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1. Introduction

The terational and the superexponential refer to a holomorphic solution F' of the equation
F(z+1) = expy (F(2)). (1)

Such equation is considered since years 1950 [1-10]; in particular, for the natural base b = e.
Name «superexponential» indicates, that function F'is superfunction [911] of the exponential.

In general, for some function H, which can be called also the transfer function |9,111]12],
a superfunction F' is a holomorphic solution of the equation

F(z+1) = H(F(2)). 2)

Equation is a special case of equation for H = exp,. Then, multiplication is a
superfunction of summation (addition of a constant), exponentiation is a superfunction of
multiplication, and solution F' of equation is a superfunction of the exponential, id est a
super-exponential.

The special case of a super-exponential, holomorphic at least in the right hand side of the
complex plane, is called «tetrational», F' = tety, if it satisfies the additional condition

F(0)=1. (3)

Four examples of tet, are shown in figure 1 for b = v/2, b = exp(1/e), b =2 and b = e.
The tetrational tety(z) can be interpreted as result of exponentiation applied to unity z
times, at least for integer values of z:

tety(z2) = epr<epr(..epr(l)..)> ()

z exponentiations.
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Fig. 1. Tetrational tety(z) at base b = e (thick solid), b = 2 (dashed), b = exp(1/e) (thin solid) and
b= /2 (dotted) as holomorphic solutions of egs. (1)), (2), versus real z.

The name «tetrational» indicates, that this function is fourth in the sequence of functions
(increment, addition, multiplication, exponential, tetrational, pentational, ...), where each
element (except the zeroth element) is a superfunction for the previous element, and also
the transfer function for the next element. The physical applications of the superfunctions,
that justify the term «transfer function» are suggested in [8,/11,|12]; the superfunction and
its inverse allow to evaluate the non-integer iteration of a function, in particular, such exotic
functions as ,/exp by [1] and v/! by [11].

For complex values of the argument, the solution of equation should be evaluated.
The way of evaluation depends on b. At 1 < b < exp(1l/e), the regular iterations can be
applied, recovering the function through its Schroder function [2, 3, 5-7, 9]; for larger values,
the evaluation through the Cauchi integral [8,/10] is efficient. These representations were used
to plot figure 1.

At base b > exp(1/e), the tetrational can be expressed through the contour integral |3],
assuming, that it is holomorphic on the domain

C=C\{zeR:z< -2} (5)

Such representation allows to express the derivative tet’ and evaluate the inverse function,
id est, arctetrational ate = tet~!. Also, the name «superlogarithms, slog, is used for tet™!,
although arctetrational is not a superfunction of the logarithm.

The arctetrational ate satisfies the equation

ate(exp(z)) = ate(z) + 1. (6)
The uniqueness of the function ate, biholomorphic on the domain
G={z€C: Re(z) 2Re(L); |2| <|L|} (7)

was shown [8,/10]. Here L ~ 0.318 + 1.3371 is a fixed point of logarithm, id est a solution of
equation L = log(L). In the programming language Maple, this constant can be expressed
as conjugate(-LambertW (-1)); while in notations of Mathematica it can be written as
Conjugate[-ProductLog]-1]].
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The goal of this paper is to upgrade functions tet and ate to the status of special functions.
For such upgrade, the precise and fast approximations should be supplied, allowing the efficient
evaluation. Here, I consider the only one specific value b = e; log = In = log, and H = exp =
exp,. However, tetrational for other values of base b > e!/e can be treated in a similar way.
Below, I suggest the approximation for the function tet = tet. shown in figure 1 with thick
solid line; but this approximation is not limited to real values of the argument.
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Fig. 2. Functions f = tet(z) and f = ate(z) in the complex z-plane. Lines show levels p = Re(f) = const
and ¢ = Im(f) = const.
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2. Properties of tet and ate

Any efficient approximation of any function should take into account its asymptotic
properties. This section summarizes the basic knowledge about functions f = tet(z) and
f = ate(z), that follow from the representation through the Cauchi integral 8]. Behavior of
functions f = tet(z) and f = ate(z) in the complex plane is shown in figure 2 with lines
p = Re(f) = const and lines ¢ = Im(f) = const. Levels of integer values p and ¢ are shown
with thick dark lines. Thick light lines indicate the levels p=Re(L) and |¢|=Im(L). The thin
lines indicate the intermediate levels. The shaded sickle indicates the set G by . The upper
tip of the sickle is L; the lower tip is L*. The shaded strip shows the domain ate(G).

