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Chapter 1

Prologue

Figure 1.1: Cloud in Trousers

I type this Prologue, respecting my teachers
of English, and also those of the Russian Lit-
erature. They think, that every scribbling,
since W.Shakespeare, should begin with some
Prologue1, and should finish with some Epi-
logue. In addition, the Soviet teachers had promoted the sovietism2 and
the socialistic realism, that implies, that even a cloud should wear some
trousers3 as it is shown in Fig.1.1.
This prologue appears as a kind of trousers, a wrap, to cover the inside;
where, my results are presented in a naked and provocative form.

This Book is about holomorphic (analytic) solutions F of equation

F (z+1) = T (F (z)) [prologeq] (1.1)

where T is some given holomorphic (analytic) function. Also, this Book
is about applications of the solution F , its inverse function G=F−1 and
interesting properties of function T n(z)=F (n+G(z)). The given func-
tion T is called “transfer function”; the solution F is its “superfunction”.
The inverse function G is called the “Abelfunction”.

The Prologue describes not functions F and G above, but this Book:
what is it, why is it, how to use it, what is in it, and what is not. I follow
the classical example4 and explain, why this Book is so important.
Readers, who are interested namely in solutions of the equation above
and their physical meaning, may scroll from here directly to Introduc-
tion, Chapter 2 at page 20.

1 W. Shakespear. Romeo and Juliet. Prologue. 932/Sh12, Kenkyusba English Classics, 1926.
2http://mizugadro.mydns.jp/t/index.php/Sovietism
3http://www.unlikelystories.org/old/archives/cloudintrousers.html A Cloud in

Trousers by Vladimir Mayakovsky, translated from the Russian by Andrey Kneller. Prologue.
Cited by the state for 2014.09.10.

4 François Rabelais. Gargantua [1] : .. Most noble and illustrious drinkers, and you thrice
precious pockified blades (for to you, and none else, do I dedicate my writings),
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1 For whom is this Prologue

I type this Prologue not for the Readers. I type this Prologue for those,
who will not read this Book:
For Editors, managers, sellers, who deal with thousands books, and
who have need within a minute to understand, why namely this book
should be placed at the first place in the list of recommended literature.
For the experienced critics, who need to read only two or three
pages, in order to write the review:What oddity is this: Superfunctions?
What sort of Superfunctions have we here? And thrust into the world
by a laserist! As if we are not satisfied with superconductivity, super-
symmetry, superfluidity, supermen and supermarkets! As though threes
enough had not been cut for paper, and not enough files have been loaded
into internet! As though folks enough of all classes had not tired their
fingers with keyboards! The whim must take a laserist to follow their
example! Really there is such a lot of paper nowadays that it takes time
to think what to wrap in it! 5

For librarians, who need to find for this Book a suitable place, in order
to make it visible at the background of tons of books about supercon-
ductivity, supermen, supermarkets and superinflation.
For colleagues, who may wonder, why the laserist, instead of to pro-
mote the optical ceramics (for which the big Grants are assigned) deals
with superfunctions (which are yet very far from to get the financial
support), and behaves as a simpleton, who does not know, How to Win
Friends and Influence People.
For relatives and friends, who teach me to live and to promote my
results. They seem to know very well, how to influence people. This book
could be a kind of medicine against this kind of influenza. However, more
detailed analysis of relations between friends is published separately [23].

For the categories of non-readers mentioned above, I should specify the
genre and topic of this book. The next two sections are dedicated to
this. With such a specification, one may form his/her/its own opinion
about the book, without to read it.

5N.Gogol. Evenings at a Farmhouse near Dikanka. MARCH 27, 2013. [4] : “What oddity is
this: Evenings on a Farm near Dikanka? What sort of Evenings have we here? And thrust into
the world by a beekeeper! God protect us! As though geese enough had not been plucked for pens
and rags turned into paper! As though folks enough of all classes had not covered their fingers
with inkstains! The whim must take a beekeeper to follow their example! Really there is such a
lot of paper nowadays that it takes time to think what to wrap in it.”
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2 Russian version and copyleft

Figure 1.2: Translation may cause confusion

This book had been planned as
the English version of the Rus-
sian book “Суперфункции” 6.
I did my best efforts trying to
translate the Russian expres-
sions into English; figures 1.1,1.2 prove my best efforts.
I provide references to the English translations of the classical books
cited in the Russian version. However, in many cases, the translation is
not possible. Often, it is difficult to find the English equivalents of the
references cited. So, I give up trying to translate the Book; I re-write it
in English.

I reuse some formulas and figures, that are available at the free sites; in
particular, at Mizugadro and Citizendium. The links are mentioned
in the Supplement 4, at page 301 . I load the gallery of the im-
ages at http://mizugadro.mydns.jp/t/index.php/Category:Book ;
I hope, this server will last longer, than the previous holder of TORI at
http://tori.ils.uec.ac.jp/TORI, that had been attacked 2013.02.27. the
access to http://tori.ils.uec.ac.jp/TORI had been disabled. It costed
certain efforts to arrange its clone at http://mizugadro.mydns.jp/t.
The reason of the aggression could be the critical article prepared for
“Physics Today” 7. Unfortunately, namely this way the politicians an-
swer the critics, while they cannot build any logical argumentation. I
hope, those politicians pay to administration of our university some sig-
nificant amount per each day, while TORI is not available at its original
URL. I have no other explanation of the attitude or our administration,
who had post-factum approved that barbarian attack. I try to make
Science, not the criminal investigation, so, I mention only the scientific
point of view on the events. However, I hope, one day the professional
criminalists carefully investigate the case, as well as the origins of other
attacks that happened 2013.02.27, 2014.02.27, 2015.02.27, 2016.02.27,
2017.02.27 (and can be expected for 2018.02.27). 8

6http://mizugadro.mydns.jp/t/index.php/Superfunctions_in_Russian
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic
Press, 2014. (In Russian)

7http://mizugadro.mydns.jp/PAPERS/2013physToday.pdf D.Kouznetsov. Corruption in
Russian science. 2013, preprint

8http://mizugadro.mydns.jp/t/index.php/Tori_attacked
http://budclub.ru/k/kuznecow_d_j/toriattacked.shtml D.Kouznetsov. TORI attacked, 2013
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I allow the free use of my results, and I try to simplify the use. In
particular, I provide generators of images, used in the Book. I would
not specify this in details, but one recent observation indicates that the
problem is very serious. Since year 2014, the strange phenomenon is
observed in the resources of wikimedia: the administrators claim, that
publication of my results violate my authors rights. The same, and even
worse, happen with results by other authors from the USSR and, es-
pecially, texts of the Soviet dissidents. The administrators ignore the
permissions provided by the copyright owners, and remove the texts
and the images, claiming, that the loading or the texts and images are
“Copyright violation”. The similar phenomenon could take place in the
Nazi Germany. The nazi used to arrest, to kill the opponents, and with-
drawn their books from shops and libraries with pretext of defence of
the intellectual property. They killed many authors, and, if the author
is already dead, the fascists claim, that now the State becomes owner
of the copyright property. However, the State, after to kill the authors,
prohibit the distribution of their works. May be, the professional histo-
rian corrects me, that the German nazi acted in a little bit different way.
But everyone may look at wikisource, and, especially, to its Russian ver-
sion and see, that namely this happens at wikimedia, and, especially,
since year 2014. Perhaps, the Russian Soviet veterans decided, that the
invasion into Ukraine and plundering of Crimea is not sufficient, and
begun to plunder also the wiki resources. I mention this in the special
statement 9.

I type the paragraph above in order to stress, that I had issued the per-
mission to distribute my results under the free GNU license; the only
attribution is required. The attempt to “defend” my author’s right in
the way described above, is a fraud: several years ago I had allowed
the free distribution, and I provide the links, that confirm this. In par-
ticular, the permission refers to the plots, used in this book and their
generators. I specify the URL of the image at each picture. If some
administrator claims, that use of this image under the "free" license vi-
olates my copyright, let me know. I think, such an administrator should
be qualified as liar, impostor, knave, thrive; and his/her/its attempts to
defend my author’s right in such a way should be qualified as a fraud.
In other words, use the images from this Book, as well as from Russian
version, for free, but do not forget to attribute the source.

9 http://mizugadro.mydns.jp/t/index.php/Kouznetsov,_permission Open letter by
Dmitrii Kouznetsov about massive removal of texts and images from Wikimedia projects with
pretext of defence to the copyright of the authors. Wed, Mar 18, 2015 at 11:23
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3 Physical mathematics

While writing this Book, I was asked about its genre. I searched the
answer in various databases, and it seems, the closest qualification is
“Physical mathematics” [78, 59, 60].

Term “physical mathematics” should not be confused with “mathemat-
ical physics”. The order of words is important. Similar examples exist
in the Quantum Mechanics. Let P be momentum of a particle, and Q
be its coordinate; then PQ−QP =−i~.
One student could not catch the sense of non-communing operators. She
tried to understand, why operator of creation does not commute with
operator of annihilation. The Professor tried different explanations, then
he found the strong example for female students; he asked:
Could you explain me, please, why operation TO CLEAN-UP does
not commute with operation TO DIRT-DOWN ?
The student was content, she said:
Thank you, Professor! This is very good example! Now I understand
all the Quantum Mechanics!
Professor also got a good lesson; he realised, how to teach Quantum
Mechanics, keeping women and female logic in mind 10.

Term “mathematical physics” denotes the mathematical exercises with
equations that come from Physics.
Term “physical mathematics” means, that the common scientific tools
are used to check mathematical conjectures; the rigorous mathematical
deduction appears as a possible scientific method, but not an imperative.

4 TORI axioms

In this Book, I use the TORI Axioms. This section retells some results
from publications in “Uspekhi” [67] and J. of Modern Physics [83]. These
results refer to definition of term “Science”. TORI Axioms appear as
parts of the definetion of this term.

10http://pda.anekdot.ru/id/658766 Bogorad Victor. Мысли, Мысли. (2013, In Russian)
http://mizugadro.mydns.jp/t/index.php/Female_logic D.Beklemishev. Female logic. (2013)
http://www.ams.org/notices/201309/rnoti-p1156.pdf J.M.Deshler, E.A.Burroughs. Teach-
ing Mathematics with Women in Mind. Notices of the AMS, V.60, No.9, p.1156-1163.
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Science is kind of knowledge, activity and research, based on
concepts, that have all the six properties below:

1. Applicability: Each concept has the limited range of validity, dis-
tinguishable from the empty set.

2. Verifiability: In the terms of the already accepted concepts, some
specific experiment with some specific result, that confirms the concept,
can be described.

3. Refutability: In the terms of the concept, some specific experiment
with some specific result, that negates the concept, can be described.

4. Self-consistency: No internal contradictions of the concept are
known.

5. Principle of correspondence: It the range of validity of a new
concept intersects the range of validity of another already accepted con-
cept, then, the new concept either reproduces the results of the old
concept, or indicates the way to refute it. (For example, the estimate of
the range of validity of the old concept may be wrong.)

6. Pluralism: Mutually-contradictive concepts may coexist; if two
concepts, satisfying requirements 1-5 above have some common range of
validity, then, in this range, the simplest of them has priority.

The 6 properties, requirements above are TORI axioms. They are
specified also at http://mizugadro.mydns.jp/t.

