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Under certain conditions, light-wave propagation through turbulent media causes a specific type of phase
distortion: so-called phase dislocations. A salient feature of phase dislocations is an appearance of
zones where the phase turns out to be a multivalued function of coordinates. The problem of turbulence-
induced phase dislocations is considered. Both a theoretical treatment and simulations based on the
numerical solution of a parabolic equation are used for estimation of the dislocation density. Various
turbulence conditions, ranging from weak to very strong ones, are considered as well as the dependences
on wavelength, and the inner scales of turbulence are presented. An empirical formula for the dislo-
cation density suitable for a wide range of turbulent and propagation conditions is derived. The results
obtained can be useful for both atmospheric and adaptive optics. © 1998 Optical Society of America
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1. Introduction

A conventional type of phase distortion, in which a
phase appears to be a single-valued function of coor-
dinates, has been investigated for a long time. How-
ever, there is another possible type of phase
distortion with singularities of the phase S ~so-called
phase dislocations!. A conception of these singulari-
ties was initially introduced into optics by Nye and
Berry1 in the middle 1970’s. Since that time, many
theoretical and experimental investigations support-
ing this conception have been published.2–16 A sa-
lient feature of the phase dislocations is an
appearance of such points where the field of the gra-
dient S becomes a vortex one ~curl grad S Þ 0!. A
necessary condition of vortex creation at some obser-
vation point is an occurrence of zero amplitude A at
this point.

Various applications of phase dislocations in differ-
ent areas have been suggested. Among them, the
problem of turbulence-induced phase dislocations has
recently attracted the growing attention of research-
ers working in atmospheric and adaptive optics.17–22
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Propagating in a turbulent media, a light wave
passes through refractive-index inhomogeneities that
cause amplitude and phase fluctuations in the obser-
vation zone. If these fluctuations turn out to be
strong enough, zero-amplitude points may be pro-
duced in the observation zone, which leads to the
creation of phase dislocations.

The existence of turbulence-induced dislocations
was initially proved by Fried and Vaughn.17 They
carried out a numerical experiment for a laser beam
propagating through Kolmogorov turbulence and
presented a number of samples in which the disloca-
tions are clearly seen. Fried and Vaughn also sug-
gested a procedure of phase reconstruction in the
presence of dislocations, which is important for ap-
plications. This last problem was later discussed by
Tartakovski and Mayer,19 who also analyzed some
properties of the point-spread function associated
with the dislocated phase.22 An effect of dislocations
on the performances of adaptive systems was inves-
tigated by Lukin and Fortes,18,20 while some theoret-
ical aspects dealing with the propagation of the
dislocated phase were considered by Aksenov et al.21

Our main aim in this paper is to study the density
of turbulence-induced phase dislocations as a func-
tion of the turbulence and the propagation conditions.
The density of dislocations is among their most im-
portant properties. This quantity shows an ex-
pected number of dislocations to be found inside the
unit area. A suitable approach allowing for the the-
oretical calculation of this characteristic for the case
of fully developed Gaussian fields has been suggested
in Ref. 4. However, the statistics of turbulence-
induced distortions approach the Gaussian ones only
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in the limiting case of very strong turbulence whereas
under other conditions these statistics take different,
non-Gaussian forms.23 Along with this, these last
conditions are of main interest in many practical ap-
plications. Unfortunately, the method developed in
Ref. 4 turns out to be difficult for calculations of dis-
location density associated with non-Gaussian distri-
butions. It happens because in order to apply it one
needs to know a six-dimensional joint probability
density function ~PDF! of a two-dimensional complex
field and its gradients. For the case of Gaussian
distortions, this PDF is easily calculated, giving one
the possibility of expressing the dislocation density
analytically. However, when the field statistics are
non-Gaussian, a problem of the associated PDF der-
ivation becomes quite nontrivial.

Here we apply two other methods for calculation of
the dislocation density that are more suitable for non-
Gaussian fields. The first is based on a modification
of the so-called level-crossing approach, which is
known from the theory of random processes.24 Al-
though the two-dimensional level-crossing problem is
generally complicated, an approach developed for
treatment of this problem is applicable in our case
because of the isotropy of the field fluctuations.

The second method is based on computer simula-
tion. The simulations are performed by means of
numerical solution of the parabolic equation.25

Three-dimensional ~3-D! refractive-index fluctua-
tions are assumed to be Gaussian, and our method of
simulation is similar to that used in Ref. 26. The
final results for the dislocation density obtained by
means of our two methods are in good agreement.

We review some general properties of dislocations
in Section 2. In Section 3, the general expression for
dislocation density associated with isotropic fields is
derived. It is shown that the density of interest can
be expressed through the PDF of the log-amplitude
derivative. Section 4 presents the theoretical calcu-
lations of dislocation density for different turbulence
conditions, ranging from weak to very strong. Some
interesting theoretical and experimental possibilities
based on our considerations are also discussed in this
section. In Section 5 we describe the simulation re-
sults and compare them with the theoretical ones.
In Section 6 we present a summary of our results.

