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Introduction

This work was motivated by one exercise from the past-century course of Quantum

Mechanics of the Moscow State University. It was suggested to give sense to the operator√
! [1]. That time, a satisfactory solution was not found; the opinion was, that such an

operation has no meaning [2].

In Quantum Mechanics, the repeated (iterated) application of an operation (usually, some

�observable�) to some argument (which may have sense of vector of state) is interpreted as

�power� of the operation; in particular, in such a way the square of coordinate or the square

of momentum are treated. For this analogy, the notation without parenthesis is used. In

these notations, sinα means sin(α), ln sinx means ln(sin(z)) and so on; such notations are

used also in textbooks on elementary algebra. To avoid confusions at the iterations, we use

also the pre�x notation Factorial z = Factorial(z) instead of z!.

We assume, that factorial is known meromorphic function, just Gamma function [3]

with displaced argument. In this way factorial is interpreted in programming languages

Mathematica and Maple. The factorial of the real argument is shown in �gure 0.

In this work, the square root of the Factorial is interpreted as a holomorphic function h

such that its second iteration is Factorial, i.e. h h z = z!. For real values of argument the

graphic of function
√

! is shown in �gure 1. Below we describe, how to evaluate it not only

for real, but also for complex values of the argument, using superfunctions [4�6].

1. Superfunctions

The evaluation of fractional power of a function, id est, the fractional iteration, (for example,
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√
exp, see [7�9], or

√
!), can be based on the concept of superfunction [4�6]. For a given

function H, which is referred to as the �Transfer Function� below, a superfunction F is a

holomorphic solution of the Abel equation

F (z+1) = H(F (z)) . (1)

Such an equation is pretty old [10�12], although in 1827, N.H.Abel wrote it in a di�erent

form, for the inverse function of F . The Abel equation comes from the phenomenological

consideration of the transformation of a signal F in a single-dimensional homogenous

nonlinear system, characterized with the Transfer Function H. Equation (1) may have also

other applications, discussed below in the special section. In some sense, the equation

(1) is equivalent of the Schr�oder's equation [13�17]; at the exponential transformation

of the argument, the inverse Schr�oder's function becomes a superfunction, but not every

supefunction can be simply expressed through some inverse Schr�oeder function. For this

reason, here we deal with superfunctions and not with the Schr�oder functions.

A superfunction F determines the fractional iteration Hc of the Transfer Function H:

Hc(z) = F
(
c+ F−1(z)

)
. (2)

The resulting function Hc can be considered as fractional power, of function H, because it

satis�es the expected relations

H1 = H , Hc+d(z) = HcHdz = Hc(Hd(z)) ,

id est, for two numbers c and d, the identity HcHd = Hc+d holds, as if H would be not a

function but a number. In particular with c=1/2, the half-iteration h(z) =
√
H(z) = Hc(z)

is considered to be the square root of function H, because hhz = h(h(z)) = Hz = H(z) . In

this sense h2 =H and h=
√
H.

Some superfunctions (see Table 1) are well known; they are used without to identify

them as superfunctions. Several elementary superfunctions (in particular, trigonometric)

were listed also at websites [5, 6, 18].

Superfunctions of the exponential (see row 4 of the Table 1) yet are not so widely known,

although Helmuth Kneser had reported the half-iteration of the exponential, id est,
√

exp, in

year 1950 [7]. Here, tetrational tet is the superfunction of exp, caracterized in that tet(0)=1

and holomorphic on the range C\{x ∈ R : x ≤ 0} ; id est, holomorphic solution of equation

tetb(z+1) = expb(tetb(z)). (3)

At integer values of z, tetration tetb(z) is result iterational applicaiton of exponential to

unity:

tetb z = expb

(
expb

(
.. expb︸ ︷︷ ︸(1)..

))
z repetitions of exponential

(4)
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TABLE 1. Examples of superfunctions

# H(z) F (z) F−1(z) comment

1 z+1 b+ z z − b b ∈ C
2 b+ z bz + c (z − c)/b b 6= 0

3 bz + c bz + c
1−b logb

(
z − c

1−b

)
4 bz tetb(z) tet−1

b (z) (3),(4), [4, 9, 19�22]

5 zb exp(bz) logb
(

ln(z)
)

b > 0

6 ln(b+ ez) ln(bz) ez/b b 6= 0

7 (ab+zb)1/b az1/b (z/a)b a>0, b 6=0

8 2z2 − 1 cos(π2z) log2(arccos(z)/π)

9 2z2 − 1 cosh(π2z) log2(arccosh(z)/π) compare #8

10 2z/(1−z2) tan(π2z) log2(arctan(z)/π)

11 2z/(1+z2) tanh(π2z) log2

(
2

π
ln

(
z+1

z−1

))
12 Factorial(z) SuperFactorial(z) ArcSuperFactorial(z) (6),(8)

P (H(Q(z))) P (F (z)) F−1(Qz) P (Q(z))=z

Evaluation of tetb at b > exp(1/e) and in particular, for b = e and b = 2 is described in

in [9, 19, 22]. For b = e the fast approximation is available at [20, 21]. The evaluation at

1< b<exp(1/e) and, in particular, for b=
√

2, is considered in [4].