The main results, that had been presented at TORI and related to this
Book, are published in Scientific Journals [83, 85, 88, 91]. In order
to simplify the referencing, the axioms above needed a special name.
Having poor phantasy, I just keep the initial abbreviation, TORI, that
means Tools for Outstanding Research and Investigation. The Russian
transliteration “ТОРИ” has similar meaning (“Теоретические Основы
Революционных Исследований”). Many results, reported at the con-
ferences and in the scientific journal, look so similar, that it is difficult
to find, what namely new and interesting does each of them suggest.
They barely satisfy the TORI axioms, if at all. The non-trivial results
appear to be “outstanding”, “revolutionary”, in the sense, that they stay
a little bit out of the main trend of scientific research.
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Articles of site http://mizugadro.mydins.jp/t collect tools: con-
cepts, formulas, algorithms, pictures, that I consider to be “outstanding”
and useful in the scientific research. I assume, that the “instanding” re-
searches are already well represented in Citizendium, Wikipedia and
scientific journals, and there is no need to repeat them again. In partic-
ular, I load to TORI generators of figures, used in this book. The idea is,
that each code can be downloaded by the Reader, compiled, executed,
and, if necessary, modified for the new (and, perhaps, unexpected for
me) applications.

Figure 1.3: Server felt down

I load the generators also to other sites,
in order not to make an impression, that
the politicians may completely block the
access to my results attacking another
server. In this sense, Manuscripts don’t
burn [8].
In the Supplement, I suggest the links
to other internet recourses for the case if
some server is not reachable. The same,
for the case, if it suddenly falls down, as it is shown in Figure 1.3.

With links, suppled to figures, the Reader can use and develop the for-
malism of superfunctions just from the place, until I have advanced.
Just pick-up the figure you like and load its generator.

5 What for this book is

Since publication in 2009 of the article about holomoprhic tetration [54],
I expected, the mathematicians can do the rest of the job by themselves.
That publication refers to the special case of equation (1.1), with T =

exp; and the natural tetration as solution is considered, F =tet.

Seven years passed by since [54], but superfunctions did not appear in
descriptions of the algorithmic languages. Neither tetration, nor super-
factorial [65], nor other superfunctions I had reported appear as built-in
functions. Until now, the function Nest [97] in language “Mathematica”
requires, that the number of iterate is integer. If one approximates some
bell-like function, then, usually, the phantasy of colleagues does not go
farther than the Gaussian exponential, hyperbolic secant or Lorentian.
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One could use also, for example, the half-iterate of the exponential [10],
id est, such function f , that f(f(z)) = exp(z), instead of the exponent
in 2/(ex+e−x), as well as other non-integer iterates of vatious functions,
but one needs the formalism of superfunctions for the evaluation. This
Book describes such a formalism.

Most of the Mathematical Analysis in schools and universities is built-up
on the first three ackermanns: addition, multiplication, exponentiation
and their inverse functions in various combinations. This arsenal could
be greatly extended, including, for example, the 4th ackermann, which is
tetration, or the 5th ackermann, that is pentation. However, one needs
formalism of superfunctions to evaluate tetration and pentaiton [64, 89]

When physicists analyse the nonlinear response of a medium, they try
to make the sample optically-thin; otherwise, the re-absorption and sat-
uration lead to mistakes [42, 43, 44, 45, 46, 47]. For the thin sample,
the precision of measurements is low. Superfunctions allow to work
with thick samples, and still reconstruct behaviour of intensity inside
the sample [84, 85].

Many researchers believe that namely their work is especially impor-
tant. I am not an exception. From my point of view, tetration and
arctetration, as well as other superfunctions and abelfunctions, will be
import for science since century 22; so important, as the exponential
and logarithm are important since century 19. This Book explains, how
to calculate superfunctions and what can one do with them.

When the fundaments of superfunstions had been formulated, one of my
coauthors, Akira Shirakava [38] had declared, that it is not possible, to
recover distribution of intensity of light in the amplifier from its transfer
function. [74]. Then, the algorithm for this recovery had been presented
[61, 84, 85], and Shirakava said, that the formalism of superfunctions is
too complicated [75]. Through all the mutual misunderstandings, I con-
sider Shirakawa as specialist in fibre lasers, and I take into account his
complains. I try to make this book popular. So, I cite not only scientific
articles. Also I try to avoid complicated mathematics, at least in some
figures. However, I still suppose, that the Reader can distinguish an In-
tegral from a logarithm, and has some idea, what is square root of minus
unity. If the Reader in addition, had seen some Cauchy intergal(s), this
is also a good advantage.
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In order to simplify the reading, I try to avoid long sentences and di-
gressions, although not always it is possible. In order to explain this, I
suggest the example:

Happy is the traveller who, after a long and heavy journey, with its cold
and humidity of air-conditioners, with long waiting-lines at the passport
control, curious to under ware the special control officers, delayed flights,
lost luggage, going to the opposite direction taxi drivers, sees at last the
familiar roof with its lights approaching to meet him. And there rise
before his mind the familiar rooms, the delighted outcry of the servants
running out to meet him, the noise and racing footsteps of his children,
and the soothing gentle words interspersed with passionate kisses that
are able to efface everything gloomy from the memory. Happy the man
with a family and nook of his own, but woe to the bachelor!
Happy is the researcher who, passing by the strange results, paradoxes
and their wrong, inconsistent interpretations, attaches himself to phe-
nomena that display the loftiest virtues of scientific achievements, who,
from the great whirlpool of figures flitting by him daily, has selected
only the few exceptions, for which the answers are already known; who
has never tuned his research to a less exalted key, has never stooped
from his pinnacle to really new and unexpected phenomena. His fair
portion is doubly worthy of envy; he lives in the midst of them as in the
midst of his own family and, at the same time, his fame resounds far
and wide. He clouds men’s vision with enchanting incense; he flatters
them marvellously, covering up the gloomy side of science and life, and
exhibiting to them the noble man. All run after him, clapping their
hands and eagerly following his triumphal chariot.
They call him a great world-famed scientist, soaring high above every
other genius as the eagle soars above the other birds of the air. Young
ardent hearts are thrilled at his very name; responsive tears gleam in
every eye. . . . No one is his equal in power — he is a God! But quite
other is the portion, and very different is the destiny of the writer who
sees and reveal the phenomena strange, that are out of the commonly ac-
cepted theories and contradict to the obvious commonly-accepted com-
mon sense, calling for the revision or at least some critical analysis of the
widely recognised results, that already have assigned the highly presti-
gious awards and huge grants and foundations.. En fin, he’ll not escape
from the scientific council, who keep the old paradigms and any doubt
consider as a sin, as a kind of heresy.. Without compassion, such a re-
searcher is left by the roadside like the traveller without a family. Hard
is his lot and bitterly he feels his loneliness. [5]

I promise, that the above is longest digression in this Book. Trying to
keep the Book thin, the philosophic exercises about the place of Science
in the Human knowledge [67, 68] are published separately. It is not
possible to cover Everything (id est, the Full Set). Since the beginning,
I try to specify, what is in the book, and what is absent in the Book.

15



6 What is present in the Book

This Book suggests the general approach for construction of superfunc-
tions and various algorithms of their evaluation. Superfunction is so-
lution F of equation (1.1); I repeat it here: F (z+1) = T (F (z)). This
equation is called “Transfer equation”, and the given function T is called
“transfer function”.

In this book, I describe various algorithms for evaluation of superfunc-
tions. The choice of the algorithm depends on the fixed points of the
transfer function, which are solutions L of equation T (L) = L; and,
also, depends on the additional requirements: what properties do we
expect from the required solution F of equation (1.1). These proper-
ties, being postulated, should provide the uniqueness of the solution,
but still should allow its existence and should indicate some way(s) of
the evaluation.

The inverse of superfunction F is called here “abelfunction” G= F−1.
The abelfunction satisfies the Abel equation G(T (z)) = G(z)+1. In this
book, I consider many examples of the transfer function T , superfunc-
tion F and the abelfunction G. I suggest ways of the efficient evaluation.
Efficient means, that the functions (and corresponding figures) are com-
puted in the real time and with good precision. With use of the complex
double arithmetics, the superfunctions and abelfunctions are evaluated
with 14 decimal digits. I load the figures together with their gener-
ators to http://mizugadro.mydns.jp/t/index.php/Category:Book;
the readers can check them with C++ and Latex.

By default, I assume, that the parameters have real values, while the
arguments of the functions may have complex values. For the illustra-
tions, the complex maps are essential. In particular, the complex map
of the natural tetration is used at the front cover of this Book.

I am more physicist, than mathematician. For physical applications,
the real values of the argument are of special interest. Usually, the
real values allow the straightforward interpretation and, sometimes, the
application. For this reason, I supply also the graphics for the real values
of the argument.
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7 What is absent in the Book

In this book, there are no accurate specifications, which values are al-
lowed for parameters and arguments of the functions considered. I spec-
ify them only in the cases, when they are essential for the consideration.
For each expression, the readers are supposed to examine the range of
applicability as the exercise. The reader is not a vessel to be filled, but
a candle to be lighted 11.

I try to define functions in such a way, that at least some vicinity of
the positive part of the real axis belongs to the range of holomorphism;
although, not always this is possible. This book seems to be the first
monograph with description of efficient methods of evaluation of super-
functions and abelfunctions, and this should be considered as an excuse
for the heuristic style of presentation of the results.

For the same reason, in this Book, there are no rigorous proofs of con-
vergence, existence and uniqueness of solutions. In particular, the de-
ductions, elaborated in collaboration with Henryk Trappmann, are not
included here. The Readers who like the deep drilling 12 are invited to
download our original articles [61, 66, 73, 79, 86], plumb through the
deduction expanded with the Saxon style of pedantic Henryk, drill the
examples and ask questions. Indications of the errors, at least misprints,
are of especial interest.

From my point of view, the theory of superfunctions is new branch of the
Mathematical Analysis, and the serious drilling and plumbing require
efforts of some institute with several research groups in order to bring
it to the beautiful and rigorous shape, like the theory of the differential
and Integral calculus and other mathematical analysis. Here, I deal with
functions of single variable; the generalisation to multidimentional case
is not presented.

History to development of theory of superfunctions and abelfunctions
begins approximately since century 19, and can be also interesting, but

11http://quoteinvestigator.com/2013/03/28/mind-fire/ garson. The Mind Is Not a Vessel
That Needs Filling, But Wood That Needs Igniting. March 28, 2013. .. None of the examples
came with citations:
Education is the kindling of a flame, not the filling of a vessel —Socrates
Education is not the filling of a pail, but the lighting of a fire. —William Butler Yeats
Education is not the filling of a pail, but the lighting of a fire. —Plutarch
The mind is not a vessel that needs filling, but wood that needs igniting. —Plutarch ..

12Importance of the deep drilling can be illustrated with the limerick below:
One Chinist colleague called Lee
Was drilling his girl at the sea;
She told him: Stop plumbing,
Somebody is coming!
And Lee had replied:That’s me!
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it falls out of the topic of this Book. The overviews of the pre-historic
publications can be found in the Internet with the following keywords:
Abel function, iterated functions, tetration, superexponential,
superfunction. Some of them can be considered as scientific, accord-
ing to the definition above; I mean, the TORI axioms. This Book is
dedicated to the Superfunctions, not to TORI axioms, so, these axioms
are presented here only schematically; however, the more detailed de-
scription is available [67, 68, 100, 101, 102].

