

(That the Tania function does not have).

Outside the shaded region, the truncated series with the last term of order of( ln(z+1)

z + 1

)4
(16)

return more than 3 significant decimal digits. The precision of any approximation of Tania

function is evaluated as follows:

Precision(z) = − lg
( |Tania(z)− approximation(z)|
|Tania(z)|+ |approximation(z)|

)
(17)

Outside the shaded range in Figure 5 , the truncated series (15) provides at least 3 significant

decimal digits. Then, the evaluation can be adjusted by the Newton method; the 3-d iteration
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Fig. 6. Complex map of the approximation by (18); in the shaded region the approximation returns

less than 3 correct digits.

provides of order of 14 significant figures.

Approximation (15) covers the most of the complex plane. However, it fails at small values

of the argument. Some additional representations are necessary for the evaluation of Tania at

the branch points and in the strip along negative part of the real axis. These representations

are considered in the following subsections.

3.2 Asymptotic expansion of Tania between the cut lines

The expansions (14) and (15) are not valid between the cut lines. For this range, for

large values of the argument, the special expansion, shown in Figure 6, is suggested in this

subsection.

For −<(z)�1 at |=(z)|<π, the solution f of equation ArcTania(f) = z can be expanded
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as follows:

F (z) ∼ ε− ε2 +
3

2
ε3 − 8

3
ε4 +

125

24
ε5 +O(ε6) (18)

where ε = exp(1+z).

Such expansion can be obtained iterating assignment

F = ε exp(−f) (19)

with the initial approach f = ε+O(ε2).

The example of the truncated series is shown in Figure 6. The same notations for the

complex map are used. In the shaded region, the precision is less than 3. In particular, the

expansion (18) does not approximate Tania(z) at <(z)>−2 . However, the truncated series

can be used for the precise evaluation of Tania(z) at <(z) < −3, =(z) < π.

Together with the expansion 15, the expansion (18) covers the most of the complex plane,

leaving only a finite-size domain that includes the branch points and the origin of the coordi-

nates. The expansion at these points are considered below.

3.3 Tania in vicinity of its branch point

The expansions above do not approximate function Tania at vicinity of its branch points.

The expansion a the upper branch point gives the approximation shown in Figure 7 is sug-

gested below.

Tania(z) has two cut lines at <(z)≤−2, =(z)=±π. For the expansion of Tania(z) at the

upper branch point z = −2 + πi, the convenient small parameter is

t = i

√
2

9
(z + 2− πi) (20)

then, the expansion of Tania can be written as follows:

Tania(z) = −1 + 3t− 3t2 +
3

4
t3 +

3

10
t4 +

9

160
t5 − 3

70
t6 − 1251

22400
t7 − 9

280
t8 + ... (21)

The Mathematica routine Series easy calculates some tens of the first coefficients of the

expansion. The series seems to converge while |z+ 2−πi|< 2π; in vicinity of another branch

point, id est, at z ≈ −2−i, such an approximation is not valid.

The figure at right shows complex map of the truncated series by (21) in the same notations

as in the previous maps. The shaded region indicate the domain where the precision of the

approximation is less than 3; in the white spot the the approximation by the polynomial of

5th order with respect to t gives at least three significant figures.

In vicinity of the origin of coordinates, for example, at −4< z < 6, the truncated series

(with term of order of t9 and higher dropped) provides of order of 2 decimal digits, and the

deviation of line v=0 from the abscissa axis is clearly seen in the figure.

The expansion at the branch point is asymptotic; the more terms are taken into account,

the narrower is the range of approximation. From the point of view of implementation, it
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Fig. 7. Approximation of Tania based on expansion (20), (21)

has sense to take into account not so many terms, and to adjust the solution by the Newton

method; the ArcTania function and its derivative are fast to evaluate.

Similar expansion of Tania at point −2 − πi can be obtained by complex conjugation of

expressions (20) and (21).