Function tet has the branch point —2. Position of the cut line, from —2 to —oo on the real
axis, is determined by the condition tet(z*) = tet(z)*.

Function ate has two branch points, L and L*, and for the implementation we need to
choose the cut lines. In the previous article [8], the cut lines run along the level Re(tet(z)) = —2
(see figure 8 in ); these cuts wind around the branch points, and the calculation of the cut
line slows down the algorithm of the evaluation of function ate. Therefore, in this paper, the
cutlines are placed horizontally.

Function tet asymptotically approaches its limiting values L in the upper halfplane and L*
in the lower halfplane. This approaching is seen in the figure 2 in the region, where the lines
p = Re(L) look parallel to the lines ¢ = Im(L). The approach to value L is exponential [8].
The approximation of tet(z) at large values of Im(z) should use this property. In the left hand
side of the complex plane and also in vicinity of the real axis function f = tet satisfies not
only equation , but also the «inverse» equation, id est

log (f(z+1)) = f(z) VzeC: [Im(f(z))] <. (8)

Equations and simplify the fitting of the function. For the implementation of
tetrational, it is sufficient to approximate it in some domain in the complex z-plane, that
extends from —ioo to ico in such a way that its overlap with set Im(z) = const is not
shorter than unity. This domain may partially overlap with the image tet(G) of domain G.
In particular, such a domain can be ate(G), used in [10], or a strip [Re(z)| < 1/2, used in [8];
this region can be also an «alternative strip» —1 < Re(z) < 0, suggested for the independent
verification of that result. In a similar way, for the implementation of function ate, it is
sufficient to approximate it in some domain that extends from L* to L is such a way that the
exponential of the left margin belongs to the domain. The sickle G gives an example of such
a domain.

The approximations below are calculated using the discrete representation of the Cauchy
contour integral [8] and extended to the whole complex plane using the properties of functions
tet and ate.

3. Implementation of tetrational: fima

In order to distinguish functions tet and ate from their approximations, I give a specific
name to each of them. The approximation of tet at large values of the imaginary part of its
argument can be build up using the asymptotic representation

tet(z) = L + Z Apmnexp (Lnz + amz). (9)

The substitution into equation and treating exp(Lz) as small parameter gives a = 27i,
and equations for the coefficients A.
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Taking into account only few of terms in expansion @D gives the asymptotic approximation,
I call it fima (Fast approximation at large IMaginary part of the Argument):

N
fima(z) = Z ane" + fe exp(2miz), (10)

n=0

where (3 is constant; the small parameter is

e = exp(Lz+R), (11)
and the coefficients
ap = L =~ 0.3181315052047641353 + 1.3372357014306894089 1, (12)
ay = 1, (13)

1/2 .
as = T 1 ~ —0.1513148971556517359 — 0.2967488367322413067 1, (14)
1/6 2+ L

asg = az+1/ = + ~ —0.03697630940906762 + 0.09873054431149697 i,

2—-1 6(L —1)(L? —1)
(15)
6 +6L+5L%+ L3

_ ~ 0.0258115979731401398 — 0.017386962126530755 i
“ T ML 1L+ )IP+L+1) b

(16)

24 + 36L + 46L2% + 40L3 + 2414 + 9% + LS
= ~ —0.0079444196 + 0.00057925018 i.
% = 0L - DAL+ 12(1+ L+ 202+ P + L) * !

(17)

Parameter R is introduced in order to set a; = 1 and keep simple expressions of other
coefficients a through the fixed point L of the logarithm. Parameter R can be defined as a
complex number such that, at fixed values of Re(z) and large values Im(z) > 1,

tet(z) = L+ exp(Lz + R) + O(exp(2Lz)). (18)

The increase of number of terms in the polynomial and addition of polynomials with
factors exp(27iz), exp(4riz), etc. improves the approximation, but for the prototype of the
complex(double) numerical implementation, constructed below, it is sufficient to take 6 terms
in the sum , setting N = 5, and only the single term proportional to exp(2wiz).

I approximate parameters R and [, fitting the numerical solution by [8]:

R =~ 1.0779614375280 — 0.94654096394782 i, (19)
16 0.12233176 — 0.02366108 1i. (20)

Q

These values are expected to approximate the fundamental mathematical constants.
Approximation fima by is plotted in the top picture of the fig. 3 in the same notations
as in fig. 2. The bottom picture shows the agreement function

Dy =—1g ‘ exp(fima(z—1)) — fima(z)

. (21)
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Fig. 3. Approximation f = fima(z) by and agreement Do by in the complex z-plane.