2. Dislocation Structure

We now introduce two terminological definitions that
are used throughout the paper. A screw-type phase
singularity that occurs around an isolated zero-
amplitude point is referred to as a single vortex.
However, the zero-amplitude points appear in pairs
and the nearest-neighbor vortices arising around
these points have the opposite topological charges.9
So the resulting phase singularity appears as a su-
perposition of two single oppositely charged vortices
separated by some distance. Below we refer to this
singularity as a phase dislocation.

It has been shown1 that the single vortex is asso-
ciated with the isolated zero amplitude. If one
traces the zero-amplitude point around a closed cir-
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cuit, the phase increases on 2pn with each trace,
where n 5 61 is the topological charge or the order of
the vortex ~we exclude from present considerations
the high-order vortices n 5 62, 63, 64, . . . , which
have vanishingly small probability12!. By conven-
tion, a vortex has a positive ~negative! charge if the
phase increases ~decreases! on 2p with each complete
counterclockwise tracking around the vortex center.
So an occurrence of a zero-amplitude point forces a
phase to be a non-single-valued function of coordi-
nates. Mathematically, one can arrive at this con-
clusion from the following consideration.4

Let us consider some scalar 3-D complex wave field
E~z, r! 5 E1~z, r! 1 iE2~z, r!, where z denotes the
longitude coordinate and r 5 $x, y% is the transverse
position vector. The complex envelope of this field
can be expressed as

E~z, r! 5 A~z, r! exp@iS~z, r!#,

A~z, r! 5 @E1
2~z, r! 1 E2

2~z, r!#1y2,

S~z, r! 5 const. 1 atan2@E2~z, r!, E1~z, r!#, (1)

where A and S denote the amplitude and the phase of
the field, respectively. The function atan2~y, x! oc-
curring in Eq. ~1! returns the arctangent of yyx in the
range from 2p to p, and it is used to resolve 2p
ambiguity.

Let us consider some plane at z 5 constant. Sup-
pose that the zero amplitude occurs in this plane at
the point r 5 0. Expanding E1 and E2 in the vicinity
of this point and keeping the linear terms only, one
can get

S~r! 5 atan2~E20 1 E2xx 1 E2yy, E10 1 E1xx 1 E1yy!,

r 5 ~x, y!, (2)

where the quantities E10, E20, E1x, E2x, E1y, and E2y
are taken at r 5 0. E1x, E2x, E1y, and E2y denote the
corresponding first partial derivatives of the field.

Because A~0! 5 0, the quantities E10 and E20 in Eq.
~2! are zero valued. So the lines along which the
first and the second arguments of atan2 in Eq. ~2! are
equal to zero ~in what follows, the zero lines! are the
straight lines intercepting one another at the origin.
If we trace the point r 5 0 around any closed circuit,
we meet the zero lines of the first and the second
arguments twice. As a result, when we return to the
starting point of the circuit, the phase increases on
2p. So Eq. ~2! describes a single vortex in linear
approximation ~single linear vortex! when the phase
is a multivalued function of coordinates. As an il-
lustration, let us consider a particular example of a
single linear vortex. In the simplest case, when E1x
5 E2y and E2x 5 E1y 5 0, Eq. ~2! is reduced to

S~x, y! 5 atan2~y, x!. (3)

Equation ~3! describes a 3-D screw surface, which
is shown in Fig. 1~a!. This vortex has a positive
topological charge because the phase increases on
12p with each complete counterclockwise tracking
around the vortex center. The above example shows



the single linear vortex that occurs if the amplitude
has an isolated zero point. However, as follows from
general topological considerations, the zero-
amplitude points appear in pairs.1 Moreover, the
vortices arising around these points have the oppo-
site topological charges. Hence the resulting phase
turns out to be a superposition of two separated op-
positely charged single vortices. The simplest ex-
ample of such a dislocation can be described by the
following expression @the corresponding surface is
plotted in Fig. 1~b! for x0 5 0.5#:

S~x, y! 5 atan2~y, x 2 x0! 1 atan2~y, x 1 x0!. (4)

As one can see from Eq. ~4!, this dislocation is a
superposition of two oppositely charged vortices of
the type shown in Fig. 1~a! that occurs at points ~2x0,
0! and ~x0, 0!.

Comparing Figs. 1~a! and 1~b!, one can see a prin-
cipal difference between a single vortex and a dislo-
cation. If one applies a single-vortex conception for
the description of phase singularities in the entire
space, it necessarily leads to the existence of infinitely
sized phase singularities. Contrary to this, a dislo-
cation produced by two oppositely charged vortices is
a singularity that exists only between the centers of
these vortices ~more accurately, a singularity occurs
along a line connecting the vortex centers!. So a
single vortex can be considered as an abstraction that
is convenient for calculations, whereas a phase dis-
location presents a more realistic conception for the
description of physical phenomena that deal with
phase singularities.

In conclusion of this section we note an important
feature of dislocations. If a wave propagation is de-
scribed by a linear differential equation, the field E is
always a continuous, single-valued function of coor-
dinates. Hence any phase dislocation associated
with this field holds one general property: the phase
jump must be equal to 2pn, where n is an integer.