In this Book, there is no detailed discussion (and sometimes nor even
citation) of publications of colleagues, who tried to evaluate the super-
functions during the last couple of centuries. In order to see, what had
been done in the past centuries, one can look at the publications by col-
leagues: Neils Henryk Abel [3], Peter Fatou [6], Hellmuth Kneser [10],
Jean Ecalle [17], G.Szekeres [11], Peter Walker [24]; more references are
suggested in year 2014 by J.Bonet and P.Domanski [90]. In addition,
some links are listed in the Supplement (page 301).

https://commons.wikimedia.org/wiki/File:Flammarion-color.png
https://en.wikipedia.org/wiki/Flat_Earth

Figure 1.4: Earth in the old model of the Universe

I see analogy with manuals
on Geography and Astron-
omy, that have no need to
begin with the historic ex-
cursus, describing the Flat
Earth (Figure 1.4), nor the
Geocentric model by Ptole-
mey. Perhaps, some Read-
ers may consider such an
analogy to be too preten-
tious and ambitious; but
the methods reported be-
fore century 21 are, indeed,
non-efficient; so inefficient,
that nobody could plot a
complex map of any non-trivial superfunction with methods reported
in century 20. Henryk Trappmann attributes this to my routine http:
//mizugadro.mydns.jp/t/index.php/Conto.cin, which is now avail-
able also at various wikis. I think, the matter is not my plotter, but
the beautiful and efficient representations of functions, that allow the
quick and precise evaluation. In principle, these algorithms can be pro-
grammed at Mathematica, even at Maple, and still generate the same
figures; although the efficiency of Maple (and, especially, Maple-10) in
generating of figures allows to use that software as an illustration to the
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known proverb “to press a key, to have a tea”, as it is described in the
Supplement, page 299. I do not consider that poem as a part of this
Book, but the poem and figure 22.1 explains, why the most of figures
in this Book are generated as the direct EPS graphics from the C++
programs.

I do not describe in this book algorithms suggested after year 2015, al-
though such algorithms should appear in future. One of them is expected
to be presented by William Paulsen [93].

I do not include into this Book the codes of the programs (figure 22.1
is an exception), used for evaluation of functions and plotting graphics.
The algorithms are simple; any student, after a semester of program-
ming in any language, that supports the complex arithmetics, can easy
program the same, following the description from this Book. At figures,
I indicate the URLs, where the code is loaded.

Some results of this book can be reproduced with the Schröder equation
and the Schröder functions. In this Book, there is no detailed descrip-
tion of properties of the Schröder equation, nor analysis of the Schröder
functions; these functions are only mentioned. I could not construct
any example, that can be solved with Schröder functions, but cannot be
solved with superfunctions. Some properties of the Schröder equation
can be found at
http://mathworld.wolfram.com/SchroedersEquation.html and
https://en.wikipedia.org/wiki/Schroeder_equation

Preparing the results for the Book, I tried to refute each of the conjec-
tures suggested. In principle, it is possible. It is sufficient to construct
any example of a transfer function T such that the superfunction F ,
constructed by the methods, described in the Book, does not satisfy the
transfer equation (1.1). Or to construct two different superfunctions,
that satisfy the additional conditions, that are declared to provide the
uniqueness. My attempts to reject my claims failed. I could not find in
the literature any rejecting example, nor I could construct it by myself.
Only for this reason, the rejecting, refuting examples are not included
in the Book.

Many colleagues, as myself (since the childhood), prefer to watch pic-
tures in a book, rather than to read it. Therefore, I try to illustrate each
page with at least one figure. While, this goal is not yet achieved, but I
hope to approach it closer in the future editions.

19

http://mathworld.wolfram.com/SchroedersEquation.html
https://en.wikipedia.org/wiki/Schroeder_equation


Chapter 2

Introduction

F (0)

T (F (0))=F (1)

Figure 2.1: Snowball of mass
F (0) gets mass T (F (0)) =F (1)

after to roll once from the hill.

Iterates and Superfunctions arise naturally
at description of a sequence of similar trans-
formations of any quantity in a homoge-
neous physical system. This transform may
refer to accumulation of mass by a snow-
ball, that rolls down the hill, covered with sticky snow (Fig. 2.1). This
may be attenuation of a shock wave in one of the successive sections of
automobile muffler. The transform may refer to change of intensity of
light, passing one section of a laser amplifier or a saturable absorber. I
hope, the Reader can suggest more examples of this kind.

Let the state of the system before the transformation be described with
parameter x, and, after transformation - with parameter y; and let these
two quantities be related with y = T (x). Then, function T is called
“transfer function”. It describes the transformation of the signal in the
system.

System, that performs the transformation, can be called “filter”. Trans-
formation of signal x in a filter with transfer function T can illustrated
with expression

x→ filter → y= T (x) [frame1] (2.1)

Output of one filter can be directed to the input of another identical
filter. This can be expressed with

x→ filter → T (x)→ filter → T (T (x)) [frame2] (2.2)

One can write the similar expressions for combination of 3 filters and so
on. In these notations, the number of filters combined is supposed to
be a positive integer. The main idea of this Book is, that the number
of filters has no need to be integer. In this chapter, the notations are
suggested to describe this.
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1 Use of superscript

From the point of view of physics, every iterate describes some combina-
tion of identical filters. Let each filter be characterised with the transfer
function T . If we have signal z at the input, then, at the output, the
signal is T (z).

As it is mentioned in the Preamble of this chapter, the output of a filter
can be directed to another similar filter, and the transfer function of the
resulting combination can be expressed with

T (T (z)) = T 2(z) [IntroT2] (2.3)

In the right hand side of equation (2.3), the notation with superscript
is used. I am not first to suggest this notation; Walter Bergweiler had
used such a notation in the past century [26]. If there is superscript at
name of some function, and the expression in this superscript can be
interpreted as a number, then it is number of the iterate. The zeroth
iterate of a function is supposed to be identical function (its value is the
same as value of its argument):

T 0(z) = z (2.4)

First iterate of some function T is the same function T , and the minus
first iteration corresponds to the inverse function. For example, at the
sinusoidal transfer function T =sin, we have

sin−1(z) = arcsin(z) (2.5)
sin0(z) = z (2.6)
sin1(z) = sin(z) (2.7)
sin2(z) = sin(sin(z)) (2.8)
sin3(z) = sin(sin(sin(z))) (2.9)

and so on. In some textbooks, the notation is used (but not declared),
when expression sina(z) has sense of sin(z)a. Such a notation leads

to confusions: at a = −1, expression sina(z) might mean
1

sin(z)
; but,

according to another commonly used notations for the inverse function,
it should mean sin−1(z)=arcsin(z).

In such a way, in this Book, the expression in the upper superscript at
the name of a function is interpreted as number of iterate. However,
if the superscript is just “prime”, almost vertical stick, it indicates the
derivative; for example, sin′=cos; it is also usual notation.
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f0 T (f0) T 2(f0) T 3(f0)

filter filter filter −→
zF (0) F (1)

F (z)
F (2)

F (z+1)
F (3)

Figure 2.2: Combination of filters, each of them has transfer function T

2 Transfer equation

The use of the superscript allows to illustrate expressions (2.1) and (2.2)
with figure 2.2. The figure shows the combination of identical filters
with transfer function T each. I assume T to be some given, known
holomorphic function. The range of holomorphism is supposed to be
wide enough, to cover the needs of the following consideration.

At the left hand side of figure 2.2, in at the entry to the first filter, let
the signal is characterised with some fixed value f0. Then, after to pass
the filter, it becomes T (f0); after to pass the second filter, it becomes
T 2(f0) =T (T (f0)), and so on. These quantities are specified above the
vertical bars, that mark the end on one filter and beginning of the next
filter.

The notation can be even shortened, to count number of passes of the
filter. Let f0 be F (0); let T (f0) be F (1); let T 2(f0) be F (2), and so
on. In such a way, function F of non-negative integer argument can be
defined.

Now I need the strong assumption. Let the filters, inside, are uniform,
and act as some kind of continuous homogeneous nonlinear medium, that
transfers the signal by some fixed (although, may be, not yet known)
way; but, after to pass each section of the combined filter, the signal is
transformed with known transfer function T .

We may consider coordinate z along this combined filter, and treat it as
a continuous medium. It is convenient to choose the length of a single
filter as a unit to measure the coordinate along the combined amplifier.
Then, F (z) may have sense of signal at coordinate z; for integer values
of z, values of function F (z) are already known. The question is, how
to define, determine, evaluate function F for non-integer values of z.

If for some non-integer position z, for example, between zero and unity,
the signal is F (z), then, in the uniform medium, after a pass length

22



unity along the composed filter, the signal should be transformed with
the same transfer function T . This can be expressed with the transfer
equation (1.1) mentioned in the Prologue. I repeat this equation:

F (z+1) = T (F (z)) [introeq] (2.10)

The transfer equation (2.10) specifies, how does the value of function F
changes, while its argument gets the unity increment. In such a way,
figure 2.2 indicates the physical meaning of the main equation in this
Book; the figure suggests the physical implementation of the transfer
equation (2.10).

3 Values of the argument

In this Book, I assume, that the signal, transferred through the filter,
is characterised by a single number, real or complex. In principle, term
“transfer function” allows generalisation to the multidimensional case;
then the transfer function appears as a functional, and its argument
may have sense of a vector or a function. As it is mentioned in the Pref-
ace, here I consider only the case of a single variable: it happened, that
even the single-dimensional case causes a lot of confusions at the inter-
net forums and discussions. It is methodically-incorrect, to develop the
multidimensional generalisations, while the colleagues have doubts even
in the single-dimensional case. According to the definition of science
[67, 100] in the Prologue, first, the results bout the single-dimensional
case should be presented, that still refute the commonly accepted point
of view, that the recovery of the signal inside a homogeneous system
from its transfer function is not possible [71, 72, 74, 75].

One of objections refers to the multitude of solutions. Consideration of
complex values of argument of the transfer function allows to reduce the
class of possible solutions (and sometimes even provides the uniqueness
of the solution). In such a way, consideration of complex argument is
more important, than analysis of some multidimensional signal. For
this reason, in this Book, I assume, that the argument of the transfer
function is a complex number. Also, I assume, that the transfer function
is holomorphic, at least at some vicinity of some part of the real axis.
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4 Nest

Figure 2.3: Nest

For iterates of functions, in algorithmic language Math-
ematica, there is special routine Nest. It requires 3 ar-
guments. The first one indicates the name of function
that should be iterated. The second argument indicates
the initial value at the iterates. The third (and last) argument specifies
the number of iterate. The call looks as follows:

Nest[f, x, z] (2.11)

In Mathematica, the arguments of a function appear in squared paren-
thesis; and expression (2.11) means f z(x). (However, term “Nest” may
have also different meaning, as it is shown in figure 2.3.)

At least until year 2017, the implementation of Nest requires, that the
last argument can be simplified to a positive integer constant. Even 0th
and minus first iterates are prohibited. Perhaps, the designer assumed,
that only the integer number of iterate may have sense and meaning.

Actually, the non-integer iterates do have sense, as it is mentioned in
the preamble of this chapter. One more example is considered in the
next section.

5 Fibre amplifier

This section describes the example, that shows the sense of the non-
integer iterates. This example refers to the fibre amplifier. I type “fibre”
in order to indicate, that the signal is confined in two directions, and
only the power in the fibre as function of the coordinate along it is
subject of consideration. A lot of physical effects are dropped out in
this consideration: change of the spectral content of the signal, self-
peaking, spontaneous emission, etc.. So, I consider here the simplest
case, but for this model I want to get the exact solution.

Assume, some Manufacturer gives to some Physicist a piece of one meter
long of the optical fibre amplifier, together with the system of pumping,
and asks the Physicist to investigate, how the power of light inside grows
during the amplification, but Manufacturer does not allow Physicist to
cut the fibre to measure, what is inside. Physicist knows the only, that
the fibre is uniformly pumped. We may assume, that some system of
lateral delivery of pump is used [32, 33, 34, 41].
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Physicist can measure the transfer function T of this fibre. With this
transfer function, Physicist can say, what should be the transfer function
of similar piece of fibre of length 2 meter. Assuming, that the source
of pump is delivered together with each piece of the fibre, the transfer
function of the piece of two meter is T 2; that of the 3 meter piece should
be T 3 and so on; if z pieces of the fibre are combined, then, the transfer
function is T z.