New superfunctions can be obtained by transformation of the already established

superfunctions. If some F is superfunction of some Transfer Function H, then another

superfunction F can be de�ned as F(z) = F (z + δ(z)), where δ is some holomorphic 1-

periodic function. In particular, the superfunction in row 9 can be obtained from that in

row 8 with δ(z) = π · i · ln(2)/2 = constant. For more complicated function δ, the resulting

function F usually has either a reduced range of holomorphizm, or some fast growth in the

direction of the imaginary axis.

In addition, for the pair of the mutually-inverse functions P and Q, the new pair (Transfer

Function, superfunction) can be obtained by the transform, indicated in the last row of the

Table 1, from the previous rows. Therefore, the table 1 can be much larger.

Table 1 can be extended also considering any pair F and F−1 of biholomorphic functions,

declaring F as superfunction, and constructing the corresponding Transfer Function with

(2) at c = 1. In this work the inverse problem is considered, id est, the building of the

superfunction for the given Transfer Function, namely, Factorial. This allows to evaluate the

holomorphic function
√

!, giving sense to the logo of the Physics department of the Moscow

State University.
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2. Factorial, ArcFactorial and the �xed points

For the evaluation of superFactorial and its inverse, e�cient implementations of Factorial

and ArcFactorial are required. Complex maps of Factorial and ArcFactorial are shown in

�gure 2. In the right hand side of the left picture, the density of levels for the Factorial is

so high that they would overlap; this area left empty. We use the original numerical C++

implementation [23] of the Factorial and ArcFactorial.

At the analysis of a superfunction for some Transfer Function H, the key question is

about the �xed points [16, 17]. In the case H = Factorial, the �xed points are solutions of

equation Factorial(z) = z. The real �xed points correspond to abscissas of the intersecions

of the graphics y = Factorial x and y = x. Thse grapics are shown in �gure 0.

The Factorial(z) has two obvious �xed points z = 1 and z = 2. However, there is also

a countable set of negative �xed points. Two of them are seen in the left bottom corner of

�gure 0.

Each of the �xed points can be used to build-up the superfunction and corresponding

non-integer iterations of the transfer function [4]; there exist many functions that can be

considered as a square root of the Factorial. In this work, the superfunction built up at the

�xed point z = 2, and the corresponding
√

! is considered. Such a choice is determined by

the intent to build-up a function that is holomorphic while the argument is larger than 2,

and grow up slower than the factorial, which corresponds to the intuitive expectation about

such a function. Namely such a factorial could be used for description of processes that grow

up faster than any polynomial but slower than any exponential. Namely this
√

! is plotted

in the left hand side of �gure 1 with a solid curve.

3. Evaluation of SuperFactorial

Consider the SuperFactorial = F , that approaches the �xed point 2 at large negative values

of the real part of the argument:

Factorial(F (z)) = F (z+1) , lim
x→−∞

F (x+iy) = 2 . (5)

Following the algorithm [4], we search the solution F in the form

F (z) = Φ
(

exp(kz)
)
, (6)

where k is constant; function Φ can be interpreted as the inverse Schr�oder function. The

substitution of transformation (6) into equation (5) gives the Schr�oder equation [13, 14]

Φ(Kε) = Factorial
(
Φ(ε)

)
, (7)
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Table 2. Coe�cients u and U in the expansions (8) and (9).
n un Un

2 0.7987318351724345 −0.7987318351724345

3 0.5778809754764832 0.6980641135593670

4 0.3939788096629718 −0.6339640557572815

5 0.2575339580323327 0.5884152357911399

6 0.1629019581037053 −0.5538887519936520

7 0.1002824191713524 0.5265479025985924

8 0.0603184725913977 −0.5041914604280215

9 0.0355544582258062 0.4854529800293392

10 0.0205859954874424 −0.4694346809094714

where K=exp(k). We search the solution Φ in the form

Φ(ε) = 2 + ε+
N∑
n=2

unε
n +O(εN+1) , (8)

where u are constant real coe�cients, and integer N > 0. The substitution of such expansion

into equation (7) gives the value

k = ln(K) = ln
(
3 + 2 Factorial′(0)

)
= ln(3− 2 γ) ≈ 0.6127874523307 ,

where γ=−Γ′(1)≈0.5772156649 is the Euler constant [3], and the chain of equations for u.