Fig. 1. Examples of ~a! single linear vortex and ~b! phase dislo-
cation.
3. Density of the Turbulence-Induced Dislocations:
Theoretical Treatment

To estimate the dislocation density ld it is sufficient
to get a density l0 of amplitude zeros.4 Since each
dislocation is produced by two single vortices, there is
an obvious relation: ld 5 l0y2. However, if one
calculates directly the probability of zero-amplitude
appearance at a given point, it turns out to be equal
to zero because the event of zero amplitude has a
different measure compared with the measure of the
set of all possible events. For this reason a proba-
bility of zero-amplitude appearance has sense only
with respect to some sized zone. The problem above
is known in the theory of random processes as a
level-crossing problem.24 In our case this problem
can be set up as follows.

Let E~r! 5 E1~r! 1 iE2~r! be the two-dimensional
complex wave field at the aperture. Then let us
choose a small circular zone Gr of radius r ~Fig. 2!
inside the aperture and let P0~Gr! be a probability
that zero amplitude occurs inside Gr ~we choose r to
be so small that no more than one zero amplitude
may appear inside Gr!. Since the turbulence-
induced fluctuations are assumed to be statistically
homogeneous, P0 does not depend on the position of
Gr at the aperture, so this position can be chosen
arbitrarily. Using the notations above, we can ex-
press the density l0 as

l0 5 lim
r30

P0~Gr!

pr2 . (5)

Let us introduce the Cartesian coordinate system
$x, y% whose origin is at the center of zone Gr and
expand the real E1 and the imaginary E2 parts of the
field in a two-dimensional Taylor series in the vicinity
of the origin. Since the magnitude of r can be chosen
arbitrarily small because of the presence of the limit
in Eq. ~5!, we can restrict the expansion by linear
terms:

E1~x, y! 5 E10 1 E1xx 1 E1yy,

E2~x, y! 5 E20 1 E2xx 1 E2yy, (6)

Fig. 2. Notation used for the calculations.
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where all the quantities on the right-hand side are
assumed to be taken at the origin and the quantities
E1x, E2x, E1y, and E2y denote the corresponding par-
tial derivatives of the field.

Zero amplitude occurs at the point ~x0, y0!, where
both E1 and E2 are equal to zero. In the linear ap-
proximation @Eqs. ~6!# this point is an interception
point of two straight lines ~Fig. 2! and its coordinates
are determined from the linear system of algebraic
equations:

E10 1 E1xx0 1 E1yy0 5 0,

E20 1 E2xx0 1 E2yy0 5 0. (7)

Solving the system of Eqs. ~7! we get

x0 5 2
E10E2y 2 E20E1y

E1xE2y 2 E1yE2x
, y0 5

E10E2x 2 E20E1x

E1xE2y 2 E1yE2x
.

(8)

Introducing amplitude A, phase S, and log amplitude
x as

E1 5 A cos S, E2 5 A sin S, x 5 ln~AyA0!, (9)

where A0 is the amplitude of the initial nondistorted
wave, we can rewrite Eqs. ~8! as

x0 5 2
Sy

xx Sy 2 xy Sx
, y0 5

Sx

xx Sy 2 xy Sx
, (10)

where xx and xy and Sx and Sy denote the partial
derivatives of the log amplitude and the phase, re-
spectively, taken at the origin.

In general the probability P0 is a function of both
coordinates x0 and y0 of the interception point.
However, the turbulence-induced fluctuations are as-
sumed to be isotropic. Under this condition the
probability of interest does not depend on the polar
angle w of the interception point ~Fig. 2!. Hence one
can choose this angle arbitrarily for the following
calculations. As follows from Eqs. ~10!, the angle w
is expressed as

tan w 5 2SxySy. (11)

Choosing tan w 5 0, from Eqs. ~10! and ~11! we get

x0 5 2~1yxx!, y0 5 0. (12)

As follows from Eq. ~12!, the probability P0 is equal to
the probability for x0 to be inside the interval @2r, r#.
So P0 turns out to be a function only of x0 because of
the isotropy of the fluctuations. For the same rea-
son P0 is an even function of x0, i.e., P0~x0! 5 P0~2x0!.
On the other hand, Eq. ~12! expresses x0 in terms of
the log-amplitude derivative xx taken at the origin.
So, taking into account the above considerations and
applying Eq. ~12!, we can express P0 through the
first-order PDF of the log-amplitude derivative as

P0~Gr! 5 2 *
`

dxx Wxx
~xx!, (13)
1yr
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where Wxx
denotes the PDF of the log-amplitude de-

rivative. Using Eqs. ~5! and ~13! and recalling that
ld 5 l0y2, one can get the following final expression
for the dislocation density ld:

ld 5 lim
r30

1
pr2 *

1yr

`

dxx Wxx
~xx!. (14)

Equation ~14! presents the main result of this section.
As follows from Eq. ~14!, only the PDF of the log-
amplitude derivative is necessary to calculate the dis-
location density. One can see the advantages of this
formula by comparing it with Eq. ~18! from Ref. 4, for
which one needs to know the six-dimensional PDF of
the complex field and its gradient to calculate the
same quantity.