This function characterizes the residual at the substitution F' — fima into equation .
The level D = 1 is shown with very thick light line at the bottom; the levels D = 2,4,6,8
are shown with thin lines; The levels D = 10,12,14 are shown with thick lines. Roughly,
the agreement function indicates, how many correct decimal digits may one get with this
approximation. In particular, above the drawn lines, this approximation returns at least 14
significant figures, but for values below the lowest thickest line, even the first digit of this
approximation is doubtful.

With the conjugated approximation fima(z*)*, the fit by covers a big part of the
complex z-plane, but it is not good for small values of the imaginary part of the argument.

4. Approximation of tet: expansion at zero

The Taylor series has radius of convergence, equal to the distance from the expansion point
to the nearest singularity. In the case of tetrational, the truncated sum of the MacLaurin series
gives the approximation

N—1
naiv(z) = Z cn2",  tet(z) = naiv(z) + O(zY) (22)
n=0

usable at |z| < 2. The approximation with N = 25 is shown in the fig. 4; it is generated using
the C++ source from CZ [13]. Approximations for the coefficients ¢, are shown in the first
column of Table 1.
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Fig. 4. Approximation f = naiv(z) of tet with the truncated Taylor expansion at zero, the left picture;
the agreements D1 and D» by and (24)), the central and the right ones.

Table 1
Coefficients of the series , and

n Cn Sp, Re(tn) Im(t,,)

0 1.00000000000000 | 0.30685281944005 0.37090658903229 1.33682167078891
1 1.09176735125832 | 0.59176735125832 0.01830048268799 0.06961107694975
2 0.27148321290170 | 0.39648321290170 | —0.04222107960160 0.02429633404907
3 0.21245324817626 | 0.17078658150959 | —0.01585164381085 | —0.01478953595879
4 0.06954037613999 | 0.08516537613999 0.00264738081895 | —0.00657558130520
5 0.04429195209047 | 0.03804195209047 0.00182759574799 | —0.00025319516391
6 0.01473674209639 | 0.01734090876306 0.00036562994770 0.00028246515810
7 0.00866878181723 | 0.00755271038865 0.00002689538943 0.00014180498091
8 0.00279647939839 | 0.00328476064839 | —0.00003139436775 0.00003583704949
9 0.00161063129058 | 0.00139361740170 | —0.00001376358453 | —0.00000183512708
10 0.00048992723148 | 0.00058758348148 | —0.00000180290980 | —0.00000314787679
11 0.00028818107115 | 0.00024379186661 0.00000026398870 | —0.00000092613311
12 0.00008009461254 | 0.00010043966462 0.00000024961828 | —0.00000013664223
14 0.00001218379034 | 0.00001654344436 0.00000000637479 0.00000002270476
15 0.00000866553367 | 0.00000663102846 | —0.00000000341142 0.00000000512289
16 0.00000168778232 | 0.00000264145664 | —0.00000000162203 0.00000000031619
17 0.00000149325325 | 0.00000104446533 | —0.00000000038743 | —0.00000000027282
18 0.00000019876076 | 0.00000041068839 | —0.00000000001201 | —0.00000000013440
19 0.00000026086736 | 0.00000016048059 0.00000000002570 | —0.00000000002543
20 0.00000001470995 | 0.00000006239367 0.00000000000935 0.00000000000045
21 0.00000004683450 | 0.00000002412797 0.00000000000170 0.00000000000186
22 | —0.00000000154924 | 0.00000000928797 | —0.00000000000005 0.00000000000071
23 0.00000000874151 | 0.00000000355850 | —0.00000000000016 0.00000000000012
24 | —0.00000000112579 | 0.00000000135774 | —0.00000000000005 | —0.00000000000001
25 0.00000000170796 | 0.00000000051587 | —0.00000000000001 | —0.00000000000001

The Oth column of table 1 indicates the number n of the coefficient; the first column
indicates the value of the coefficient ¢, in equation .
The precision of the approximation can be characterized with the agreement functions

D1

—lg | exp(naiv(z — 1)) — naiv(z)

)

Dy = —1g | log(naiv(z + 1)) — naiv(z)|.
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These functions are plotted in the central and the right hand side pictures in fig. 4. The digits
«15» indicate the region, where the agreement is larger than 14. The figure indicates that at
|z| < 1, the truncated Taylor series gives of order of 15 significant figures.