Iterates T z are pretty clear, while z is integer. But how about non-
integer values? For example, what is transfer function to the piece of
half meter long?

As it is mentioned in the previous section, in Mathematica, the transfer
function of piece of z meter length could be expressed with T z(x) =

Nest[T, x, z]. Unfortunately, such an expression is not yet interpreted
correctly at non-integer z.

How to express the non-integer iteration of a given transfer function?
These question can be analyzed with the transfer equation (2.10). The
preliminary analysis is suggested in the next section.

6 Transfer equation and the Abel equation

Through this book, the transfer equation (1.1),(2.10) is repeated (and
used) again and again, and, in particular, here:

F (z+1) = T
(
F (z)

)
[transfereq] (2.12)

I remind, that T denotes the transfer function, z may have sense of
coordinate along direction of propagation of some signal, and function
F expresses dependence of the signal on this coordinate. (However,
coordinate z may have also any other meaning.)

In Laser Science, term “signal” denotes the wave (light), that is ampli-
fied; even if no information is transferred with this light. In this book,
the length is measured in units of the length of the amplifier. The gen-
eralisation for the arbitrary units is straight-forward.

For given transfer function T , solution F of the transfer equation (2.12)
is called “superfunction”. The inverse function G=F−1 is called “Abel
function” or “abelfunction” for the same transfer function T . The abel-
function G satisfies the Abel equation

G(T (z)) = G(z) + 1 [abeleq] (2.13)
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Equations (2.12) and (2.13) can be deduced from each other other by
the change of variable. Just replace z to F (z) in equation (2.13) and
apply function F to both side of the resulting equation. The Readers
are united to make this exercise or to look for it at some Wikipedia [96].
I hope, the Soviet veterans, that remove articles about the USSR, will
be stopped before they begin to vandalise the Abel equation.

Assume, that the superfunction F and the abelfunction G are somehow
constructed. This gives key to the iterate T z of the transfer function,
and the number z of the iteratie has no need to be integer. This iterate
can be expressed as follows:

T z(x) = F (z +G(x)) [Tzx] (2.14)

In order to show an example of application of formula (2.14), return to
the story about Manufacturer and Physicist from the previous section.
Assume, the Physicist has found the physically-meaningful solution F
of the transfer equation (2.12), and has constructed the inverse function,
id est, abelfunction G=F−1. Then, Physicist can express the transfer
function F of the amplifier of arbitrary length z by formula (2.14).

For transfer function T , its superfunction F and the abelfunction G

appear as two sponges of a wrench for some screw, as a tool, that allows
to rotate the screw for any rational angle.

7 Multiplicity of solutions

Solution F of equation (2.12) is not unique. One can reduce multitude
to solution, specifying its value at zero (or at any other point the Reader
likes); id est, choose some number F0 and add the requirement that

F (0) = F0 [f0] (2.15)

In many cases, the constant F0 does not affect the shape of iterates of
the transfer function; transform

F̃ (z) = F (z+x0) , G̃(z) = G(z)−x0 [zo] (2.16)

for some x0 and substitution F→ F̃ , G→ G̃ into equation (2.14) gives
the same iterate, as the initial F , G do.

However, even after addition of requirement (2.15), the solution is not
unique. If F is solution, superfunction, then another solution (another
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superfunction) can be constructed with

f̃(z) = F
(
z + θ(z)

)
[tif] (2.17)

where θ is periodic holomorphic function with period unity. At θ(0)=0,
even condition (2.15) is preserved.

The different superfunctions F , with their abelfunctions G=F−1, give
different iterates of the transfer function T . For this reason, one may
think, that the non-integer iterates of a function have no meaning. In
particular, in century 20, the colleagues had believed, that the half iter-
ation of factorial, denoted with

√
! =Factorial1/2, has no meaning.

Figure 2.4:
√

! as emblema

Function
√

! is especialy interesting, because
since 1950, it is used as logo of the Physics
Department of the Moscow State University
[36]. That logo is shown in figure 2.4, bor-
rowed from the Russian article [37]. Only in
2009, the physical and mathematical mean-
ing of this iterate and this logo had been re-
ported [62], when the apparatus of superfunc-
tions had been constructed. The uniqueness of
the superfunction of factorial (and, therefore, that of the half iterate of
factorial) is provided by the additional requirement of holomorphism and
behaviour at infinity: transformation (2.17) reduces the range of holo-
morphism of superfunction and that of the reconstructed non-initeger
iterates.

The problem of evaluation of non-integer iterate in some physically-
meaningful way arises not only at the phenomenological consideration
of an idealised amplifier. Similar problem appears at the analysis of
stability of jets; in the simple (single-dimensional) approximation, the
appearance and disappearance of instability by the Pomeau-Manneville
scenario [19, 53] can be described with some specific quadratic transfer
function. Similar equation arise at the analysis of stability of attractors
[20]. At least for the single-dimensional models, one can construct abel-
function and superfunction [69], and, hence, the non-integer iterates of
the transfer function.

Observation of similarities in construction of superfunctions allows to
formulate the problems about superfunctions and the goal of this Book.
This is suggested in the next section.
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8 Formulation of the problem

Suppose we have some transfer function T , holomorphic in a wide range
of values of the argument, and we are interested in its iterates.

What additional conditions should be imposed on superfunctions F (or
to the abelfunction G=F−1) as solution of the transfer equation (2.12)
(or that of the Abel equation (2.13)) to provide the unique solution?

How to evaluate the superfunctions and the abefunction, that satisfying
the conditions chosen?

How to verify that namely this solution has the physical meaning?

The goal of this book is to answer these questions. I try to represent the
answers in the most simple and explicit form. In this book, I retell the
previously published articles [54, 61, 63, 69, 65, 79, 91, 88, 85]; the idea
is to release the Reader from the need to drill the original publications.

The next chapter suggests examples of superfunctions and corresponding
abelfunctions; other chapters suggest general algorithms for calculation
superfunctions and the application to physical problems. Description of
the state of a physical system with a single parameter is already a strong
approximation, and at least in this case, it is desirable to represent the
solution in a simple and exact form.

Devchonka buys

Dry Martini

1

Figure 2.5: Dry martini

Perhaps, I should discuss meanings of term
“simple”. Applying to a function, this term
may get new meaning, indicating, that val-
ues of the function belong to some finite set
1. In the similar way, the adjective “dry”, be-
ing applied to a vine or Martini, significantly
change its meaning (figure 2.5). In this Book,
term “simple” indicates, that the function is
easy to understand, its definition is short and
its implementation is fast; as for the set of
values, the functions are supposed to be holo-
morphic and, therefore, should have values
from the continuous set of complex numbers.

On this point I finish the general speculations about superfunctions and
turn to the specific examples. In the following chapter, the examples of
transfer function and its superfunction and abelfunction are considered.

1http://en.wikipedia.org/wiki/Simple_function In the mathematical field of real analysis,
a simple function is a real-valued function over a subset of the real line, similar to a step function.
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Chapter 3

Examples of superfunctions

Before to calculate the superfunctions and abelfunctions for transfer
functions of general kind, it worth to see the cases, when the superfinc-
tion and the abelfunction can be easy expressed in terms of already
known special functions. These examples are considered in this chapter.
It can be considered as continuation of the Inroduction: the most of
functions mentioned here are known since the school course of algebra.

Superfunction F for the transfer function T is solution to the transfer
equation (2.12); I repeat it here:

F (z + 1) = T (F (z))

In the next section, several known solutions are presented in Table 3.1.
Then, in the following sections and chapters, these functions are consid-
ered with more details.

1 Table of superfunctions

There is analogy between the table of superfunctions and tables of in-
tegrals. In both cases, the direct operation is, in certain sense, more
difficult, than the inverse operation. If one knows the indefinite integral
of some function, and this integral is expressed in terms of elementary
functions in a compact form (the writing fits the width of the column
of the table), then, one can calculate the integrand with known rules
of differentiation. In the similar way, if the superfunction F and the
abelfunction G=F−1 are known, the transfer function can be expressed
with

T (z) = F (1 +G(z))

One of ways to built-in the table of integrals is the building of table
of derivatives. One takes any short combination of basic elementary
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Table 3.1: Examples of superfunctions, T (z) = f
(

1 + g(z)
)

T (z) f(z) g(z) = f−1(z) comment

1 c c

2 z+1 b+ z z − b b ∈ C

3 b+ z bz + c (z − c)/b b 6= 0

4 bz + c bz + c
1−b logb

(
z − c

1−b

)
b 6=0, b 6= 1, [86]

5 bz tetb(z) ateb(z) [54, 61, 79]

6 zb exp(bz) logb
(

ln(z)
)

(4.19), b>0, b 6=−1

7 −a2/z a tan
( 2

π
z
) 2

π
arctan(z/a) a > 0

8
z

c+ z

1− c
1− cz

logc

(
1− 1− c

z

)
c 6= 0 , c 6= 1

9
z

1 + z
1/z 1/z f=g; T n(z)= z

1+nz

10 ln(b+ez) ln(bz) ez/b b 6= 0

11 (ab+zb)1/b az1/b (z/a)b a>0, b 6=0

12 2z
√

1−z2 sin(π2z) log2

(
arcsin(z)/π

)
13 2z

√
1+z2 sinh(2z) log2

(
ln
(
z +
√
z2+1

)
/π
)

14 2z2 − 1 cos(π2z) log2(arccos(z))

15 2z2 − 1 cosh(π2z) log2

(
ln
(
z +
√
z2−1

)
/π
)

16 2z/(1−z2) tan(2z) log2(arctan(z))

17 2z/(1+z2) tanh(2z) log2

(
2 ln

(
z+1

z−1

))
18 Factorial(z) SuFac(z) AuFac(z) (8.11), (8.19); [65]

19 b z (1−z) LogisticSequenceb(z) LogisticSequence−1
b (z) (7.8), (7.19); [69]

20 Doyat(z) Tania(tz) (z + ln(z)− 1)/t (5.11), (5.3)

21 Kellert(z) Shoka(tz) ArcShoka(z)/t (5.14), (5.18)

22 sin(z) SuSin(tz) AuSin(z)/t (12.8), [91]

23 zex(z)=z exp(z) SuZex(tz) AuZex(z)/t (11.1) [88]

24 tra(z)=z+ez SuTra(tz) AuTra(z)/t (20.1) [88]

P (T (Q(z))) P (f(z)) g(Q(z)) P (Q(z))=z
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functions and differentiates it. If the result can be simplified to fit the
width of the column of the table, then it is declared as “function that
can be analytically integrated”.

In the similar way. one can deal with superfunctions. Any elementary
function f , for which the inverse function g=f−1 also can be expressed
as elementary function, can be taken as an example. Then, expression

t(z) = f(1 + g(z)) [tfg] (3.1)

should be considered. Sometimes, after simplification, this expression
fits the width of the column of the table. Then, this t can be declared as
“transfer function, for which the superfunction can be expressed analyt-
ically”, id est, also in terms of special functions. So, this f is declared as
its superfunction, and g is declared as corresponding abelfunction. The
most of table 3.1 is built-up in such a way.

