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Abstract

Existence of analytic extension of the fourth Ackermann function A(4,z) to the
complex z plane is supposed. This extension is assumed to remain finite at the
imaginary axis. On the base of this assumption, the algorithm is suggested for
evaluation of this function. The numerical implementation with double-precision
arithmetics leads to residual at the level of rounding errors. Application of the
algorithm to more general cases of the Abel equation is discussed.
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1 Introduction

For integer non-negative values of arguments, the Ackermann function A can
be defined [1,2] as follows:
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n+1 ,if m=0
A(m,n) =4 A(m—1, 1) ,if m>0and n=0 . (1)
A(m—l,A(m,n—l)) ,if m>0and n>0

At relatively moderated values of m, functions A(m, z) grow quickly at z —
+00, at least while z is integer. This makes them useful for the representation
of huge numbers.

Powers of 2 are actually used in the most of computers for the “floating-point”
variables. A power of 2 is related with the Ackermann functions through the
identity

27 =expy(z) = A(3,2—3)+3 . (2)

In this sense, the third of the Ackermann functions is already applied in math-
ematics of computation.

It is recognized, that the range of numbers that are distinguishable from in-
finity at the numerical representation, could be greatly extended [3,4], using
the representation through a rapidly growing function. The ultra-exponential

exps(1) = A(4,2—3)+3 . (3)
is considered as a candidate for such a function.

The 4-th Ackermann function can be written as follows:

A(4,2) = F(z+3)—3, (4)

where F' is solution the Abel equation

oz +1) = H(o(2)) . (5)

for the special case H = exp,. Some values of A(4, z) are printed in the last
three liners of the first column of the Table 1. Symbol “inf” in this table
denotes A(4,2) = 26536 — 3 that cannot be stored as a floating-point number
in a double precision variable. Other values in Table 1 are calculated using
the algorithm, described in the following sections.

Usually, the rapidly-growing functions are defined for integers [1,5]; even for
the real z, the analytic extension of solution of eq. (5) is not trivial [4,3,6,7].

For the case H = exp,, eq. (5) can be written as follows:



Table 1

Approximations of Ackermann function A(4,x+iy) for integer = and y.

A4, ) A4,z +1) A4,z + 21)
nan | —2.93341314027949 + 1.775250457689311 | —2.40837342500080 + 1.60602120134867 i
—3 | —2.65047742724573 4+ 0.987186714508591 | —2.33425457910192 + 1.351911859603301
—2 | —2.01269088663886 + 0.805388525487271 | —2.06062289136790 + 1.27835701837457 1
—1 | —1.31849305466899 + 1.050131710185121 | —1.78715845191886 + 1.48545918347369 i
1| —0.60526187964136 + 2.134035675898261 | —1.80597055463682 + 1.98673779218581 i
13 | —2.51898925867497 + 5.236771740070731 | —2.55961021720427 + 2.245124226787561
65533 | —4.23263111512603 — 0.654719847275311 | —2.98019598556513 + 1.356826379673191
inf | —2.61753248714842 — 0.186556836393181 | —2.40245344004963 + 0.81900710696401 i

F(z+1) =exp, (F(z)) ) (6)

F(z—1) =log,(F(2)) . (7)
Usually, the condition

F(0)=1 (8)

is assumed. Then, the argument of function F' can be interpreted as number
of exponentiations in the representaiton

ol

F(z) = expi(l) = "

——
z times

: (9)

This relation can be considered as definition of tertration and therefore, the
Ackermann function A(4, z) for positive integer z.

Due to relation (3), the analytic extension of Ackermann function implies also
the analytic extension of the ultra-exponential (at least, for a = 2) and vice
versa. Various names and notations are used for this operation: “generalized
exponential function”by [3]|, “ultraexponentiation” by [4], “Superexponenti-
ation” by [8], “tetration” by [9]. Such variety of names indicates, that the
analysis of properties of this function does not yet bring it to the level of
Special functions [10,11].

For the representation of huge numbers, the analytic properties of the the
rapidly-grown function F are important; at least to implement the arith-



metic operations with huge numbers, stored in such a form. These operations
should be implemented (approximated) without to convert the numbers to the
conventional (floating-point) representation. Such implementation should be
based on analytic properties of the function F' rather than on the conversion
to the floating-point form.

The analytic properties of a function, used for the representation of numbers,
become essential, if the huge numbers appear in the integrand of a contour
integral. Then, the asymptotical analysis (for example, integration along the
path of stationary phase) can simplify the numerical computation. The func-
tion, used for representation of huge numbers, should be analytic.

The analytic extension of the Ackermann functions and ultra-exponential in
eq.(3) to complex z plane is important for the application. In order to deal
with function F', at the first step, the algorithm for the efficient evaluation
(i.e., representation of its value in the conventional floating-point form) is
necessary. Such representation is mater of this paper.