Let us turn our attention to the physics of the
result above. In general, the dislocation density has
to depend on both amplitude and phase statistics.
However, as soon as we, following Ref. 4, assume that
the phase vortex arises around each zero-amplitude
point, the phase statistics can be excluded from fu-
ture mathematical considerations. Under this con-
dition the dislocation density has to be a function of
the amplitude statistics only. Then the level-
crossing approach allows us to linearize the problem,
which makes it possible to express the dislocation
density as a function of the statistics of the amplitude
and its first partial derivatives. Furthermore, by
introducing the log amplitude, we exclude the ampli-
tude statistics from consideration, keeping only the
statistics of its partial derivatives. And finally, as-
suming the isotropy of fluctuations, we get Eq. ~14!,
which includes only the PDF of one partial derivative
of the log amplitude.

4. Dislocation Density for Different Turbulence
Conditions

In this section we apply Eq. ~14! to calculate the
dislocation density from weak to very strong turbu-
lence conditions. The turbulence conditions are
usually separated by regions that are distinguished
from each other by the magnitude of the so-called
scintillation index bR

2, calculated in a Rytov approx-
imation25 as

bR
2 5 ^I2&y^I&2 2 1

5 8.7Cn
2k2Lkm

25y3H 2 1 1
6

11
D5y6S1 1

1
D2D11y12

3 sinF11
6

arctan~D!GJ ,

D 5
Lkm

2

k
, km 5

5.92
l0

, (15)

where I denotes the intensity, Cn
2 is the structure

constant, k is the wave number, L denotes the prop-
agation length, and l0 is the inner scale of turbulence.
The quantity D, called the wave parameter, is a uni-
versal dimensionless parameter that characterizes a



wave propagation through a turbulent media with a
finite inner scale. Physically it can be considered as
a scaling factor between the Fresnel zone and the
inner scale of turbulence.

Equations ~15! follow directly from the general ex-
pression for the log-amplitude correlation function
that can be found in Ref. 25, Chap. 3. The following
simplified formula for the scintillation index is com-
monly used:

bR
2 5 1.23Cn

2k7y6L11y6. (16)

Equation ~15! is reduced to Eq. ~16! when D .. 1.
The turbulence conditions are usually referred to

as weak turbulence when bR
2 & 0.3–1. It is as-

sumed that the Rytov solution is valid under these
conditions and that the statistics of the log amplitude
are Gaussian. In the opposite limiting case, when
bR

2 tends to infinity, the amplitude distribution ap-
proaches the Rayleigh one,27 which means that the
statistics of field fluctuations are Gaussian. In this
case the dislocation density coincides with that ob-
tained for fully developed Gaussian fields.4 Under
intermediate conditions, which are usually referred
to as strong turbulence, the statistics of amplitude
are neither log normal nor Rayleigh.27 The more
popular PDF model for strong-turbulence conditions
is the so-called K distribution28 and its various mod-
ifications.

First let us estimate the dislocation density for the
case of very strong turbulence that allows us to com-
pare the final result with that obtained in Ref. 4. In
the general case, the PDF of the log-amplitude deriv-
ative occurring in Eq. ~14! can be expressed as

Wxx
~xx! 5 *

0

`

dA * dAx W2~A, Ax!dSxx 2
Ax

A D
5 *

0

`

dAAW2~A, Axx!, (17)

where W2 is the joint PDF of the amplitude and its
derivative and d denotes the Dirac delta function.

In the case of Gaussian statistics, W2 is a product of
the Rayleigh and the Gaussian PDF’s:

W2~A, Ax! 5
1

Î2p^I&sAx

A expS2
A2

2^I&
2

Ax
2

2sAx

2D , (18)

where sAx

2 is the variance of the amplitude deriva-
tive. Substituting Eq. ~18! into Eq. ~17!, we can ex-
press Wxx

as

Wxx
~xx! 5

sAx

2

^I& Sxx
2 1

sAx

2

^I& D
23y2.

(19)

Using Eqs. ~14! and ~19!, we have the following ex-
pression for ld in the case of Gaussian field statistics:

ld 5
1

2p

sAx

2

^I&
. (20)
Equation ~20! for ld coincides with that from Eq. ~18!
of Ref. 4.

We now turn our attention to the case of weak-
turbulence conditions. It is usually assumed that
under these conditions the log-amplitude fluctuations
obey the Gaussian statistics. So we can write Wxx

as

Wxx
~xx! 5

1

Î2psxx

expS2
xx

2

2sxx

2D , (21)

where sxx

2 is the variance of the log-amplitude deriv-
ative. Substituting Eq. ~21! into Eq. ~14! and eval-
uating the integral, we get

ld 5 lim
r30

1
2pr2F1 2 erfS 1

Î2sxx
rDG , (22)

where erf denotes the error function ~Ref. 29, p. 792!.
Applying the asymptotic expansion of the error

function, one can conclude that the limit in Eq. ~22! is
equal to zero. This means that dislocations never
appear while the log-amplitude statistics are as-
sumed to be Gaussian. But it does not mean that
the dislocations do not occur under the weak-
turbulence conditions. The Gaussian log-amplitude
statistics follow from the Rytov approximate solution
of parabolic equation. Hence these statistics are
only an approximation of the real ones. So one may
expect that, under the weak-turbulence conditions,
the real statistics may deviate a little from Gaussian
ones. An abundance of physical quantities that are
of interest in applications are practically insensitive
to such small deviations. However, dislocation den-
sity is an exception. As follows from Eq. ~14!, its
magnitude depends strongly on the asymptotic be-
havior of the PDF of the log-amplitude derivative.
For this reason the small asymptotic deviations of
this PDF from Gaussian form can strongly affect the
dislocation density. As a result, a real dislocation
density under the weak-turbulence conditions may be
low, but not exactly equal to zero. We continue this
discussion in Section 5, which is based on the simu-
lation results.