3.4 Tania at small values of the argument

The expansions above, in principle, allow to cover all the complex plane with the approxi-

mations of the Tania function. But the expansion at the branch points may be not convenient

while dealing with Tania of a real argument. For this case, the Taylor expansions of Tania at

the real axis are suggested in this section. Complex map of the corresponding approximation

of Tania function is shown in Figure (??).
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Fig. 8. Approximation of Tania function with the Taylor expansion expansion (22)

The Taylor expansion of Tania at zero

Tania(z) = 1 +
z

2
+
z2

16
− z3

192
− z4

3072
+

13z5

61440
− 47z6

1474560
+

73z7

41287680
+ ... (22)

converges at |z| <
√

4 + π2 ≈ 3.724; this series can be obtained with the Mathematica’s

operator InverseSeries, converting the expansion

ArcTania(z)= 2(z−1)− (z−1)2

2
+

(z−1)3

3
− (z−1)4

4
+

(z−1)5

5
+

(z−1)6

6
+O(z−1)7 (23)

However, more terms can be added to the series in (22) and (23). At moderate values of

|z| . 1, the expansion (22) can be used for the efficient (quick and precise) evaluation of

Tania(z); in order to get 14 significant decimal digits, it is sufficient to take 20 terms.

The complex map of the truncated expansion (22) as polynomial of 7th power of z is

shown in Figure 8 for |z|< 7. The range where such an approximation of Tania(z) gives less
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than 3 significant figures is shaded. The same notations as in the previous figures are used.

In the similar way, the expansion of Tania(z) at z = −2 + 1/e ≈ −1.632 can be written

as follows:

Tania(z) =
1

e
+

1/e

1 + 1/e

(
z + 2− 1

e

)
+

1/e

2(1 + 1/e)3

(
z + 2− 1

e

)2

+
(1− 2/e)/e

6(1 + 1/e)5

(
z + 2− 1

e

)3

+ ... (24)

The series converges at
∣∣z + 2− 1

e

∣∣ < √π2 + 1/e2 ≈ 3.1445 .

3.5 Tania implemented

Together, the truncated expansions above cover all the complex plane with at least 3-digit

approximations f0(z). The third iteration with Newton method

fn+1 =
z −ArcTania(fn)

ArcTania′(fn)
(25)

dives the evaluation f3 that approximates Tania(z) with at least 14 significant figures in the

whole complex plane. Only few terms are used in the truncated expansions for the numerical

implementation; this makes the algorithm of evaluation fast and robust. In particular, all

figures in this article can be plotted in real time; without to press a key, to have a tea.

The position of cut lines indicate the part of integration of equation (2). The contour of

integration may go from 0 to =(z) along the imaginary axis, and them from =(z) to z along

the straight line, parallel to the real axis. However, any continuous topological modifications

of the contour of integration may be applied, while the modification does not touch the cut

lines in Figure 4.

The following improvement of the precision of the implementation of Tania is straightfor-

ward. In this sense, function Tania is exact, in the same way as exact is, for example, function

sin. On one hand, for plotting graphics, and in particular, the complex map of function Tania

in Figure 3, the 14 digit precision are not necessary; four digits would be sufficient to get the

camera-redy copy of all the pictures. In the similar way, for comparison with experiments,

the Tania of real argument is expected to be used. On the other hand, after this article, func-

tion Tania should be considered as a robust tool, that can be used without to analyze, how

does it work. It is especially important for comparison with other superfunctions, while the

asymptotic behavior in the complex plane seems to be important criterion do choose namely

physical solution among various superfunctions.

4. Doya

Function Tania may have sense of distribution of intensity along the propagation of a

wide uniform beam (neglecting the diffraction) through the uniformly pumped gain medium

with simple kinetic model. However, for applications in the experimental laser science, another
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Fig. 9. Complex maps of functions f=ArcDoya(x+iy) , left, and f=Doya(x+iy), right;

lines u=<(f)=const and lines u=<(f)=const are shown.

function is also important, namely, the Doya function by (1)-(4). This function has sense of

the transfer function of the idealized amplifier. Properties of this function are described in

this section. Complex maps of functions Doya = Doya1 and ArcDoya = Doya−1 are shown in

Figure 9. The real-real plot of function Doyat is shown in Figure 10 for various real values of

parameter t.