Not all transfer functions can be expressed as elementary functions, and
not all superfunctions can be expressed through special functions. And
not all abelfunctions. In this Book, I describe methods, how to deal
with these cases. In general, any holomorphic function can be treated
as transfer function, and the only edges of the range of holomorphism
may limit the construction of the corresponding superfunction and the
abelfunction. If the superfunction and the abelfunction are constructed,
supplied with the specific names, described and implemented, they can
be treated as a special functions. I call any function as “special function”,
if (and only if) the properties are revealed, described and the algorithm
of the precise evaluation is supplied.

Aiming the application in physics (and, perhaps, in other sciences), I
am interested, first, in those functions, that can be evaluated quickly.
These functions can be used to construct new functions, and used to
describe various phenomena. One can use them in the similar way, as
one use other special functions (sin, bessel, erfc, etc.) These functions
appear in the Table 3.1 with names; I supply also the number of formula
or the cite, to indicate, where the function is described, where can one
find the algorithm for the evaluation.

Table 3.1 appears as the basic toolbox for evaluation of non-integer
iteration. In the following chapters, I describe, how the non-trivial su-
perfunctions from the table can be constructed and evaluated. However,
first, it worths to check properties of elementary superfunctions.
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2 Construction of elementary superfunctions

As it is mentioned above, searching for elementary superfunctions, it
worth to begin not with a transfer function, but with the superfunc-
tion and the abelfunction, applying formula (3.1). As an example, I
show, how the 12th line of the Table 3.1 can be verified in language
Mathematica:
f[z_] = Sin[Pi 2^z]
g[z_] = Log[ArcSin[z]/Pi]/Log[2]
f[g[z]]
T[z_]=2 z Sqrt[1 - z^2]
Simplify[T[z] - f[1 + g[z]]]

In Mathematica, the argument of function should appear in squared
brackets. No other trick, specific for Mathematica, is used; the verifica-
tion can be performed in other languages too.

Table 3.1 collects only the simplest (already described) superfunctions,
They can be modified, using the last row of the Table. Any pair of
mutually inverse functions P and Q determines the transform, that can
be applied to any of previous rows, giving the new transfer function with
corresponding superfunction and abelfunction.

The scaling transform relates the quadratic transfer function at raws
14 and 15 of the table with logistic operator (also quadratic transfer
function) in raw 19, while parameter b = 4; in this case, the logistic
sequence is expressed with elementary function and its generalisation
to the non-integer values of the argument is trivial [69]. However, the
superfunciton can be constructed also for other values of b; with these
superfunctions, the iterates dan be calculated. This case is considered
below in chapter 7.
A special case of transformation of superfunction is displacement of its
argument for a constant. In some cases, it is difficult to recognise this
shift. For example, superfunctions in 14th and 15th rows of the table
correspond to the same transfer function T (z)=2z2−1; these superfunc-
tion are related with translation of the argument for constant iπ ln(2)/2.
Similar relations take place also for other superfunctions. For superfunc-
tions of expb for 1<b<exp(1/e) discussed in [61], this case is mentioned
in Chapter 9.

I invite the Reader to add some new raws to the table, following the
trick above: choose some special function f , for which g = f−1 is also
implemented, and try to simplify t, determined by equation (3.1).
This chapter only declares the superfunctions. Some elementary super-
functions are considered with more details in the next chapter.
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Chapter 4

Elementary superfunctions

Figure 4.1: M. Joudain:
These forty years now,
I’ve been speaking in prose
without knowing it! [2]

In order to use superfunctions, described in
this chapter, the Reader has no need to know,
that they are superfunctions. In the similar
way, during 40 years, Joudrain has no need to
know, that he speak in prose [2]. However,
many properties of elementary superfunctions
are the same, as properties of other, nontrivial
superfunctions, that cannot be easily expressed
through elementary functions. In order to show
these properties, in this chapter I consider ele-
mentary superfunctions.

I would not like the colleagues to say, that the
formalism of superfunctions is too complicated
[75]. So I begin with very simple example, with
linear function.

1 Iteration of linear function

Consider the linear transfer function

T (z) = A+Bz [TABz] (4.1)

where A and B are constants. For A=1, B=2 , iterates of this function
are shown in figure 4.2. Graphic y=T n(x) is plotted versus x for various
values of the number n of the iterate.

The nth iterate of function T can be written as follows:

T n(z) = A
Bn − 1

B − 1
+Bnz [TABzn] (4.2)
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Figure 4.2: Iterates of linear function (4.1) at A= 1, B= 2 ; y=T n(x)

versus x for various n [itelin125]

This representation is used to plot figure 4.2. The graphics are straight
lines. They cross at the point (L,L) of the coordinate plane. The fixed
point L is determined by the equation A+BL = L, that gives

L = A/(1−B) [Llin] (4.3)

AtB→1, the fixed point runs to infinity, and the graphics in the analogy
of figure 4.2 become parallel. For A=1, B=2 , this is case of figure 4.2,
we get value L=−1; so, lines in figure 4.2 cross in point (−1,−1).

Representation (4.2) can be obtained with the general formula (2.14)
with superfunction

F (z) = A
1−Bz

1−B
[FTABz] (4.4)
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and abelfunction

G(z) = logb

(
1 +

B − 1

A
z
)

[GTABz] (4.5)

In the special case B= 1, the transfer function has no fixed points and
representations (4.2), (4.4), (4.5) cannot be used. For this case, id est,
for T (z) = A+z, superfunctions and abelfunctions can be written as
follows:

F (z) = Az , G(z) = z/A (4.6)

Their combination gives

T n(z) = F (1 +G(z)) = A (n+ z/A) = An+ z [Anz] (4.7)

Those, who still think, that the formalism is too complicated [75], are in-
vited to check the deduction above and verify, that this case corresponds
to the level of a junior high school.

Figure 4.3: Mathematician uses
sledgehammer to crack a nut

To iterate the linear function (4.1), the
use of superfunction (4.4) and abelfunc-
tion (4.5) can be qualified with term
“use sledgehammer to crac a nut”, as it
is shown in figure 4.3. However, this ex-
ample is important: it is simple and it
shows, how the superfunction and abel-
function can be used together to express
iterates with formula (4.7).

2 Rational function

The linear fraction, or “rational function” can be considered as general-
isation of the linear function. Let

T (z) =
U + V z

W + z
[Tuvwz] (4.8)

where U , V and W are constant parameters. First, as an example,
consider function

T (z) = −1/z [Tzm1z] (4.9)

This example corresponds to U =−1, V = 0, W = 0 in formula (4.8).
Negative value of U is chosen in order to have positive derivative at the
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Figure 4.4: u+iv=T (x+iy) = 1/(x+iy) [f1xmap]

positive values of the argument; iterates of a growing function are easy to
interpret in terms of modelling of physical process. Iterates of decreasing
function, contrary, imply dealing with complex values. I am interested
mainly in the applications for physics; so, I consider mainly the growing
transfer functions and growing real-holomorphic superfunctions.

Compex map of function T by equation (4.9) is shown in figure 4.4.
For this function, the levels of constant real part and levels of constant
imaginary part are circles, and all these circles pass through the origin
of coordinates.

For real values of the argument, iterates of function T by (4.9) are shown
in figure 4.5. Lines y=T n(x) are plotted versus x for various values of
n. Below I describe, how these iterates are calculated.

For transfer function T by (4.9), the superfunction F and abelfunction
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Figure 4.5: y=T n(x) for T (z)=−1/z by formulа (4.12) at various n

G can be written as follows:

F (z) = tan
(π

2
z
)

(4.10)

G(z) = F−1(z) =
2

π
arctan (z) (4.11)

Then, the nth iterate of the transfer function T n(z) = F (n+G(z))
appears to be

T n(z) =
−1− cot

(π
2
n
)
z

− cot
(π

2
n
)

+ z
[linfrac1ite] (4.12)

This case is represented in row 7 of table 3.1. Expiression (4.12) is used
to plot figure 4.5.
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Figure 4.6: y = tn(x) by (4.13) at c = 0.5 [c05]

Consider one more special case of formula (4.8). Let

t(z) =
z

c+ z
[tzcz] (4.13)

where c is constant. Then

tn(z) =
z

cn +
1−cn

1−c
z

[tnzc] (4.14)

Iterates of function t for c= 0.5 are shown in figure 4.6. The same for
c=1 are shown in figure 4.7, and the same for c=2 are shown in figure
4.8. Below I show, how these iterates are evaluated.

For the transfer function t by (4.13), superfunction f can be written as
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Figure 4.7: y= tn(x) by (4.13) at c=1 [c10]

follows:

f(z) =
c− 1

cz − c
[fzfrac] (4.15)

Corresponding Abel function g = f−1 is

g(z) = logc

(
1 +

c−1

z

)
[gzfrac] (4.16)

Expressions (4.15) and (4.16) are used to evaluate tn(z) = f(n+G(z))

and plot figures, in particular, figures 4.6, 4.7 and 4.8. The Reader is
invited to plot iterates of function t by formula (4.15) at other values of
c too.
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Figure 4.8: y= tn(x) by (4.13) at c=2 [c20]

The iterates of the rational function of real argument show the smooth
transition from function t to the identity function and then to inverse
function t−1. All the curves in figures 4.6, 4.7 and 4.8 pass through the
fixed point. This value is mapped to itself at the iterates of the transfer
function. This property is not specific feature of the rational function.
Other functions, considered on the following chapters, have the same
property.

For construction and uniqueness of superfunctions in the following sec-
tions, it is important to consider them in the complex plane. The com-
plex maps help to understand properties of these functions. Following
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Figure 4.9: u+iv = f(x+iy) by (4.15) at c=2 [fzfracmap]

the idea to begin with simple examples, I suggest the complex maps
of superfunction f and abelfunction g. For c= 2, the complex map of
superfunction f by formula (4.15) is shown in figure 4.9. Similar map
of the Abel function g is shown in figure 4.10.

Function f by formula (4.15) is periodic; its period

P = 2πi/ ln(c) (4.17)

At c=2, this period P =2πi/ ln(2)≈9.06472 i. Vertical size of figure 4.9
covers a little bit more that two periods of this function. For real c, the
period is pure imaginary; the map reproduces itself at the translations
for integer factor of |P | along the imaginary axis.

The inverse function g= f−1 is expressed by formula (4.16). It is Abel
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Figure 4.10: u+iv = g(x+iy)by (4.16) at c=2 [gzfracmap]

function for the transfer function t. Abelfunction g is shown with its
complex map in figure 4.10 for the same value of parameter, c= 2, as
function f in figure 4.9

Function g has two branch points, c−1 and zero. For real c, the cut
line between these two points belongs to the real axis. Equilnes are
symmetric with respect to reflections from line <(x) = (c−1)/2.

With superfunction f and abelfunction g by formulas (4.15) and (4.16),
iterates of the transfer function t can be written as usually,

tn(z) = f(n+ g(z)) [tnzfg] (4.18)

The readers are invited to check, that this representation agree with
expression (4.14). It is better to do this exercise for the simple. Then it
will be easier to reproduce the similar exercises for other superfunctions
in the following sections.
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Figure 4.11: u+iv = T (x+iy) = (x+iy)2, by (4.19) for a=2 [z2itmap]

3 Power function and its iterates

Figure 4.12: Superpower

Consider the power function

T (z) = Powa(z) = za [Pow] (4.19)

For a= 2, the map of function T is shown in fig-
ure 4.11. Those, who are looking for some su-
perpower, should be especially interested in this
section: Here, I suggest the superfunction of the
power function, id est, the superpower function,
as it is shown in figure 4.12.
Consider iterates of the power function T by (4.19), they can be written
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Figure 4.13: y=T n(x)=Pow2
n(x) для различных n. [IterPowPlot]

as follows:

T n(z) = Powa
n(z) = za

n

= Powa

(
Powa

(
...Powa(z)..