The existence of unique analytic extension of solution F' of eq.(7) is not ob-
vious. In particular, [4] presents the proof, that analytic extension of the
ultra-exponential F' to the whole complex plane is not possible; the piece-
wice function with jumps of the second derivative is suggested instead. Such
a proof uses the assumption, that at the real axis, the first derivative of F' is
non-decreasing function. For a function with rapid growth, there is nothing
wrong in having minimum at some morerate value of the argument. For ex-
ample, the minimum of derivative of I" function [10,11] does not prohibit to
consider I'(z+1) as analytic extension of z! for non-integer values of z and to
use it in mathematical analysis [12]. One may expect, that a the real axis, the
derivative of analytic extension of tetration has minimum between —1 and 0.

The real-analytic extension of tetration is considered by [3] in terms of func-
tional sequences for the case a = e. However, the representation suggested
does not offer robust algorithm for the evaluation. Such an algorithm is im-
portant for the use. For applications, the robust algorithm for evaluations is
even more important than the mathematical proof of existence and uniqueness
of the analytic extension.

In this work, I postulate the existence of the analytic extension, and I suggest
the algorithm for the evaluation.



2 Assumption

Assume that there exist solution F(z) of equations (7),(8), analytic in the
whole z-plane except z < —2, that satisfies condition

lim F(z+1iy) =L for all fixed real = , (10)

y—-+o0

where L is eigenvalue of logarithm: (L) > 0, (L) > 0 and

L =log,(L) . (11)

In the following sections, on the base of the assumption above, the integral
equation for values of F' at the imaginary axis can be written. Values of F'(z)
can be expressed through the Cauchi integral [13-16];

) jt , (12)

F(Z>:217r17{ /

where contour €2 evolves the point z just once. Such representation allows to
approximate function F'. The smallness of the residual confirms the assump-
tion above, although cannot be considered as its proof.

3 Eigenvalues of logarithm and quasiperiod

The approaching to constant, postulated in the previous section, is attrac-
tive property which simplifies the consideration. In this section I analyze this
approaching.

The straightforward iteration of eq. (11) with initial value with positive real

and imaginary parts allows the numerical approximation. In particular, for
a=e,

L ~ 0.318131505204764135312654 + 1.337235701430689408901161 , (13)

and, at a=2,

L ~ 0.824678546142074222314065 + 1.567432123849647861058571 . (14)



Few hundred iterations are necessary to get the error smaller than the last
decimal digit in the approximations above. The convergence is exponential;
for a=e and for a =2, the decrement is of order of 1/5. Due to eq. (7), the
same decrement characterizes the convergence of the analytical extension F'(z)
to the limiting values at R(z) — —oo. In order to check this, consider solution
of (7) as small perturbation of the eigenvalue of logarithm. Let

F(z)=L+exp(Qz+71)+e(z), (15)

where @) and r are fixed complex numbers and £(z) — 0 at £(z) — —oo and
at 3(z) — +oo; let

e(z) = o(exp(Qz + 7“)) : (16)

Substitution of expression (15) into the eq. (7) gives

(L +exp(Q+ Qz +7) +e(z+1)) = ((L+exp(Qz +7) +e(z) ,  (17)

where

¢=1n(a) . (18)

Expanding the left hand side of eq. (17), I write

e@OFT | £(241)
L

In(L) + 1n<1 + ) = (L + lexp(Qz+7) + le(2) (19)

Using equations (11) and (18) gives

Q= 1
1n<1 N e +e(z+1)

7 ) = lexp(Qz+r) + le(2) (20)

While £(z) decays faster than e?"@*" the expansion of (20) gives the relation

QHQtr
L

=lexp(Qz+7r), (21)

which leads to

exp(Q) = (L , (22)



than means that
Q =In(/L) =In(¢) +In(L) = In(¢) + L¢ . (23)

In particular, at a = e, we have £ =1 and () = L. Then, quasi-period of the
asymptotic solution

o
T= 51 ~ 4.44695072006700782711227 + 1.057939991156939183763411. (24)

At a = 2, the evaluation gives

Q) ~ 0.205110688544989183224525 + 1.08646115736547042446528 i (25)
27

T = 0 ~ 5.58414243554338946020010 + 1.054218360336937346540001 . (26)

In the upper half-plane, while far from the real axis, the analytic extension F'
of tetration should show quasi-periodic behavior with period 7. In the lower
half-plane, quasi-period should be T™.

4 Recovery of recursive functions

Various analytic functions can be recovered from the recursive equation of
type similar to (5), usind the extension to the complex plane and the Cauchi
formula (12). However, the regular hebavior at +oo simlifies the evaluation a
lot. In this section I describe the precise evaluation of function F(z), assuming
that it satisfies the Abel equation (5) and approaches its limiting values L and
¥ at +ico exponentially, according to (15).

