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Comments on “Study of the Complex Atomic Susceptibility
of Erbium-Doped Fiber Amplifiers”
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Abstract—This comment aims to report and correct a mistake in the
paper by Desurvire (J. Lightw. Technol., vol. 8, no. 10, pp. 1517–1527, Oct.
1990) with regard to the expression of the complex susceptibility of quasi-
three-level laser systems. The derived susceptibility formula contradicts the
assumption of thermal equilibrium between sublevels within each manifold
and leads to the wrong conclusion that the real and imaginary parts of the
susceptibility of saturated materials do not verify the Kramers–Kronig re-
lations (KKR). The corrected formula for the susceptibility is hereby pro-
posed. The poles of the susceptibility obtained with the new formula are all
located in the upper half plane of the complex plane, in accordance with
the principle of causality. Hence, the KKR should be valid in the saturated
regime.

Index Terms—Atomic susceptibility, Kramers–Kronig relations (KKR),
saturation broadening.

I. INTRODUCTION

In the above paper [1], an extensive study of the complex atomic
susceptibility of erbium-doped fiber amplifiers was reported. Although
the above paper is not recent, it is still regularly cited in the literature for
the modeling of the complex susceptibility of glassy hosts doped with
rare-earth ions. Hence, it appears worthwhile to point out the mistakes
in the above paper, particularly when they lead to wrong conclusions
about the domain of validity of Kramers–Kronig relations (KKR) in
saturated media. This comment is also motivated by the fact that KKR
have been recently used to relate fluctuations of the saturating pump
or the signal beams in fiber lasers to that of the refractive index at the
signal frequency, fluctuations that have been proposed as a possible
mechanism of phase-locking of the fiber laser array at high power [2],
[3] . Moreover, modification of the refractive index in the saturated
regime is also important for the accurate dispersion control of chirped-
pulse amplification and compression in fibers [4 ].

The purpose of this comment is twofold. First, we would like to ex-
pose and correct what appears to be a wrong expression of the suscep-
tibility formula in the paper by Desurvire. Second, we would like to
point out and contest the statement whereby the KKR cannot be used
to calculate the real and imaginary parts of the susceptibility in satu-
rated systems (cf. [1, p. 1522, second column]).

This comment is organized as follows. First, we recall the formula
for the complex atomic susceptibility of a two-level system and dis-
cuss the physical meaning of saturation broadening. Then, the wrong
formulas in the above paper of the susceptibility of a quasi-three-level
system are pointed out, and the corrected formula for the complex sus-
ceptibility is provided. Finally, the poles of the susceptibility obtained
with the updated formulas are shown to be all located in the upper
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half plane of the complex plane, in accordance with the principle of
causality. We show that this is a sufficient condition to validate the
KKR, including that in the saturated regime.

II. SATURATION OF A SIMPLE TWO-LEVEL SYSTEM

Reference [1, eq. (12)] for the complex atomic susceptibility of a
two-level atomic system at the frequency of the saturating field ! is
given as follows:
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whereN2�N1 is the population difference at zero saturating field. For
the complete description of the notation, please refer to [1]. Reference
[1, eq. (12)] expresses the saturation broadening for a homogeneous
transition in a two-level system. Although this expression is formally
correct, it can be misleading. Perhaps, the following expression is a
more suitable way to express [1, eq. (12)]:
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is the linewidth function, which is independent of the saturating field.
Equation (1a) can be written as
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is the saturated population inversion due to the saturating field E0 at
frequency ! . Equation (1b) allows the influence of the saturating field,
which acts on the population inversion, to be separated from that of the
fictitious weak probe, which is used as an integrating variable in the
KKR.

Remarks:
1) Equation (1b) explicitly shows that the field E0(!) saturates the

population difference but does not actually cause any broadening
of the transition. That is to say, if we probe the transition with a
“weak” probe Ep(!0), then the linewidth remains unchanged, no
matter how large is the value of the field E0.

2) If the frequency of the saturating field E0(!) is scanned through
the absorption line, then apparent broadening occurs because the
saturation is more effective close to the resonance than off-reso-
nance.

3) Actual broadening caused by the saturating field occurs if the rate
of stimulated emission is fast enough to compete with the rate of
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decoherence, which determines the linewidth g(!) of the transi-
tion. The decoherence time is on the order of the picosecond range
for many solid-state materials, including the erbium–glass system,
while the effective lifetime on the upper manifold when stimu-
lated emission is dominant is on the order of h�=(I�) at strong
field, where � is the effective emission cross section at frequency
!. Certainly, h�=(I�) never actually approaches the picosecond
time scale; thus, the aforementioned phenomenon never happens
in practice. Nonetheless, it must not happen for the hypothesis of
thermal equilibrium within the manifold to be valid. This hypoth-
esis is required in order to use the Boltzmann distribution for the
population of sublevels.