))︸ ︷︷ ︸
n evaluations of function Powa

(4.20)

Figure 4.13 shows T n by formula (4.20) for a=2 at various n. Iterates
of the power function can be expressed also with the general formula,

T n(x) = F
(
n+G(x)

)
[againTc] (4.21)

where F is superfunction of the transfer function T and G=F−1 is the
abelfunction.
For the power function, the superfunction (id est, the superpower func-
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tion) can be written as follows:

F (z) = exp
(

exp(ln(a) z)
)

= exp2
(

ln(a) z
)

[powF](4.22)

Inverting this representation, one can get the abelfunction; id est, the
“abelpower” function,

G(z) = ln
(

ln(z)
)
/ ln(a) = ln2(z)/ ln(a) [powG] (4.23)

These formulas correspond to the 6th row of table 3.1.

For the transfer function T by (4.19), iteration (10.16) can be simplified,

T n(z) = exp2
(

ln(a)
(
n+ ln2(z)/ ln(a)

))
= za

n

[zbc](4.24)

leading to the 3d expression in equation (4.20).
In such a way, iterates of the transfer function T by (4.19) appear to be
function of the similar kind (also power function). I invite the Reader to
plot the complex maps of superpower function F by (4.22), abelpower
function G by (4.23) and iterates of power function by (4.24).

For T (z)=za, the simple relations take place:

T (zb) = T (z)b [fnz1] (4.25)

At b=a=2, in addition, the following relation hakes place:

T b(z) = T (z)b [fnz2] (4.26)

There is common confusion (the wrong public opinion), that some sim-
ple equivalents of relations (4.25), (4.26) should take place for other
values of b and for other functions too. In particular, one of critics of
the publication about half iteration of factorial [62] had insisted, that
Factorial1/2(z) = Factorial(z)1/2, and I was not successful explaining,
that it is not the case, even if notation

√
Factorial = Factorial1/2 is used.

The factorial is considered in this Book in the Chapter 8. However, be-
fore to deal with factorial, I would like to consider simple example. The
power function is one of the simple examples. I invite the Reader to
check, that even for a= 3, relation (4.26) is not valid (except of some
specific values of z).

Having the explicit representation, one can calculate all the iterates nec-
essary, including the non-integer iterates. But not so many elementary
functions are inverse of some other elementary functions, Perhaps, it
is better to refer to special functions. The simple example of the non-
elementary function is considerd in the next chapter.
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Chapter 5

Tania and Shoka
y
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2

1

−3 −2 −1 0 1 2 3 x

y=
Shok

a(
x)

y=Tania(x)
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Figure 5.1: Functions Tania and Shoka by (5.1) and (5.2) [shokataniaplot]

This chapter considers functions, that have applications in laser science.
I call them Tania and Shoka. For some vicinity of the real axis, these
functions can be defined as follows:

Shoka(z) = z + ln(e−z+e−1) [shoka0] (5.1)
Tania(z) = WrightOmega(z+1) [Tania0] (5.2)

At |=(z)| ≥ π, function WrightOmega(z) behaves in a way I dislike.
To avoid confusions, for the function I like, I use name Tania. Below I
define functions Shoka and Tania for the complex argument. However,
the representations (5.1) and (5.2) are sufficient to plot Shoka and Tania
in figure 5.1.

This chapter retells the contents of articles [84, 85]. This chapter should
be especially important for the narrow specialists, who works in the laser
science.
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Figure 5.2: Complex map of function Tania, u+iv=Tania(x+iy) [TaniaMap]

1 Tania and Arctania

Let function Tania be solution f of the differential equation

f ′(z) =
f(z)

1 + f(z)
[taniaprim] (5.3)

with additional condition f(0)=1, where contour of integration of (5.3)
for f(z) goes first from zero to imaginary part of z along the imaginary
axis, and then, along the line, parallel to the real axis, goes to point z.
Figure 5.1 shows function Tania of real argument. For moderate values
of imaginary part of the argument, solution f=Tania of equation (5.3)
is expressed through the special function WrightOmega with equation
(5.2). Complex map of function Tania is shown in figure 5.2.
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Figure 5.3: u+iv=ArcTania(x+iy) [ArcTaniaMap]

For real values of argument, Tania is positive and grows monotonously.
Toward the negative values of the argument, Tania decays exponentially.
At zero, Tania grows with tangent 1/2. At large positive values of the
argument, Tania grows in a way, similar to the linear function with
tangent unity.

Function Tania, shown in figure 5.2, has two branch points, −2 ± iπ.
The cut lines are directed parallel to the real axis toward its negative
direction; they are determined by specification of path of integration of
equation (5.3).

Complex map of the inverse function, id est, ArcTania = Tania−1 is
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shown in figure 5.3. It can be expressed as elementary function,

ArcTania(z) = z + ln(z)− 1 [ArcTaniaz] (5.4)

There are no complex constants in the representations of functions Tania
and Arctania; these functions are real-holomorphic:

Tania(z∗) = Tania(z)∗ , ArcTania(z∗) = ArcTania(z)∗ (5.5)

Functions Tania and ArcTania look similar to the linear function at large
values of the argument; the lines of levels of constant real part and those
of constant imaginary part form almost rectangular grid. Functions
ArcTania also have almost linear asymptotic.

The almost linear asymptotic behaviour of Tania(z) at large |z| � 1

holds for the most of the complex plane, except the strip <(z) < 0,
|=(z)| ≤ π. In the strip |=(z)|<π, at <(z)→−∞, function Tania(z)

decays exponentially, this agrees with graphic of this function for real
argument at figure 5.1.

For moderate values of the imaginary part of the argument, function
Tania can be expressed through the known special functionWrightOmega
[12, 115] with equation (5.2). In particular, one has no need to make
any difference between Tania(z) and WrightOmega(z+1) for real z.

For the efficient evaluation of Tania, its asymptotic expansions can be
used. The whole complex plane can be covered with these expansions.

At large values of the argument, Tania can be expanded as follows:

Tania(z) = z + 1−ln(z) +
ln(z)−1

z
+

ln(z)2−4 ln(z)+3

2z2
+ .. (5.6)

The effective small parameter of the expansion (5.6) is ln(z)/z. For
negative values of <(z), this expansion is valid while |=(z)|>π However,
this representation does not work between the cut lines at figure 5.2. For
the representation of Tania in this half-strip, I define the new variable
ε = exp(1+z); then Tania can be expanded as follows:

Tania(z) = ε− ε2 +
3

2
ε3 − 8

3
ε4 +

125

24
ε5 +O(ε6) (5.7)

The expansions above are not good for the moderate values of the argu-
ment, and especially poor is the approximation in vicinity of the branch
points. For the branch point, the following expansion takes place:

Tania(z) = −1 + 3t− 3t2 +
3

4
t3 +

3

10
t4 +

9

160
t5 + .. (5.8)

49



where t = i

√
2

9

(
z+2−πi

)
.

In addition, one may use the Taylor expansion at zero:

Tania(z) = 1 +
z

2
+
z2

16
− z3

192
− z4

3072
+

13z5

61440
− 47z6

1474560
+ .. (5.9)

With the representations above, for every point of the complex plane,
for Tania(z), one can get the “zeroth” approximation, let it be called s0,
with few correct significant figures. Then, in order to get the maximal
precision for the “complex double” variable, it is sufficient to make three
or four iterations by the Newton method

sn+1 = sn +
z − ArcTania(sn)

ArcTania′(sn)
[ssTania] (5.10)

where ArcTania′(z) = 1+1/z is derivative of ArcTania. I remind that,
ArcTania by equation (5.4) is ementary function. In such a way, Tania
can be evaluated quickly and precisely. The C++ implementation of
function Tania with this algorithm for “complex double” variables is
loaded as http://mizugadro.mydns.jp/t/index.php/Tania.cin

Function Tania is simpler than function WrightOmega. If necessary,
Tania can be used to evaluate WrightOmega.

Function Tania has simple physical meaning. It represents dependence
of intensity of light on the length of its propagation in laser with simple
model of the active medium. The argument has sense of coordinate mea-
sured in units of the inverse increment of the low signal. The returned
value has sense of intensity, measured in the units of saturation.

Figure 5.4:
V.Doya [116]

In this Book, function Tania is used many times. In this
chapter, Tania appears as superfunction of the special
function Doya, considered in the nest section. I use the
trick, mentioned in the chapter 3: First, I choose super-
function, id est, Tania, and then, I construct the transfer
function for it; I call this transfer function “Doya”. I am
grateful to Valérie Doya (Figure 5.4), she kindly allowed
to use her name for the function, that appeared during
our collaboration at Nice in 2010.
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Figure 5.5: u+iv=Doya(x+iy), left, and u+iv=Doya−1(x+iy), at right

2 Transfer function Doya

Functions Tania and ArcTania from the previous section allow to build-
up the “solvable” transfer function. I call it Doya,

T (z) = Doya(z) = Tania
(
1 + ArcTania(z)

)
[Doya] (5.11)

Complex map of function Doya, and also map of its inverse function
ArcDoya = Doya−1 are shown in figure 5.5. At large values of the
argument, each of these functions looks similar to identity function, but
they have the branch points and cuts in the central part of the maps.

While functions Tania and ArcTania are already implemented, the eval-
uation of function Doya is straightforward. In addition, in vicinity of
the real axis, Doya can be expressed through the known special function
LambertW [111]:

Doya(z) = LambertW
(
z ez+1

)
[DoyaLambertW] (5.12)

According to definition (5.11), Tania is superfunction of Doya, and Arc-
Tania is its abelfunction. The nth iterate of Doya can be written as
follows:

Doyan(z) = Tania
(
n+ ArcTania(z)

)
[DT] (5.13)
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Figure 5.6: y=Doyan(x) по формуле (5.13) [doyaplo]

These iterates are shown in figure 5.6. The graphics represent y =

Doyan(x) versus x for various values of the number n of iterate.

As it is mentioned above, function Tania has simple physical sense; it
describes evolution of a signal in a simple model of a uniform saturable
amplifier (or absorber) at the appropriate choice of units of length and
units of intensity. Similar sense can be given to function Doya, it ap-
pears as dependence to the output intensity of this amplifier on its input
intensity [84, 85].

Functions Doya, Tania and ArcTania give an example, when the transfer
function, the superfunction and the abelfunction can be expressed in
terms of special functions, already described in the literature of 20th
century. In the following section, one more example of this kind is
considered.
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Figure 5.7: u+v = Keller(x+iy) by (5.14). [KellerMap]

3 Keller, Shoka and ArcShoka

Wave packet of light (or any other quasi–classical bosons) in a uniform
amplifier can be characterised with its energy or its fluence; this quantity
can be denoted as “signal”. Roughly, fluence is energy of pulse per area
of its transversal cross-section. In analogy with the continuous-wave
amplifier, the signal at the output of the amplifier can be considered
as function of the input; and this dependence can be interpreted as the
transfer function of the amplifier. For the simple model of the active
medium, this function can be expressed as elementary function. Com-
plex map of this function is down in figure 5.7; I call it “Keller function”
and define it as follows:
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Figure 5.8: u+v = ArcKeller(x+iy) by (5.16). [ArcKellerMap]

Keller(z) = z + ln
(

e− e−z(e− 1)
)

[KellerDef] (5.14)

Complex map of this function is shown in figure 5.7.