From this chain we �nd

u2 = π2+6γ2−18γ+6
12(3−5γ+2γ2)

≈ 0.798731835

u3 = −36−39π2−738γ2+324γ+99π2γ−60π2γ2−π4+24γ5+594γ3−120ζ(3)γ+48ζ(3)γ2+12γ3π2+72ζ(3)−204γ4

144(−18+69γ−104γ2+77γ3−28γ4+4γ5)

where ζ(z) =
∑∞

n=1
1
nz is the Riemann zeta-function [3]; ζ(3) ≈ 1.202056903 . Similar (but

longer) expressions can be obtained for other coe�cients u; few �rst coe�cients are evaluated

in Table 2. In addition, we set u0 =2 and u1 =1. The partial sum in (8) at N=20 gives the

approximation F20 for the superFactorial

F20(z) =
20∑
n=0

un exp(knz) ,

providing of order of 15 correct decimal digits at <(z) ≤ −2. For evaluation of F (z) at

<(z) > −2, the recursive formula is used, F (z) = Factorial
(
F (z−1)

)
. Such numerical

representation is used to plot the map of SuperFactorial in the complex plane in �gure 3, as

well as the real-real plot in �gure 1.

The SuperFactorial F is entire periodic function. The period

T = 2πi/k ≈ 10.2534496811560279265772640691397 i
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is pure imaginary, so, the pattern in the plot of this function in �gure 3 is reproduced at the

translations along the imaginary axis. Along the real axis, the SuperFactorial F grows up

faster, than any exponential (see Fig.1), and even faster than tetrational [9].

In vicinity of the real axis, the plot of the SuperFactorial shows the quasi-periodic,

�fractal� structure, similar to that of growing superexponentials [4, 22]. Perhaps, other

holomorphic functions that grow up faster than any �nite iteration of exponential (id est

expc at �xed c) behave in the similar way.

4. ArcSuperFactorial

The inverse function of the SuperFactorial, id est, ArcSuperFactorial=G=F−1, is shown in

the right hand picture of �gure 3. Òhis function can be expressed, inverting expansion (8):

G(z) =
1

k
log

(
N∑
n=1

Un(z−2)n +O(z−2)N−1

)
, (9)

where U1 = 1 and U2 =−u2. The Mathematica routine InverseSeries (see also [3],eq.3.6.25)

allows to express coe�cients U in terms of coe�cients u; both u and U are evaluated in table

2.

The partial sum in (9) at N=20 is used as approximation for G, allowing to evaluate the

G(z) with 15 decimal digits at |z−2| ≤ 0.1 . For other values of the argument, the recurrent

equation can be used: G(z) = G
(
ArcFactorial(z)

)
+ 1 . The iterations of ArcFactorial

converge to value 2; after several such iterations, the G can be evaluated by expresion (9).

With complex < double > arithmetics, of order of 14 signi�cant �gures can be achieved in

such a way.

ArcSuperFactorial G=F−1 is holomorphic function on the domain C \ {x ∈ R : x ≤ 2}.
Along the real axis, G grows until in�nity, although slowly; slower than any logarithm and

even slower than ArcTetrational [9]. Similar slow growth of the modulus of ArcSuperFactorial

takes place at the moving out from the origin of coordinats in any direction, except the

negative direction of the real axis. Number 2 is branchpoint of G; the cut goes left along the

real axis.

5. Square root of Factorial

The choice of the SuperFactorial F and ArcSuperFactorial G determines any power of the

factorial; in particular, the fractional power and even the complex power. (The Transfer

Function can be iterated complex number of times.) If the number of iterations is equal to

one half, the combination (2) of SuperFactoral and ArcSuperFactorial gives the
√

!, id est,
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the square root of the Factorial.

√
!(z) = Factorial1/2(z) = F

(
1/2 +G(z)

)
. (10)

This function in the complex plane is shown in the left hand side of the �gure 4. For

comparison, the right hand picture of �gure 4 shows the square root of the exponential
√

exp(z) = tet
(
1/2 + tet−1(z)

)
, where tetrational tet is superfunction of the exponential [9],

id est the holomorphic solution of equation (3). The fast numerical implementation of

tetrational tet holomorphic in the domain C\{x ∈ R : x ≤ −2}, and arctetration tet−1

is described in [20]; the Mathematica code for the evaluation is available at [21]. The

Arctetraton tet−1 may be called also �superlogarithm� [24], although it is not a superfunction

of the logarithm.