Let B be a large positive parameter. Let |R(z)| < 1. Consider the contour 2
of integration, consisting of 4 parts:

A. integration along the line R(¢) =1 from t = —iB to t = iB.

B. integration from point t =1+ iB to z = —1 + iB, passing above point z
C. integration along the line ®(t) = —1 from ¢t = iB to t = —iB.

D. integration from point t = —1 —iB to t = 1 — iB, passing below point z.

Value of B should be large enough, that the |exp(BQ — r)| is smaller, than
desired upper limit of the error of the resulting approximation. Then, ap-
proximating the integration over the upper and lower parts (B and C) of the



contour §2, values of F' can be substituted to its limiting values L and L*. Both
real and imaginary parts of  happen to be of order of unity, at least for a=e
and a=2. Then, in order to get approximation with 14 significant figures, it
is sufficient to take B = 32.

While |R(2)| < 1, function F'(z) can be expressed with four integrals:

1 [F(1+ipdp 1/BF(—1+ip)dp

F(Z):QW 1+ip—=2 27 —1+ip—=2
—B —B
(27)
e VN N S
T o / —2 T om / =
—1+iB —1-iB

where fy;, is some intermediate value of function F' at the upper segment {2
of the contour €;

g& %(F ) R(fup) < max R F(z ))

zeQlp (28)
min 3(F(2)) < S(fup) < maxY(F(2))

and fgown 1S some intermediate value of function F' at the lower segment Qp
of the contour €;

;2{121; %(F ) fdown) < max F( ))

e (29)
1 x
min \S(F( )) < S (fdown) < max J(F(Z))
Then, values F'(z) at z inside 2 can be approximated with
B B 1
- 1 H dp 1 H(E(p))dp
F(z)= (7)) _ = / (_())+IC(z) (30)
o 1+ip — 27 —14+ip—=z
-B -B
where FE is solution of equation
1 FHE®P)d 1 FHY(E@)dp
E =t - [k 1
(y)= B p— + K(iy) (31)

o A 1—|—1p iy 27r_B

for real values of y, and



1 1 1-iB+:z 1 1 1-iB-—=z
1 I n- 2% 2
) (2 o n1+iB+z) (32)

O e
(=) 2 2 1+iB -z
is elementary function, which depends also on parameter B. Parameter L is
determined by the function H in (5). In particular, at H = exp, the asymp-
totic value can be approximated with expression (13), and, at H =exp,, the
asymptotic value can be approximated with expression (14).

Integrals in equations (31) were evaluated using the Legendre-Gaussian quadra-
ture formula [10] with 2048 nodes. In the algorithm by [17] of the evaluation of
nodes and weights, the float variables were converted to long double; but the
following analysis was performed using double and complex double variables.

The discrete analogy of the integral eq. (31) was iterated with initial probe
function

L at y > 16
Eo(y)=< 1 at —16<y <16 (33)
I at y<-—16

interpreting equality in the discrete analogy of eq. (31) as operator of assign-
ment; fast convergence (within 64 iterations) takes place, while value of E at
the grid point number N—1—n is updated automatically each time when point
n is updated; at the symmetric mesh, this forces the resulting approximation
F' to be real at the real axis.

The convergence can be even boosted at the irregular order of evaluation of
FE in the nodes of the mesh. I used to update E at each third node at the first
iteration and at each second node at the following iterations.

For real values of z, for a =2, the primary approximation F(z) is shown in
figure 1 with dashed line. This function does not satisfy condition F'(0)=1.
In order take into account (8), the approximation

F(2) =~ F(2+2) (34)
is used, where zj is solution of equation

The corrected function F(z+z) is shown in Figure 1 with thin solid line.

Due to simultaneous update of E at the symmetric modes of the mesh, the
constant zq is real; in the example in Figure 1, zy = 0.0262474248816494, but
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Fig. 1. Approximation F(z) ,dashed, and its correction F'(x+ z), thin solid; residual
by eq. (36), scaled with factor 103

this value is specific for the chosen B =32, number N =2048 of nodes of the
mesh, initial condition, and on the order of update of values of function E at
the iterational solution of the discrete analogy of eq. (31).

The residual

residual(z) = F(z—0.5) — log, (ﬁ’(z+0.5)) : (36)
scaled with factor 103 is shown a the bottom of figure 1 with thick line.

The resulting approximation of F' is analytic by definition, even with the dis-
crete sums instead of the integrals; because the finite sum of analytic functions
is also analytic. However, in general case, the iterational procedure has no need
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to converge, and, even if it converges, it has no need to converge to the solution
of eq. (31). As the result, in general, function F has no need to approximate
the solution of equation (5); at the replacement of ¢ to F', the residual can
be large. Nevertheless, for cases mentioned, the fast convergence and small
residuals were observed.