Let us consider now a case of strong turbulence,
assuming the K distribution for amplitude fluctua-
tions. We also assume that the PDF of the ampli-
tude derivative is Gaussian. This assumption can
be supported by the following considerations. The
dislocation density is affected strongly by high-
magnitude derivatives of amplitude. From the
physical point of view, the main contribution to these
derivatives comes from a vast number of small
refractive-index inhomogeneities situated in differ-
ent parts of turbulent media. So, according to the
central limit theorem, we can expect Gaussian sta-
tistics for high-magnitude amplitude derivatives that
are of main interest for our consideration. For sim-
plicity we also assume that the fluctuations of ampli-
tude and its derivative are statistically independent.
Taking into account the consideration above we can
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write the joint PDF of the amplitude and its deriva-
tive as a product of K and Gaussian distributions:

W2~A, Ax! 5
4^I&2~a11!y2a~a11)y2

sAx
Î2pG~a!

3 AaKa21~2Îa^I&A!expS2
Ax

2

2sAx

2D , (23)

where G is the gamma function and Kn denotes the
MacDonald function ~modified Bessel function of the
third kind, Ref. 29, p. 794!. The parameter a is ex-
pressed through the scintillation index b as

a 5
2

b2 2 1
, b2 . 1.

Substituting Eq. ~23! into Eq. ~17!, we can express
the PDF Wxx

as

Wxx
~xx! 5

2~a22!y2^I&2ay2sAx

aaay2G~a 1 1y2!

G~a!
uxxu2a21

3 expSasAx
2

xx
2^I&DW2~a11!y2,~a21!y2 S2asAx

2

xx
2^I& D , (24)

where Wm,h denotes the Whittaker function ~Ref. 29,
p. 797!. Substituting Eq. ~24! into Eq. ~14!, evaluat-
ing the integral ~see Ref. 29, p. 40, for details!, and
calculating the limit, one gets the following expres-
sion for the dislocation density:

ld 5
sAx

2

p~3 2 b2!^I&
, 1 , b2 , 3. (25)

The above calculation with the K distribution gives
only a rough estimate of the associated dislocation
density because of the assumptions that have been
made through the derivation of the joint PDF W2
given by Eq. ~23!. These calculations have been
made mainly for illustrative purposes to show how a
criterion of dislocation appearance can be used for
testing the strong-turbulence PDF’s. As is shown in
Section 5, the dislocations always appear under the
strong-turbulence conditions. However, the K dis-
tribution is only one among the candidates for the
strong-turbulence PDF; several other distributions
have been suggested by different authors. Each can
be tested on the existence of the limit in Eq. ~16!; if
this limit turns out to be zero or infinity, the corre-
sponding distribution is not a good candidate for the
strong-turbulence PDF. Moreover, since a class of
distributions satisfying the above criterion is not so
wide, a range of searching for new PDF candidates
can be narrowed at the very start.

Let us discuss another opportunity that may be
interesting from both the experimental and the the-
oretical points of view. The results above show that
the dislocations do not appear while the log-
amplitude fluctuations obey Gaussian statistics.
This conclusion can be used in experimental investi-
gations to estimate the upper boundary of the region
where the Gaussian statistics is applicable to the
4530 APPLIED OPTICS y Vol. 37, No. 21 y 20 July 1998
log-amplitude fluctuations. In this case an appear-
ance of dislocations can be used as a trigger test: As
soon as they occur, the statistics of the log amplitude
have to be different from Gaussian.

The expressions above allow for a theoretical esti-
mation of dislocation density but they are applicable
for separate regions of turbulence conditions. Along
with this, it would be interesting in applications to
get a continuous approximate expression to be suit-
able for various turbulence conditions. We derive
below such an empirical formula based on some phys-
ical considerations and our simulation results.

At first let us consider the conditions under which
the dislocations just start to appear. These condi-
tions arise as soon as the statistics of the log-
amplitude derivative begin to be different from
Gaussian. So we can expect that the desired expres-
sion for the dislocation density has a functional form
similar to that of Eq. ~22!, which we obtained by using
the linear expansion of the wave field inside a circular
zone with radius r and by treating the case when r
tends to zero. However, we can introduce a disloca-
tion density in some other way, namely, we can con-
sider a case when r tends to some finite value, say rc,
rather than to zero. From a mathematical view-
point this means that the linear approximation of the
wave field has to be valid inside the zone with radius
rc. From a physical viewpoint rc can be considered
as some quantity that is proportional to the correla-
tion length of log-amplitude fluctuations. Taking
into account the consideration above, we seek the
expression of interest as

ld 5 hF1 2 erfS 1

Î2sxx

2rc
DG , (26)

where both h and rc are some functions of the turbu-
lence and the propagation conditions.