In order to extend the range of approximation, it worth to «switch out» the nearest
logarithmic singularity at —2, expanding the function tet(z) — log(z + 2) instead of tet(z); let

N—1
maclo(z) = log(z+2)+ Z A (25)
n=0
tet(z) = maclo(z) 4+ O(z). (26)

The name maclo (MAClaurin expansion with LOgarithm) indicates, that the tetrational
with substracted logarithm is approximated with the truncated MAClaurin series. The first
coefficients s of this expansion are evaluated in the second column in the table 1.

Function maclo is shown in the fig. 5 for N = 101. The generator [14] is used to plot the

figure.
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Fig. 5. Function f = maclo(z) by at N = 101 in the complex z-plane, left; agreements D3 and Dy
by and , center and right.

The range of approximation of tet with function maclo is significantly wider, than that
by the Taylor expansion of tet at zero. The right hand side of the same fig. 5, shows also the
agreements

Ds = —lg‘exp(maclo(z—kl)) - maclo(z)‘ , (27)
D, = —lg’ log (maclo(z—1)) — maclo(z)) . (28)

Within the central loops, the residuals at the substitution F© — maclo, f — maclo into
equations , are of order of 10715,

5. Approximation of tet : Taylor expansion at 3:.

The plots of the agreement functions D in fig. 3 and 5 indicate, that in the intermediate
range z &~ 3i, each of approximations fima(z) and maclo(z) return only few correct significant
figures, if at al. For this reason I suggest the straightforward Taylor expansion at the inter-
mediate point z = 3i. I call it «tai» (TAylor expansion centered at at the Imaginary axis):

N-1
tai(z) = Yty (2 — 3i)". (29)
n=0
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Fig. 7. Comparison of approximations tai by to fima by , left, and to maclo by , right:
agreements D = Dg and D = Dy by , in the complex z-plane.

The coefficients of this series are evaluated in the last columns in the Table 1. For N = 51,
function tai is shown in fig. 6.

The figure is plotted with generator |15]. The precision of the approximation of the solution
of equations , is characterized with agreement

D5 = —1g|log(tai(z+1)) — tai(z)]. (30)

This function is plotted in the right hand side of fig. 6.

The mutual agreement of the approximations above can be characterized with functions

Dg = — g |fima(z) — tai(z)], (31)
D7 = —lg |maclo(z) — tai(z)]. (32)

These functions are shown in fig. 7. Within the inner loops in the pictures of the fig. 7, the
modulus of the difference between the approximations does not exceed 10~*. On the base of
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fig. 7, I suggest the following approximation:

fima(z), 4.5 < Im(z),
) <

tai(z), 1.5 < Im(z
fse(z) = { maclo(z), —1.5<Im(z)< 1 (33)
tai(z*)* —4.5 <Im(z) < —1. 5

fima(2*)*, Im(z) < —4.5.

\

This approximation can be compared to previous results. Below, I analyze the deviation
fse(z) — Fy(z), where Fy(z) is approximation, obtained by the straightforward implementation
of the contour integral [8]. The left hand picture of fig. 8 shows the agreement

Dg = —1g |fse(z) — Fy(z)] (34)

of approximation fse with the approximation Fjy obtained through the direct implementation
of the contour integral [3].
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Fig. 8. Agreement D = Ds by (34), left; the similar agreement for the contour integral with base domain
shifted for —0.5 .

s}

Fig. 8 reveals the defects of each approximation. The jumps at Im(z) = 1.5 and at Im(z) =
2.5 should be attributed to the transition from function maclo to function tai and from
function tai to function fima in the combination fse. Jumps at half-integer values of Re(z)
should be attributed to the discontinuities of function Fjy, which extends the approximation
with the contour integral, valid for |[Re(z)| < 1, from the interval |Re(z)| < 1/2. The rounding
errors appear as irregular dots. Within the strip |Re(z)| < 1.4, the irregularities of all three
approximations are of order of 10714,

In the right hand side of fig. 8 the similar agreement is shown for function Fj, which is
analogy of function Fy, but the base strip is displaced for —1/2. Approximation F5 has jumps
at integer values of the real part of the argument These jumps are also small; the agreement
is at least not worse than that for function Fj.