The constructed
√

! is a holomorphic function on the domain C \ {x ∈ R : x ≤ 1} . In
general,

√
! behaves in a way, similar to

√
exp; however, it has only one branch point and

only one cut line, while the
√

exp has two; also,
√

! grows up a little bit faster, than the
√

exp. The behavior of
√

! for real values of the argument is shown in �gure 1. In general,

this function corresponds to the intuitive expectations about its behavior. In particular, it

grows faster than any polynomial, but slower than any exponential. In the similar way, maps

of functions Factorialc and expc can be plotted for other values c. In particular, at c=1, this

function is Factorial; at c=−1, it is ArcFactorial, shown in �gure 2; at c= 0, Hc becomes

identical function. In such a way, equation (2) allows the smooth (holomorphic) transition

from the Transfer Function to its inverse function. Such transitions can be de�ned also for

other Transfer Functions.

6. Physical applications

Although a distributed physical system with the Factorial as Transfer Function is not

reported, the same method can be applied for other Transfer Functions. In this section,

the possible applications of the formalizm of superfunctions are discussed.

In the investigation of the nonlinear response of optical materials, the sample is supposed

to be optically thin, in such a way, that the intensity of the light does not change much as it

goes through. Then one can consider, for example, the absorption as function of the intensity.

However, at small variation of the intensity in the sample, the precision of measurement of

the absorption as function of intensity is not good. The reconstruction of the superfunction

from the Transfer Function allows to work with relatively thick samples, improving the

precision of measurements. In particular, the Transfer Function of the similar sample, which

is half thiner, could be interpreted as the square root (id est, half-iteration) of the Transfer

Function of the initial sample.
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In nonlinear acoustics, in may have sense to characterize the nonlinearities in the

attenuation of shock waves in a homogeneous tube. This could �nd an application in some

advanced mu�er, using nonlinear acoustic e�ects to withdraw the energy of the sound waves

without to disturb the �ux of the gas. Again, the analysis of the nonlinear response, id est,

the Transfer Function, may be boosted with the superfunction.

In analysis of condensation, the growth (or vaporation) of a small drop of liqud can be

considered, as it di�uses down through a tube with some uniform concentration of wapor.

In the �rst approximation, at �xed concentration of the wapor, the mass of the drop at the

output end can be interpreted as the Transfer Function of the input mass. The square root

of this Transfer Function will characterize the tube of half length.

In a similar way the mass of a snowball, that rolls down from the hill, can be considered

as a function of the path it already have passed. At �xed length of this path (that can

be determined by the altitude of the hill) this mass can be considered also as a Transfer

Function of the input mass. The mass of the snowball could be measured at the top of the

hill and at thå bottom, giving the Transfer Function; then, the mass of the snowball as a

function of the length it passed is superfunction.

If one neads to build-up an operational element with factorial transfer function, and

wants to realize it as a sequencial connection of a couple of identical operational elements,

then, each of these two elements should have transfer function
√

! shown in �gure 1.

Calulation of a fractal iteration of a function, and in particular, that of exponential or

that of the Factorial, may have other (and, perhaps, unexpected) applications; for example,

in the description of the physical processes, that grow up faster than any polynomial, but

slower than any exponential. The theoretical science should be ready for such applications.

In particular, the SuperExponential, SuperFactorial,
√

exp,
√

! should be popped up to the

level of special functions.

Conclusion

A SuperFactorial is constructed as superfunction of the Factorial, solving the equation

(5). An arbitrary power c of a function H can be expressed through its superfunction F

by (2). For H = Factorial and c= 1/2, this gives way of evaluation of holomorphic function√
! shown in �gures 1 and 4. The formalizm of superfunctions allows the evaluation of non-

integer iterations of various functions and may have applications in physics and technology.

Authors are grateful to R.D.Kouznetsov, M.A.Kallistratova, A.V.Borisov and M.Sadgrove

for the important crytics, to S.Okudaira for the indications of the new applications of
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p = −4,−3,−2,−1, 0, 1, 2, 3, 4 and for q = −4,−3,−2,−1, 0, 1, 2, 3, 4
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Ðèñ. 3: Maps of F and G in the same notations as in �gure 2.
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Ðèñ. 4: f =
√

!(z) = Factorial−1/2(z) by (10), left, and f =
√

exp(z) , right, in the complex

z-plane in the same notations as in �gures 2, 3
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