Taking into account the known properties of the
error function, we can conclude from Eq. ~26! that the
conditions of interest are determined mainly by the
magnitude of rc. We hope also that the log-
amplitude correlation function calculated in a Rytov
approximation is still suitable under these conditions
~or at least gives the correct functional dependencies!.
So one can use the known expression for the normal-
ized log-amplitude correlation function bx to estimate
rc ~Ref. 25, Chap. 3!:

bx~r! < 1 2 12.3r2~lL!25y6l0
21y3 5 1 2 1.47r2D1y6kyL,

(27)

where l 5 2pyk is the wavelength and D is the wave
parameter mentioned after Eqs. ~15! above. Equat-
ing approximation ~27! to zero, we get the following
estimate for rc:

rc 5 0.82aD21y12ÎLyk,

where a denotes some numerical coefficient.
We now turn our attention to the function h. We

assume that h in Eq. ~26! is a function of the variance
of the log-amplitude derivative sxx

2 and the wave



parameter D. Hence, as follows from dimensional
considerations, h is proportional to the first degree of
sxx

2. So we can express the function h as

h 5 bsxx

2Da,

where both b and a are some numerical coefficients.
Taking into account the considerations above and
comparing the results with numerical simulations,
we estimated the magnitudes of a, b, and a and ar-
rived at the following empirical expression for the
dislocation density:

ld 5
D21y12sxx

2

2p2 F1 2 erfS pD1y12

4sxx
ÎLykDG . (28)

As is seen in Section 5, Eq. ~28! turns out to be in
unexpectedly good agreement with the simulated
data.

5. Simulation Results

Our simulations are based on the numerical solution
of the parabolic equation that describes the propaga-
tion of monochromatic light waves through a turbu-
lent atmosphere ~Ref. 25, Chap. 2!:

2ik
]E~z, r!

]z
1 D'E~z, r! 1 2k2ñ~z, r!E~z, r! 5 0, (29)

where E 5 E1 1 iE2 denotes the complex wave field,
r 5 ~x, y! is the transverse position vector, D' 5
@~]2y]x2! 1 ~]2y]y2!#, k 5 2pyl is the wave number,
and ñ denotes the refractive-index fluctuations.

Our method of simulations is practically the same
as that presented in Ref. 26, so we do not describe it
here; instead we refer the reader to this reference for
details. Here we restrict our attention to the initial
monochromatic plane wave that propagates through
the turbulent atmosphere with constant parameters
along the propagation path. The refractive-index
fluctuations are assumed to be an isotropic Gaussian
field with the corresponding spectrum Fn given by25

Fn~k! 5 0.033Cn
2k211y3 exp~2k2ykm

2!,

km 5 ~5.92yl0!, (30)

where l0 denotes the inner scale of the turbulence.
Although there are other, more advanced inner-

scale models, we have applied the simplest one above
because the main aim of our study is a qualitative
analysis and an outline of the physical effects asso-
ciated with phase dislocations rather than the exact
quantitative results. For the same reason and to
avoid long computer calculations, we have also cho-
sen not as high an accuracy of simulations.

There are three critical parameters that signifi-
cantly affect the final results: a grid step, a grid
size, and the number of phase screens to be used in
simulation. We have estimated these parameters
with the following procedure. First the statistical
quantity of interest is calculated with some initial
magnitudes of the parameters. Then the same sta-
tistical quantity is recalculated with the decreased
grid step and the increased grid size whereas the
screen number remains the same. Varying the
transverse grid parameters is continued until the dif-
ference between two successive estimations becomes
no greater than 15%. Then the same procedure is
repeated with the screen number. As a result, we
arrived at the following transverse grid parameters:
512 3 512 grid size, d 5 0.1l0 grid step. Although it
turned out that 20 phase screens are sufficient, a
greater number of screens are used to get more points
along the propagation path in some graphs below.
The corresponding screen numbers are given in the
figure captions.

The procedure of the simulations is as follows.
First we generate a random sampling of the
refractive-index field corresponding to the spectrum
given by Eq. ~30!. Then a numerical solution of Eq.
~29! with this refractive-index field is performed for a
given propagation length L. As a result we get a
sampling of complex field E at the aperture trans-
verse to the propagation direction. Furthermore,
the amplitude and the phase samples are extracted
from the complex field sampling. These samples are
used in the search of phase dislocations, which is

Fig. 3. Examples of phase dislocations obtained from simulations.
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performed in two steps. In the first step the ampli-
tude sampling is scanned to get the coordinates of all
the points at which the amplitude has local minima.
As a result we get a set of all suspicious points in
which the phase vortices can appear, which allows us
to narrow the area of future searching. Then these
points are mapped onto the phase sampling and a
phase tracing is performed around each of them. A
vortex is considered to be found if the corresponding
tracing reveals the 62p phase jump. The vortices
with the 12p ~22p! jump are considered as positive
~negative! ones. An elective dislocation density is
calculated for each sampling as half of the number of
vortices divided by the area of the searching zone.
These elective densities are averaged over all the
samples to get the dislocation density, which is de-
noted in the graphs below as simulations. The vari-
ances sxx

2 and sAx

2 needed for the estimation of the
dislocation density with the theoretical expressions
@Eqs. ~20!, ~25!, and ~28!# and the magnitude of the
scintillation index b2 are also calculated from the
simulated samples, but the corresponding averaging
is performed both inside each sampling and over all
the samples.