In such a way, the deviation of all the approximations we count for today is of order of
10~ On the base of fig. 7, 8, I suggest the final approximation FSE (Fast Super Exponential)
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of tetrational tet:

(FIMA(z), 4.5 < Im(z),
TAI(z), 1.5 <Im(z) <45,
FSE(z) = { MACLO(z), —15<Im(z) <15, (35)
TAI(z*)*, —4.5 <Im(z) < —1.5,
FIMA(z*)*, Im(z) < —-4.5,
where
fi I 4 2
FIMA(2) = ma(z), m(z) >4+ 0.2379 Re(z), (36)
exp(FIMA(z — 1)), Im(z) <44 0.2379Re(z) ,
tai(z), |Re(z)| < 0.5,
TAI(z) = ¢ log(TAI(z 4+ 1)), Re(z) < —0.5, (37)
exp(TAI(z — 1)), Re(z) > 0.5,
tai(z), |Re(2)] < 0.5,
<05, (38)

MACLO(z) = < log(MACLO(z 4+ 1)), Re(z
Re

exp(MACLO(z — 1)), (2) >0.5.

)
)
This approximation provides of order of 14 correct significant figures of the holomorphic
tetrational tet and agrees with the previous results [§].

Up to my knowledge, the function FSE is the most precise and the fastest among ever
reported approximations of the tetrational. Many terms are kept in the approximations
and in order to provide the wide range of the overlapping in fig. 7 and 8. At the final step
of the implementation, the number of terms can be reduced, boosting the algorithm without
loss of the precision. Especially this applies to the evaluation of tetrational along the real axis:
it is sufficient to get a good approximation of tet(z) for |z| < 1/2, which is only a quarter
of the radius of the precise approximation with function maclo. By requests of colleagues the
algorithm is translated from language C++ into language Mathematica [16]. As verification
of this algorithm, the first, second, third and fourth derivatives of tetrational tet are plotted
in fig. 9 as functions of real argument; however, the algorithm evaluates also the tetrational
and its derivatives of complex argument.

The good overlapping of the ranges of approximation of tetrational tet by various
algorithms confirm their validity. Perhaps, some increase of the relative error may take place
at the sequential application of exp required at large values of the real part of the argument.
At moderate values of the real part of the argument, all the 3 approximations FSL by ,
and Fy by [8] and its modigication Fj (see fig. 8) seem to have comparable errors at the level
of 10714,
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Fig. 9. First four derivatives of f = tet(z) as functions of real x.

6. Implementation of arctetrational: function FSL
The inverse function of tetrational, id est, arctetrational ate = tet™!, satisfies the equations

ate(z) = ate(exp(z)) — 1, (39)

ate(z) = ate(log(z))+1 (40)

at least for z € G; and ate(1) = 0. In principle, function ate can be implemented as numerical
solution of equation tet(ate(z)) = z; however, such implementation is much slower than the
approximation with the appropriate elementary functions.

The first (and naive) attempt to approximate function ate is, of course, the Taylor expan-
sion at unity. The coefficients of such an expansion can be found, inverting the powerseries
naiv by . The radius of convergence of the resulting expansion is |L| ~ 1.5; and the
approximation is especially poor in vicinity of the fixed points L and L* of logarithm.

The better approach is to expand the function

log(z2—L) log(z—L")

ate(z) — 17 I (41)
at z = 1. Such an expansion leads to the approximation
N-1
log(z—L) log(z—L*) "
fsl(z) = 7 + I + Z un(2—1)"; (42)
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ate(z) = fsl(z) + O((z—1)") (43)

The approximations of first coefficients of such an expansion are shown in table 2. The ap-
proximation fsl at N = 70 is shown in fig. 10.

Table 2

Coefficients u,, in expansion (42)

n Un n Up, n Up,
0 1.41922521550451 | 10 0.00000003111805 | 20 0.00000000002293
1 | —0.02606629029752 | 11 0.00000002940887 | 21 | —0.00000000002462
2 0.00173304781808 | 12 | —0.00000001896929 | 22 0.00000000000666
3 | —0.00001952130725 | 13 0.00000000351784 | 23 0.00000000000322
4 | —0.00006307006450 | 14 0.00000000204270 | 24 | —0.00000000000354
5 0.00002567895998 | 15 | —0.00000000171995 | 25 0.00000000000096
6 | —0.00000559010027 | 16 0.00000000039882 | 26 0.00000000000051
7 | —0.00000007279712 | 17 0.00000000019328 | 27 | —0.00000000000055
8 0.00000065148872 | 18 | —0.00000000019113 | 28 0.00000000000014
9 | —0.00000027698138 | 19 0.00000000004947 | 29 0.00000000000009
Im
I 1
1
0 {
~1[——]
-2 ! -2
-1 0 1 2 Re(?) -1 0 1 2 Re(?)