The inverse function ArcKeller = Keller−1 can be written as follows:

ArcKeller(z) = z + ln

(
1

e
+

e−1

e
e−z
)

[ArcKellerDef] (5.15)

Complex map of function ArcKeller is shown in Figure 5.8. Maps of
functions Keller and ArcKeller look similar; the following relation takes
place:

ArcKeller(z) = Keller(z − iπ − 1)− 1 + iπ (5.16)
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Figure 5.9:
U. Keller

In publications [30, 35] by Ursula Keller (fig.5.9), another
representation is used,

Keller(z) = ln
(

1 + e (ez − 1)
)

[KellerLit] (5.17)

This representation is equivalent of expression (5.14), while
|=(z)|<π. In particular, representation (5.17) can be used
instead of (5.14) for real positive values of z.
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Figure 5.10: Comparison of functions
Keller и Doya by (5.14) and (5.11)

Function Keller of real argument
is compared to function Doya in
figure 5.10. These functions look
similar.

Description of pulses usually is
more difficult, than considera-
tion of the stationary regime; for
pulses, there is additional pa-
rameter, time. However, for
the simple model above, the
pulsed regime is simpler, than
the steady-state case, because,
for the pulses, the transfer func-
tion, and the superfunction can
be expressed as elementary func-
tions. In such a way, function
Shoka is simpler than function
Tania, and function Keller is sim-
pler than function Doya.

Iterates of function Keller are shown in figure 5.11. They look similar to
iterates of function Doya shown in figure 5.6. By general formula 2.14,
the iterates of the Keller function can be expressed through its super-
function F =Shoka and abelfunction G=ArcShoka; these functions can
be expressed as follows:

Shoka(z) = z + ln
(

e−z + e− 1
)

[Shoka] (5.18)

ArcShoka(z) = z + ln

(
1−e−z

e−1

)
[ArcShoka] (5.19)
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Figure 5.11: y=Kellern(x) . [kellerite]

Complex maps of functions Shoka and ArcShoka are shown in figures
5.12 and 5.13. These maps look similar to those for functions Tania and
ArcTania shown in figures 5.2 and 5.3.

For real values of the argument, functions Tania and Shoka are compared
in figure 5.1 mentioned in the preamble of this chapter. Both functions
in the left hand side of the graphic have the exponential growth with
increment unity; both pass thorough point (0,1) and both grow almost
linearly in the right hand side of the graphics.

Complex maps of functions Shoka and ArcShoka in figures 5.12 and 5.13
look similar. One of them can be obtained from another with constant
displacement of the argument and addition of some constant to its value.
This can be expressed with relation

ArcShoka(z) = Shoka
(
z − iπ − ln(e−1)

)
− ln(e−1) + iπ (5.20)
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Figure 5.12: u+iv=Shoka(x+iy) [ShokaMap]

In vicinity of the positive part of the real axis, the map of function
Shoka in figure 5.12 looks similar to the map of function Tania at Figure
5.2. However, I cannot suggest any simple expression of function Tania
through function Arctania. I know no analogy of formula (5.20) for
functions Tania and ArcTania.

There are also qualitative differences between Tania and Shoka. Tania
had only two branch points, and correspondently, two cut lines. Shoka
has countable set of branch points and cuts.

All the six functions Tania, ArcTania, Doya, Shoka, ArcShoka and Keller
look similar to the linear function at the large values of the real part of
the argument. The right hand side of the complex maps in figures 5.2,
5.3, 5.5, 5.12 5.13, 5.7, the structure of levels of constant real part and
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Figure 5.13: u+iv=ArcShoka(x+iy). [ArcShokaMap]

levels of constant imaginary part form grid of lines, almost parallel to
the real or imaginary axes.

Figure 5.14: Eureka!

In order to catch (or to remember) the proper-
ties of function Doya, the left hand side part of
figure 5.5 is repeated in figure 5.14. The map is
shown with u+iv=Doya(x+iy), but the picture is
rotated for 90o in the positive direction (counter-
clock wise). The thick lines show levels u=−0.4,
v=±1.2 , v=±1.4 The map looks as a draw of
a Researcher, who has found something extraordi-
nary in a big Book. Perhaps, that Book is about
superfunctions. Generator of this image is loaded
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as http://mizugadro.mydns.jp/t/index.php/File:Doya500.png .
The Reader is invited to check that values of the 3 parameters, indi-
cated above, provide the structure, shown in figure 5.14. The range of
the almost linear transfer appears above the “head” of the contour of the
“human” in the figure.

Similarity of the transfer functions Doya and Keller and, correspon-
dently, similarity of their superfunctions Tania and Shoka indicate, that
for analysis of the nonlinear media, these functions should be measured
with several significant figures; over-vice, the measurement will not allow
to make choice between divergent models. At the convenient measure-
ment of the nonlinear response of the medium, variation of the intensity
in a sample should be small: over-vice, it is difficult to guess, namely
which intensity does the gain or absorption correspond to. At small
variation of the intensity, the precision of its measurement is poor. This
difficulty can be avoided with superfunctions. The transfer function
of the optically-thick sample should be measured, and then, the su-
perfunction, id est, the evolution of intensity inside the sample can be
reconstructed. In such a way, the number of parameters of the model,
can be reduced: one of parameters, namely, the length of the amplifier,
can be excluded from the model.

My particular interest in superfunctions is related to the ability of the
precise measurement of the gain (or absorption) in the nonlinear medium
versus intensity. The application may refer to investigation of limits of
validity of the commonly-used model of the Yb-doped crystals, glasses
and ceramics. The new effects are expected to appear at the edge of the
limit of applicability. One of such effects is described in the article about
switching of emissivity of Yb-doped samples, or the “Bisson effect” [48],
but namely in that case, the main mechanism of the phenomenon seems
to have thermal origin: the sample warms, and this warming enhances
the absorption (and heating), leading to the avalanche behaviour, that is
difficult to interpret in terms of the transfer function of a single variable,
considered in this Book 1 .

1The name “bisson effect” or ‘bison effect” refers to the analogy of the avalanche of the tribe of
running bisons, who awake, mock and force to run the new and new bisons. However the analogy
is limited, because the electrons, that were expected to be popped up into the conduction band,
are neither bisons, nor even bosons, but fermions.
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4 Overview

The six functions, (Tania, Shoka, ArcTania, ArcShoka, Doya and Keller)
are defined in this chapter. These functions show the realistic exam-
ples, the physically-meaningful transfer functions and the corresponding
meaningful superfunctions are expressed in terms of elementary func-
tions. These example will be used in this book later, to illustrate more
general methods of construction and evaluation of superfunctions.

My main claim is that I can construct the superfunction, abelfunction
and, therefore, the non-integer iterates of any growing real-holomorphic
function 2. Even more, everybody, after to read this Book, also can do
the same.

In the following chapters, I consider methods, that can be used for var-
ious transfer functions, even if the superfunction cannot be expressed
through the special functions known since century 20. One of these
cases is considered in the next chapter.

2With the same methods, the non-real, but still holomorphic functions also can be treated; such
an example is considered in chapter 18.
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Chapter 6

Regular iteration

Regular iteration is way to construct iterates of the transfer function,
that are regular in vicinity of its fixed point. The transfer function is
supposed to be holomorphic. In the most of examples, considered in
this Book, the transfer function is assumed to be also real-holomorphic.
In addition, in this chapter, I assume, that the fixed point is real. 1

This Book deals with solutions F of the transfer equation (2.12); I repeat
it here

F (z+1) = T
(
F (z)

)
Assume, that the transfer function T is real-holomorphic, and its fixed
point L is real, id est,

T (L) = L , L = L∗ (6.1)

In addition, I assume, that T ′(L)>0, this case is easier to interpret 2 .
For this case, In this chapter, the specific iterates of the transfer function
are constructed, that can be expanded into convergent Taylor series at
least in vicinity of the fixed point L. In this sense, they are regular.
On the other hand, the iterates are constructed with definite iteration
procedure, described below, in a regular straightforward way. Hence,
there are at least two independent reasons to use name “regular iteration”
for the procedure below.

1The same regular iteration can be applied also for the case of non-real fixed point, but the
resulting iterates of the transfer function are not real-holomorphic. The real-holomorphic functions
often are easier to interpret (and to apply in Physics), than the more general complex case. This
Book is planned as applied, so, the most of examples here refer to the real-holomorphic functions.

2Assumption T ′(L)>0 is natural. Case T ′(L)<0 is difficult to interpret in terms of real valued
non-integer iterates, because, Tn′(L) should approach unity at n→0, but, for realistic cases, should
avoid zero. Practically, this means that the non-integer iterates are complex, not real, as in the
case T ′(L)>0
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1 General formula

Assume that L is fixed point of the transfer function T , id est, T (L) = L.
For the transfer equation (2.12), I search for the asymptotic solution F
in the following form:

F̃ (z) = L+ ε+ a2ε
2 + a2ε

3 + .. [Lea2general] (6.2)

where

ε = exp(kz) [Lea2] (6.3)

Here, k is constant, that bas sense of the increment, and a refer to some
set of real constants, that do not depend on z. As it is indicated in the
Preamble of this chapter, I keep in mind the case when T (z∗) = T (z)∗

и F (z∗) = F (z)∗; however, in principle, the expansion (6.3) can be used
for more complicated case too (and in this case the coefficients a should
be complex).

The consideration could be generalised, adding new terms in to the right
hand side equation (6.2), for example, terms, that are not polynomial
with respect to ε. Following my wishes about the popularity 3, below I
consider the simplest (but still non-trivial) case.

Substituting F → F̃ into the transfer equation (2.12), which is

F (z + 1) = T (F (z))

in the left hand side I get the following

F̃ (z+1) = L+ ekε+ a2e
2kε2 + a3e

3kε3 + .. [iteraz1] (6.4)

and the right hand side gives

T (F̃ (z)) = L+ T ′ · ε+ T ′ · a2ε
2 + T ′ · a3ε

3 + ..

+
T ′′

2
(ε+a2ε

2+..)2 +
T ′′′

6
(ε+..)3 + .. [i2] (6.5)

where T ′ = T ′(L), T ′′ = T ′′(L), T ′′′ = T ′′′(L), .. are derivatives of the
transfer function T at the fixed point L.

coefficients at the same power of ε in expression (6.4) and in expression
(6.5) should be equal. This gives the equations for increment k and
coefficients a:

ek = T ′ (6.6)
e2ka2 = T ′a2 + T ′′/2 (6.7)
e3ka3 = T ′a3 + T ′′a2 + T ′′′/6 (6.8)

..

3Here, the term “pipuliqrity” may have each of the two its meanings
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The chain of these equations determines

k = ln(T ′) [k38] (6.9)

a2 =
T ′′/2

(T ′ − 1)T ′
[a2.39] (6.10)

a3 =
T ′′a2 + T ′′′/6

((T ′)2 − 1)T ′
[a2.40] (6.11)

..

Typically, for a simple special function T , the Mathematica, the Maple
or any similar software allow to evaluate tens of coefficients a in real
time.4 The truncated series in representation (6.2) provides good ap-
procimation for F at ε � 1. For positive values k, this corresponds to
the large negative values of <(z). For other values, the approximation
can be improved with

F (z) ≈ T n
(
F̃ (z − n)

)
[regi] (6.12)

for the large enough positive values of n at positive k, and for the large
enough negative values of n at negative k. Case k = 0 is qualified
as exotic and is considered below in the special chapter about exotic
iterates.

In may cases, representation (6.12) allows to evaluate the superfunc-
tion with the required precision. In particular, this allows to evaluate
the super exponentials to base b < exp(1/e) [61], superfactorial [65],
and holomorphic extension of the logistic sequence [69], and even the
holomorphic extension of the Collatz subsequence [110]. Some of these
examples are considered in the following chapters.