Figures 3~a! and 3~b! show two examples of the
phase dislocations that have been found in the sam-
pling obtained under the following conditions: Cn

2

5 10214 m22y3, the wavelength l 5 0.6 mm, the inner
scale l0 5 0.5 mm, and the propagation length L 5 1.2
km. In both figures the top graphs illustrate the
dislocated phase surface whereas the graphs at the
bottom present the corresponding amplitude. The

Fig. 4. Dislocation density ~top graph! and scintillation index
~bottom graph! versus propagation length. Fifty phase screens
were used.

4532 APPLIED OPTICS y Vol. 37, No. 21 y 20 July 1998
points of zero amplitude responsible for the creation
of the corresponding dislocations are clearly seen in
the amplitude graphs.

The six graphs below show a behavior of the dislo-
cation density for different turbulence and propaga-
tion conditions. In all the graphs we use the
following notation. A direct count of the dislocation
density from simulated samples is denoted as simu-
lations and is plotted by filled circles. The theoret-
ical predictions made with Eqs. ~20!, ~25!, and ~28! are
plotted by solid curves. We recall that the variances
sxx

2 and sAx

2 that appeared in these equations are
also obtained from simulated samples. The predic-
tion by means of Eq. ~20! is denoted as Gaussian
distribution, the results obtained with Eq. ~25! are
denoted as K distribution, and the results following
from Eq. ~28! are denoted as erf approximation. In
the bottom graphs of Figs. 4–7 we also compare the
simulated scintillation index ~Figs. 4 and 6! and the
variance of log-amplitude derivative ~Figs. 5 and 7!
with the ones calculated in the Rytov approximation.
In these graphs the simulated magnitudes and the
theoretical results following from the Rytov solution
are plotted by filled circles and by solid curves, re-
spectively.

Figure 4 ~top! plots the dislocation density versus
the propagation length for given turbulence condi-
tions. Below we distinguish four regions with dif-
ferent behaviors of the dislocation density that
depend on the turbulence conditions. The bound-
aries of regions are indicated by thin dotted lines.
For the quantitative estimations of the turbulence

Fig. 5. Dislocation density ~top graph! and variance of log-
amplitude derivative ~bottom graph! versus propagation length.
The region of rapid growth of the density is shown. Seventy-five
phase screens were used.



conditions, the magnitude of scintillation index b2 is
commonly used. We estimate b2 from the simulated
data and calculate its Rytov approximation, bR

2, by
Eq. ~15!. Both quantities are plotted in the bottom
graph for comparison.

The first one is a region of weak turbulence where
the dislocations were not detected. However, we be-
lieve that the dislocations can occur inside this region
but they were not detected because of the finite grid
size and the sampling number. So we consider that
in this region the dislocation density may be quite low
but not exactly equal to zero. The corresponding
magnitude of the scintillation index calculated in the
Rytov approximation is inside the range bR

2 & 0.5.
The second one is an intermediate region between

the weak and the strong turbulences. The bound-
aries of this region may be approximately related
with bR

2 as 0.5 & bR
2 & 1. As one can see from the

bottom graph, the upper boundary may also be con-
sidered as the conditions under which the Rytov ap-
proximation for the scintillation index starts to fall
down. The dislocation density begins to grow rap-
idly at the outset of this region. Figure 5 ~top! shows
this effect in more detail. In the bottom graph of
Fig. 5 we compare the simulated variance of the log-
amplitude derivative with its Rytov approximation.
As one can see by comparing the two graphs in Fig. 5,
the lower boundary of this region may be related to
the conditions under which the Rytov prediction for
variance of the log-amplitude derivative differs
strongly from the simulated data. We also note an
interesting effect when dealing with the Rytov ap-
proximation. By comparing the bottom graphs in

Fig. 6. Dislocation density ~top graph! and scintillation index
~bottom graph! versus propagation length. 150 phase screens
were used.
Figs. 5 and 6, one can see that the Rytov approxima-
tion for the variance of the log-amplitude derivative
falls down well before that for the scintillation index.
This effect is due mainly to the multiple scattering
because it affects more strongly the log-amplitude
derivative than it does the scintillation index. How-
ever, the Rytov approximation handles only partially
the multiple scattering that leads to this effect.

In the third region ~1 & bR
2 & 4! the rapid growth

of the dislocation density is replaced by a slower but
still nonlinear increase. The upper-region boundary
can be associated with the conditions under which
the simulated scintillation index b2 reaches the max-
imum.

In the fourth region, where the simulated scintil-
lation index b2 starts to saturate, the dislocation den-
sity grows almost linearly. Here both its functional
behavior and its magnitude are close to the theory
prediction for fully developed Gaussian fields. In
our opinion, the small disagreement is due to the
finite grid step: A number of small-sized disloca-
tions that cannot be detected increase and start to be
nonnegligible.

One can see the same salient features as above in
Figs. 6 and 7, which have the same results as those
given in Figs. 4 and 5, but for ten times weaker tur-
bulence strength Cn

2.
Figure 8 presents the dislocation density versus

wavelength. A decrease of density with wavelength
can be explained as follows. The main reason for the
dislocation appearance is a multiple scattering of
light waves on the atmospheric inhomogeneities.