The residual at the substitution of function F into the eq. (7) at a=e and at
a=2 was evaluated, using approximations for F'(+0.5+iy) at —24 <y <24 and
those for F(x) at —0.8 < x<0.8 . The residual is of order of 107!, while the
real part of the argument of function F' does not exceed 0.7 . Evaluating F(z)
at larger values of |R(z)[, the point z approaches the contour of integration;
at |R(z)| > 0.7, the approximation becomes less accurate (see bottom part
of Figure 1). At x ~ 0.95, the error of F(;E) is seen also in its graphic at the
upper-right corner of figure 1.

Due to equations (6), (7), the approximation of F'(z) within the strip R(z) <
1/2 is sufficient for the evaluation in the whole complex z-plane. Smallness of
the residual indicates (although does not yet prove) smallness of the error of
the resulting approximation. In particular, the thin curve in the central part
of figure 1 shows the precise approximation.

The good approximation of F(z) at |R(z)| < 1/2 allows to evaluate it in the
whole complex plane, using equations (6) and (7). Then, using expression (4),
the Ackermann function A(4, z) can be approximated for complex z, and the
range of the evaluation is limited only by the ability to represent the result as
a floating-point number. The example of such evaluation is considered in the
next section.

5 Ackermann function

From the approximation (34) of tetration F', the Ackermann function A(4, z)
can be evaluated for complex values of z; at least in the cases, when A(4, z) can
be stored in the computer with floating points representation of data; I used
the standard double precision arithmetics in order to make all my results easy
reproducible. Few examples of such evaluation are printed in table 1. Symbol
“nan” in the left upper corner of the table means that I am not yet successful to
give meaning to A(4,—5). Symbol “inf” at the bottom denotes value 26°536—3
that cannot be stored in a double-precision variable as a number.

The approximation for the Asckemann function is shown in Figure 2. Levels,
corresponding to integer values of the real part, and those for integer values of
the imaginary part, are shown. The function A(4,2) = F(2+3) — 3 has cut at
2z < —5, shows almost (visually) linear growth at —4 <z < —2, and then rapidly

11
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grows up at z > 0. Along the imaginary axis, this function varies smoothly,
and approaches values L—3 and L*—3 at +ioco.

In the left hand side upper corner of figure 2, A(4, z) ~ L — 3; therefore, there
are no lines there; similarly, in the left hand side lower corner, A(4, z) ~ L*—3.
In the right hand side of the figure, in vicinity of the real axis, the function
passes through the integer values, but the density of the lines is so high, that
is not possible to draw them; so, this part of the figure is also left empty.

In the intermediate range of figure 2, at translations with period T" or T, the
same quasi-periodic structure is reproduced. In agreement with estimate (15),
the analytic extension of the Ackermann function is asymptotically-periodic;
at 3(z) >0, the pattern in vicinity of point z visually coincides with that at
z+T. Quasi-period T can be approximated with eq. (26).

The fourth Ackermann function can be approximated for complex values of
the second argument. However, the algorithm above and figure 2 cannot sub-
stitute the mathematical proof. The proof of existence and uniqueness of the
solution F of eq. (31) waits for attention of professional mathematicians. It
would be good to prove the existence of the analytic extension of A(m, z) for
complex values of z for all integer n; case m =4 can be the first step. (The
analytic extension of the Ackermann function for the complex values of the
first argument may be also considered.) Then, the Ackermann function A and
tetration F' should be declared as special functions.

6 Conclusion

The Fourth of the Ackermnann functions can be expressed in terms of tetration
F by eq. (4), and approximated through eq. (34), (30) for complex values
of the argument. Such approximation indicates the existence of the analytic
extension of the Ackermann function for the complex values of the second
argument, that exponentially approaches its asymptotic values L and L* at
the imaginary axis.

The range of evaluation suggested is limited only by the ability to store the re-
sult as a floating-point number. Examples of values of the Ackermann function
A(4, z), approximated in such a way, are printed in Table 1.

The distribution of the analytic extension of A(4, z) in the complex z-plane is
shown in figure 2. Up to my knowledge, it is first portrait of the Ackermann
function in the complex plane, ever reported.

The algorithm of evaluation of Ackermann function with contour integral is

13



robust; with standard double-precision arithmetics, the residual of order of
1071 is achieved. The iterational solution of eq. (31), required for the eval-
uation, takes a minute of CPU time; then, figure 2 can be generated in real
time.

Existence and uniqueness of the analytic extension to the complez z-plane
of the Ackermann function A(4, z), plotted in figure 2, still needs the proof.
Application of the same procedure to higher Ackermann functions, as well as
to other cases of the Abel eq. (5), can be matter for the future research.
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