We can also write (2) as

N
sat

2 �N
sat

1 = (N2 �N1)
1

1 + I=Is(!)
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where I = (1=2)"0cnE
2
0 , and Is(!) is the frequency-dependent sat-

uration parameter, which depends on the effective cross sections and
can easily be measured experimentally. For the complete formulas in-
cluding both the saturations of the pump and the signal, the reader is re-
ferred to [5, Sec. 3.A]. Hence, [1, eq. (12)] does not actually express the
broadening of a homogeneous transition but rather the frequency-de-
pendent saturation of the transition.

III. SATURATION OF A TWO-MANIFOLD SYSTEM

Desurvire considers a two-manifold system where thermal equilib-
rium is assumed to take place within the sublevels of each manifold
with respective populations N1 and N2. According to the aforemen-
tioned analysis, it is easy to see that [1, eq. (18)] is wrong. Reference
[1, eq. (18)] is given as
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where the population of each of the sublevels p2k and p1j follows the
Boltzmann law. We can express [1, eq. (18)] as
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is the linewidth function of the jk pair of sublevels, �!jk = �! is
assumed to be the same as that in [1] for all transitions, and �jk is
the saturation parameter given by identification with [1, eq. (17)]. Ref-
erence [1, eq. (18)] contradicts the hypothesis of thermal equilibrium

inside each manifold, because the population difference for each pair
of sublevels is given by
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which implies a different saturation of each sublevel. Assuming
thermal equilibrium, the correct expression instead of [1, eq. (18)]
should be
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1 is given by (2) and (3), and Is(!) is the effec-
tive saturation intensity, which can be deduced from the knowledge of
the effective cross section and radiative lifetime of the medium. In fact,
from the expression for gjk(!), we find that some transitions do have a
stronger saturation than others as a result of interaction with the strong
field at !, i.e., I(!), because their resonance frequency is closer to !.
However, this effect is canceled by the fast thermalization of sublevels,
so that the preferred depopulation of one sublevel is rapidly spread to
all other sublevels to maintain the Boltzmann distribution. The latter is
so fast compared to other time scales that the relative populations p2k
and p1j are given by the Boltzmann distribution regardless of the par-
ticular value of the frequency of the saturating field. As a consequence,
[1, eqs. (34) and (35)], which are not shown here, are also wrong for
the same reason that they contradict the assumption of thermalization
within sublevels inside each manifold.

IV. POLES, CAUSALITY, AND KKR

The poles of (5) are that of gjk(!), which can be written as

gjk(!) =
1� 2i

!�!

�!
i

1 + 2i
!�!

�!
1� 2i

!�!

�!

=
i

1 + 2i
!�!

�!

=
�!=2

! � (!jk + i�!=2)
:

The pole of gjk is !p = !jk+i(�!=2), which is in the upper com-
plex plane for any physical value of !jk and �!. Hence, all the poles
are located in the upper complex plane. According to Titchmarsh’s
theorem [6], if the function �E(z) is analytic in the complex z =
x + iy plane for y < 0, if �E(z) approaches �E(x) almost every-
where as y approaches 0, and if there exist a value of K > 0 such that
1

0
j�E(x+ iy)j2dx < K , for y < 0, then two statements apply.

1) The Fourier transform of �E(!) is 0 for t < 0.
2) The real and imaginary parts of �E(!) are Hilbert transforms of

each other.
Statement 1 is the expression for the causality principle, whereas

statement 2 implies that the KKR are valid. Therefore, we conclude
that KKR can be used in the case of both saturated and nonsaturated
transitions. The KKR is given as
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where �E � �0E � i�00E , and P stands for the principal value.
In (6), the real part of the susceptibility, i.e., �0E , is interpreted as

the change of the real part of the susceptibility due to the gain profile
g(!), which is related to the imaginary part of the susceptibility �00E by
g(!) = (!�00E(!))=cn

2

0, where n0 is the refractive index of the ma-
terial with no gain, and �00E is the imaginary part of the susceptibility.
The gain distribution g(!) in a system of atoms saturated by the signal
(and eventually pump field) at fixed frequency is determined with a
weak probe at frequency !, as shown in [2] and [3]. The change of
refractive index resulting from the modified small-signal gain distribu-
tion was correctly computed by using the KKR.

V. CONCLUSION

In summary, we have shown that the expression for the complex
susceptibility proposed by Desurvire [1, eq. (18)] is wrong because
it contradicts the assumption of thermalization inside each manifold.
The correct expression, i.e., (5), is proposed instead for the complex
susceptibility of a two-manifold system subjected to a saturating field

with fast thermalization between sublevels. Moreover, [1, eqs. (34) and
(35)], which follow from [1, eq. (18)], lead to a wrong conclusion con-
cerning the validity of KKR in the saturated regime. We showed that
the KKR can be used to calculate the real part of the complex suscep-
tibility from the imaginary part, even under saturating conditions, by
using the KKR and the small-signal gain distribution. Therefore, the
KKR should be valid in the saturated regime.
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