Fig. 7. Dislocation density ~top graph! and variance of log-
amplitude derivative ~bottom graph! versus propagation length.
The region of rapid growth of the density is shown. 250 phase
screens were used.
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This effect becomes weaker as the wavelength in-
creases, leading to a decrease of dislocation density.

Figure 9 shows the dislocation density as a function
of the inner scale of turbulence. Similar to the
wavelength dependence, the dislocation density de-
creases with the increase of the inner scale. The
physics behind this effect is simple enough. As was
mentioned in Section 4, small turbulence eddies
make the main contribution to dislocation density.
On the other hand, the size of these eddies is associ-
ated with the inner-scale magnitude. So the dislo-
cation density grows as the inner scale decreases.

The results above allow for the following conclu-
sions. The dislocation density depends strongly on
the turbulence and the propagation conditions. Un-
der very weak-turbulence conditions this quantity
seems to be very low. Then, inside some intermedi-
ate region between the weak and the strong turbu-
lences, it starts to grow rapidly, reaching quite
quickly a magnitude of the order of 103 m22. Fur-
thermore, under strong-turbulence conditions, this
rapid growth is replaced by a slower but still nonlin-
ear increase. And finally, under strong-turbulence
conditions, the dislocation density increases almost
linearly. In this case the simulated dislocation den-
sity is in good agreement with theoretical prediction
for fully developed Gaussian fields. Unfortunately,
neither this prediction, nor the one with the K distri-

Fig. 8. Dislocation density versus wavelength. Twenty-five
phase screens were used.

Fig. 9. Dislocation density versus inner scale of the turbulence.
Twenty-five phase screens were used.
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bution, allows for a satisfactory description under
other turbulence conditions ~as for the K distribution,
it may be due to the rough approximation mentioned
in Section 4!.

The comparison of simulated data with the empir-
ical formula in Eq. ~28! shows its applicability for a
wide range of turbulent and propagation conditions.
The predictions with this expression are in good
agreement with the data for main dependences of
interest, such as the dependence of the dislocation
density on the turbulence strength Cn

2, on the prop-
agation length, on the wavelength, and on the inner
scale as well. So we can conclude that the empirical
formula in Eq. ~28! allows for a suitable description of
the dislocation density.

6. Conclusions

The problem of turbulence-induced phase disloca-
tions has been considered. The relatively simple ex-
pression for associated dislocation density involving
only the PDF of a log-amplitude derivative has been
derived. Based on this expression, the theoretical
formulas that allow one to estimate the dislocation
density for various turbulence conditions have been
obtained. We have suggested an empirical formula
for the density of interest that seems to be suitable for
a wide range of turbulence and propagation condi-
tions. The theoretical conclusions have been sup-
ported by the simulations by means of the numerical
solution of a parabolic equation. The results ob-
tained have allowed us to distinguish four interesting
regions of turbulence conditions within which a dif-
ferent behavior of the dislocation density takes place.
The first is a region in which the log-amplitude sta-
tistics are near Gaussian. This region can be asso-
ciated with the very weak turbulence conditions, and
the density of interest seems to be very low inside this
region. The second is an intermediate region be-
tween the weak and the strong turbulences, where
the dislocation density starts to grow rapidly. In the
third region associated with the strong turbulence,
the rapid growth of dislocation density is replaced by
a slower but still nonlinear increase. And inside the
final, fourth region where the turbulence can be con-
sidered as saturated, the dislocation density in-
creases practically linearly in accordance with the
theory prediction for fully developed Gaussian fields.
The comparison of simulated data with the empirical
formula allows for the conclusion that it provides a
good continuous approximation of the dislocation
density for various conditions.

The results obtained may have some promising ap-
plications in atmospheric optics. Among them, ex-
perimental investigations of turbulence-induced
dislocations may be of help to estimate the upper
boundary of the region where the Gaussian statistics
are applicable for the log-amplitude fluctuations.
The criterion of dislocation occurrence can also be
used in theoretical research. For example, it may be
useful to narrow the search area of a new strong-
turbulence PDF of amplitude fluctuations. How-
ever, along with the usefulness of dislocations in



atmospheric optics, they could be potentially danger-
ous for adaptive optics and speckle interferometry.
This conclusion was drawn by Fried and Vaughn17

and supported later by Lukin and Fortes.18 As for
adaptive optics, both conventional measurements
and conventional correction of a dislocated phase can
give an unexpected result. The resulting quality of
the correction depends on the size of the area covered
by phase vortices. In connection with this, a spatial
distribution of vortices is also of interest. A statis-
tical treatment of this problem needs some additional
investigation; below we discuss only some prelimi-
nary conclusions following from the visual observa-
tions of simulated samples.

In our opinion, a quite interesting effect takes place
near the lower boundary of the region where the vor-
tices just begin to occur in some detectable quantities.
They do not appear completely independently inside
the samples. Instead, several vortices group to-
gether, forming cobweblike fringes. The area occu-
pied by these fringes is small compared with the
sampling area. Then, with an increase in the mag-
nitude of fluctuations, the number of fringes grows
and the vortices start to cover empty places. Fi-
nally, when the turbulence conditions become strong
enough, the vortices cover uniformly the whole sam-
pling area.

The authors would greatly appreciate any experi-
mental data on atmospherically induced phase dislo-
cations.
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