Fig. 10. Approximation fsl(z) by , left, and the agreements by and ; the domain G by is
shaded.

Formally, the Taylor series of function developed at z = 1 has the same radius
of convergence as the direct Taylor expansion of function ate. However, practically, at the
numerical implementation, the convergence for representation is much faster, than that
for the straightforward Taylor expansion. Function fsl approximates function ate even at the
edge of the range of convergence, and, in particular, in vicinity of the tips of the sickle G
by , id est, in vicinity of points L and L*. Function fsl has the same branchpoints L and
L*, as function ate, and also is infinite in these points.

In order to characterize the residuals at the substitution ate — fsl into equations ,

, the agreements

Da = —lg‘fsl(exp(z)) 1 fsl(2)

7 (44)

Dy = _1g(f51(1og(z>) F1- fsl(z)) (45)

are plotted in the central and right hand side pictures of fig. 10. As before the symbol «15»
indicates the region, where the agreement is better than 14. (Within the inner loops, the
residuals are smaller that 10714.)
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The range of approximation can be extended with function
fsl(z), Im(z)| < Im(L) &

2=1] < |log(x) = 1] & [2=1| < | exp(z) — 1],
FSL(exp(z)) — 1, Im(z)| < Im(L) & |z—1| > |exp(z) — 1],
FSL(log(z)) + 1, Im(z)| > Im(L) or |z—1| > |log(z) — 1].

FSE(z) = (46)

Through the extension , function fsl allows to cover the whole complex plane with
the single approximation with the elementary function by . In order to check the mutual
consistency or approximations FSE and FSL, consider the agreements

De = —lg}FSL(FSE(z))—z, (47)

Dy = -Ig|FSE(FSL(2)) - 2| (48)

These agreements are shown in fig. 11.

Im(z) Im(}z:)r I
\p< g
) \ [s<p<10) . R o
R
\ /\/\/\/\\ ' \v 2
5 Y 10< D <12 0 S, 5
\ " 1o 1o 1o 12< D 14 @3
Dx1 D>14 \ e D>14
0 / 15

10 D12
~—"1

/ | < N YN
-4 =2 0 2 Re(z) -4 =2 0 2 Re(z)
Fig. 11. Agreements of approximations FSE and FSL by , left and , right.

The figure confirms the good precision of the approximations. The error of these
approximations is comparable to the rounding errors at the complex(double) variables. The
algorithms suggested are robust.

Conclusion

The numerical algorithm FSE by equation approximates the holomorphic tetrational
(super-exponential) on base e. The algorithm FSL by approximates the inverse function.
Up to date, these are the fastest and most precise algorithms. These algorithms can be
prototypes for the numerical implementations of tetrational and arctetrational in compilers
of next generation.
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TETPAIINA KAK CIIEIIUAJIBHAA OYHKIN A

Kyszueros /1. FO.

Tonomopdmuaa Terparmsi (CymepIKCTIOHEHTA) MO OCHOBAHUIO ¢ W ee oOparHaa GyHkmms (apkTreTparms)
AIIPOKCUMUPOBAHBI 3JIEMEHTAPHBIMU (DYHKITHSAMH.

Key words: terpanus, cymepdyukiws, dbyukips Abessi, romoMopdHas dbyHKIMs, aHauTHIHAS (HYHK-
s, CyIePIKCIOHEHTa, cyrneporapudM, akKyparHas anmpokcuManus byHKIWH, crernuaabHabie GyHKIm,
urepuposanue GyHKUUN, Hele/ble HTePALyn.


http://www.ils.uec.ac.jp/~dima/PAPERS/2009uniabel.pdf
http://www.springerlink.com/content/u712vtp4122544x4
http://en.citizendium.org/wiki/TetrationPolynomial25power.jpg/code
http://en.citizendium.org/wiki/TetrationApproLP100.jpg/code
http://en.citizendium.org/wiki/TetrationTailorExpansion3ipower25.jpg/code
http://en.citizendium.org/wiki/TetrationDerivativesReal.jpg/code
http://en.citizendium.org/wiki/SLOGappro50.jpg/code