4.1 Implementation through Tania
y

3

2

1

0 1 2 3 x

t=
5

t=
4

t=
3

t=
2

t=
1

t=
0

t=
−1

t=
−2

t=
−3

t=
−4

t=
−5

Fig. 10. y=Doyat(x) versus x for various t

As function Tania is already implemented,

the tth iteration of the Doya function can be

expressed as follows:

Doyat(z) = Tania
(
t+ ArcTania(z)

)
(26)

In this equation, z has sense of the input signal,

and t has sense of the length of the amplifier.

Then, Doyat(z) has sense of the output signal.

Representation (26) is used to plot the complex

maps in Figure 9 and the real-real plot of y=

Doyat(x) in Figure 10.

In the representation (26), parameter t has

sense of number of iteration of function Doya. However, this parameter has no need to be

integer; the length of the amplified can be arbitrary. At the complex implementation of func-

tions Tania and ArcTania, parameter t may have even complex values; the function can be

iterated even complex number of times.
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4.2 Tania as superfunction of function Doya

From representation (26), it follows, that function Tania can be interpreted as superfunc-

tion17) for the transfer function Doya; the transfer equation

Doya
(
Tania(z)

)
= Tania(z+1) (27)

holds for wide range of values of z. This justifies the use of the upper superscript in notation

Doyat. In this case, parameter t can be interpreted as number of iteration of function Doya.

In particular, Doya0 is the identify function, and Doya−1 = ArcDoya is just inverse function

of Doya.

In wide range of values of variables, the group relation takes place:

Doyaa
(
Doyab(z)

)
= Doyaa+b(z) (28)

Such a relation has analogy with notations used in Quantum Mechanics. Powers of linear

operators are combined in the same way, as equation (28); then z should be replaced to the

wave function. Generalization of formalism of superfunctions from the case of single complex

argument z the multidimensional case may be subject of the future research.

4.3 Application of Doya function

While, for the specific application in the Laser Science, the only real values of t have simple

physical meaning. But the history of science indicates, that, as some function is implemented

for integer and then real values of some parameter or argument, soon or late, the complex

values also find their applications. The goal of this article is to provide the Tool. I expect, the

complex values of number of iterations t or those of argument of function Doya will find their

applications, as complex values of the argument of function sin are sometimes used. For this

reason, the functions Tania and Doya are constructed for complex values of the argument. It

is easier (and methodologically correct) to make the universal tool at once, than to redo it,

when the new area of the applications appear.

The Doya function is important example for the general method of construction of super-

functions, because, for the Doya function, the physically-meaningful superfunction is already

known, it is Tania function. In such a way, we can solve the transfer equation (27) with given

transfer function Doya numerically, and compare the solution with the exact solution Tania.1)

However, in order to make such a demonstration clear, the efficient numerical implementation

of functions Tania and Doya should be available, and their properties should be described.

Function Doya may be used for fitting of the experimental data; it is easier to use the

special function (”almost elementary function”) than the mumerical solution of the differential

equation (2). The similar approach is expected to be useful also for other transfer functions

and their superfunctions.
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5. Conclusions

Two functions, Tania and Doya, are defined with (1)-(5). Tania can be interpreted as

superfunction of function Doya, satisfying the transfer equation (27). Function Tania has

sense of distribution of intensity of light in optical amplifier with simple model of saturation.

Function Doya has sense of the transfer function of such an amplifier. The real-real plots

and the complex maps of these functions are supplied. The efficient numerical algorithms in

C++ for the evaluation of these functions are developed through the asymptotic expansions.

The algorithms suggested can be used as prototypes for the implementation as incorporated

functions in the programming languages.

Functions Doya and Tania are important example to show the robustness of the general

algorithm of building of superfuncitons, in particular, for reconstruction of distribution of

signal along the amplifier from its transfer function. While Doya is the transfer function, then,

the physically-meaningful superfunction should be Tania. In recent paper,1) it is shown, that

for the two specific examples, the general algorithm does well. The description of properties

of functions Tania and Doya, presented in this paper, is important for the easy reproduction

of these examples and testing of general algorithm of reconstruction of superfunction. Such a

reconstruction is expected to improve the precision of characterization of the laser materials

from the measurement of the transfer function of a bulk sample.

The efficient implementation of functions Tania and Doya should make them useful for

fitting of experimental data with physically-meaningful special functions.
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