I call this case “regular iteration”, as the iteration by (2.14), id est,
T n(z) = F

(
n+F−1(z)

)
is holomorphic (“regular”) function in vicinity of

the stationary point z=L. For real fixed point L, I expect, namely reg-
ular iteration corresponds to the physically-meaningful solution F of the
transfer equation (2.12). This statement can be qualified as conjecture.
Following the TORI axioms, I tried to negate, refute this conjecture,
but I got confirmations instead. These confirmations, examples form
the significant part of this Book.

4My experience indicates, that, for applications, the evaluation of all quantities in real time is
so important, as the real holomorphism of the functions. In such a way, I try to be realistic, dealing
with real quantities in the real time. However, even for the real-holomorphic superfunctions, their
behaviour at complex values of argument is important and should be considered; but even in this
case I try to keep algorithms short and fast, to make evaluations in the real time.
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2 Exact solution

The approximate equality in expression (6.12) should not make an im-
pression, that the regular iteration gives only approximation of the su-
perfunction.5 For the case of <(k)>0 (or, in particular, for k>0), the
exact superfunction can be expressed with limit

F (z) = lim
n→∞

T̃ n
(
Fm(z − n)

)
[regitexa] (6.13)

where

Fm = L+ ε+
m∑
`=2

anε
n (6.14)

and k, ε and coefficients a are defined in the previous section; while
m ≥ 2 is some integer number. Due to the asymptotic properties of
the solution F̃ , the limit in expression (6.13) does not depend on m.
However, the convergence is faster for larger m. Similar limit can be
written for the case <(k)<0.

The series (6.3) can be inverted, giving the asymptotic approximation
G̃ of the abelfunction G = F−1. Then, the exact abelfunction can be
expressed with

G(z) = lim
n→∞

ln

(
1

k
G̃m(T−n(z))

)
+ n (6.15)

where G̃m is some truncation of the asymptotic expansion for the abel-
function. The iterate of the transfer function, T n(z) = F (n + G(z))
happen to be regular in vicinity of z = L. In the following chapters,
this statement is verified for many specific realisations of the transfer
function T .

Before to apply the regular iteration to the new transfer functions, for
which the superfunctions cannot be easy expressed through the super-
functions, known in century 20, it worth to check the method for some
easy function, for which the answer is known. First, I use the method of
regular iteration to construct the superfunction for the transfer function
Doya, considered in the previous chapter. I do it, as if I would not know
that its superfunction is Tania. This regular iteration is considered in
the next section, and compared to the exact solution Tania.

5 One of my coauthors, until now, believes, that even π is approximate number. This can be
considered as a kind of a mental illness, as well as some kind of religion.. However, if for any given
α > 0, the error of evaluation of some quantity can be done smaller, than α, then the quantity
is considered as exact. Then, we may consider the spu time and number of flops required to get
some given precision of the approximate evaluation of superfunction F in (6.12).
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3 Example with known solution: again Doya
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Figure 6.1: Function Doya and its
polynomial approximations

In this section, I show, how does the
regular iteration work. I use the ex-
ample with transfer function Doya, de-
scribed in the previous chapter. For real
value of argument, graphic of this func-
tion is shown in figure 6.1 with thick
curve.

For transfer function T = Doya, the
superfunction is known, it is function
F =Tania, and the corresponding abel-
function is G=ArcTania. Properties of
thiese function are described in publica-
tions [85, 106, 107] and in the previous
chapter. But, in order to check the reg-
ular iteration, assume for a minute, that
we do not know the analytic expression
for the superfunction, and want to con-
struct it with the regular iterations described above. After to construct
it, we may compare the result with the special function Tania.

Let the transfer function, at least in some vicinity of the real values of
the argument, can be expressed with formula (5.12), I repeat it here:

T (z) = Doya(z) = LambertW(1+z ez) [doya1] (6.16)

Properties of function LambertW are known [111, 112, 113, 114]. This
function can be used even without to refer to function Tania; this emu-
lates situation, when the superfunction F is not known.

Graphic of function Doya is shown in figure 6.1 with thick curve. This
transfer function describes some idealised amplifier with saturation, ne-
glecting the spontaneous emission (and many other physical effects). In
this case, the fixed point L = 0 should be considered; T (0) = 0. At
small intensity at the input, the amplification coefficient is e, but it sat-
urates at the intensity of order of unity. For small argument, the transfer
function can be expanded as follows:

T (z) = Doya(z) = e z − e (e−1)z2 +O(z2) [DoyaExpa](6.17)

In this case, T ′(0)=e and T ′′(0)=−2e(e−1). The corresponding linear
and quadratic approximations are shown in figure 6.1 with thin lines.
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Figure 6.2: Superfunction F =Tania and its approximations F̃ by (6.12) for n=0..4

For regular iteration of transfer function Doya, using formulas (6.9) and
(6.10), I found k= 1 and a2 =−1. In such a way, the primary approxi-
mation with singe term is

F̃ (z) = exp(z) [refitF1] (6.18)

and the primary approximation with two terms is

F̃ (z) = exp(z)− exp(2z) [refitF2] (6.19)

These two primary approximations are shown in figure 6.2 with up-
pest and lowest curves. At the same figure, the four iterations of these
primary approximations by (6.12) are shown for n=0..4. These approx-
imations approach the exact solution

F (z) = Tania(z−1) = WrightOmega(z) (6.20)

This function F is shown in figure 6.2 with thick line. It remains between
approximations obtained with iterate from the primary approximation
F̃ with single term, id est, (6.18) and those with tho terms by (6.19).

Example with the transfer function Doya shows the efficiency of the
regular iteration. In the following chapters, the regular iteration is used
also for other transfer functions; I mean, for the cases, when the su-
perfunction cannot be easy expressed in terms of the special functions,
known in century 20.
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4 Schröder equation

E.Schröder
Figure 6.3:

For the regular iteration, instead of superfunctions (pre-
sented in this Book), another formalism can be used, namely,
the formalism of the Schroeder (Schröder) functions; they
are called after Ernest Schröder, shown in figure 6.3, and
described many years ago [11, 27].

Let transfer function T be real-holomorphic, and let L= 0 be its fixed
point. The generalization to the case of other values of L is straight-
forward, so, here I consider only case L = 0. Let S = T ′(0). The
schröderfunction is solution g of the Schröder equation

g(T (z)) = S g(z) [schroederEq] (6.21)

where s is some constant. Usually, it is assumed that T (0) = 0, id
est, zero is fixed point of the transfer function T . One can search for
solutions in the asymptotic form (6.21)

g(z) =
∞∑
p=1

ap z
p [schroederexpa] (6.22)

where coefficients a are constants, id est, do not depend on z. Usually,
the series in the right hand side of (6.22) diverges, but this representa-
tion can be used for approximation of g at small values of |z|. Then,
any required precision can be achieved, applying the Schroeder equation
(6.21) or its inverse

g(z) = S g
(
T−1(z)

)
[schroederEr] (6.23)

looking, what is smaller, |T (z)| or |T−1(z)|. This method is especially
explicit for a real-holomorphic transfer function T , that monotonously
grows along the real axis.

In certain parti f the complex plane, the abelfunction G can be ex-
piressed through the Schroeder function g:

G(z) = logS(g(z)) [shroederabel] (6.24)

Taking logarithm to base S of the both sides of equation (6.21), I get

G(T (z)) = 1 +G(z) [analo] (6.25)

this equation is just Abel equation for the same transfer function T .

In the similar way one can express the analogy of superfunction. It can
be called “scaling function” or even “scalingfunction”. As examples of the
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Figure 6.4: u+iv = Olga(x+iy) by (6.26)

Schroeder functions and the scaling functions, figure 6.4 and 6.5 show
complex maps of functions Olga and Anka. They are Schroeder function
and the scaling function for the transfer function T = Doya, considered
in chapter 5 and in the previous section.

The Schroeder function Olga can be expressed through function Tania:

Olga(z) = Tania
(

ln(z)
)

[olga] (6.26)

The Scaling function Anka can be expressed through the ArcTania:

Anka(z) = exp
(

ArcTania(z)
)

[anka] (6.27)

For the transfer function Doya, the scaling factor S = e; so, the natu-
ral logarithm and the natural exponent appear in equations (6.26) and
(6.27). Definitions (6.26) and (6.27) imply, that olga=anka−1.

68

http://mizugadro.mydns.jp/t/index.php/File:Olga6map.jpg


y

5

4

3

2

1

0

−1

−2

−3

−4

−5

−6−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 x

u=0

v=0

u=0

v=0

u=0

v=0

u=0

v
=

0

u=
0

u
=

1

v=16
u=−16

u=−16
u=16

v=16
v=−16
u=16
u=−16

v=−16
v=16

u=−16
u=16

v=16
v=−16

http://mizugadro.mydns.jp/t/index.php/File:Anka616map.jpg

Figure 6.5: u+iv = Anka(x+iy) by (6.27)

In this section, I use the example, when some dependences can be ex-
pressed in terms of elementary functions. In particular, this refers to
function ArcTania by equation (5.4); in the most of the complex plane
(except the negative part of the real axis), ArcTania(z) = z+ ln(z)−1.
Then, function Anka can be expressed as follows

Anka(z) =
z

e
exp(z) [ankae] (6.28)

Functions Anka and Olga satisfy the scaling equation

Doya(Anka(z)) = Anka(e z) (6.29)

and the Schroeder equation

Olga(Doya(z)) = e Olga(z) (6.30)
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The Reader is invited to investigate the ranges of validity of equations
Olga(Anka(z)) = z (6.31)
Anka(Olga(z)) = z (6.32)

In wide range, that includes the positive part of the real axis, iterates
of function T = Doya can be expressed through its scaling function
f=Anka and Schröder function g = Olga = Anka−1 =ArcAnka :

T n = f(Sn g(z)) [Tnfg] (6.33)
for some appropriate constant S. Readera are invited to check, that
formula (6.33) gives the same iterates, as the expression through the
superfunction F =Tania and Abel function G=ArcTania

T n = F (n+G(z)) [TnFG] (6.34)
While the real-holomorphic transfer function T has real fixed point L
with the scaling factor S, and this fixed point is used to construct the
superfunction F and the scalingfunction f , formulas (6.33) and (6.34)
are equivalent. Several examples from this book, considered with super-
functions and abelfunctions, can be treated also with scalingfunctions
and schroöderfunctions.

Relation (6.34) is more general than (6.33). Here I announce few cases,
when the Schroeder functions fail.
If T ′(L) = 1, then the scaling factor S becomes unity, and expression
(6.24) fails. In particular, this is case of T (z)=exp(z/e), case of T (z)=
zex(z)=z exp(z), and that for T (z)=sin(z), see Table 3.1.
The transfer function T may have no real fixed points, as it takes place
for T =exp.
In addition, it may happen, that the transfer function T has no fixed
points at all, as it takes place for T (z)=tra(z)=z+exp(z).
Iterates of these functions T are straightforward with the superfunctions
and abelfunctions. These examples are mentioned in the Table 3.1 and
considered in the following chapters of this Book. However, these cases
are difficult to treat with the scalingfunctions and the schroederfunc-
tions, if at al. The Schroeder functions, if they can be applied, do not
give any new in compare to use of the superfunctions. For this reason,
this Book is dedicated to superfunctions and abelfunctions, and not to
schroederfunctions.

I hope, the example above is sufficient to feel relation between Abelfunc-
tions and Schroederfunctions. On this point I stop speculations about
the Schroeder functions, Schroeder equations, Scaling equations, and
scaling functions, and return to superfunctions. Superfunctions for the
specific quadratic transfer function are considered in the next chapter.
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Chapter 7

Logistic map

Figure 7.1:
P.V.Elutin

Term “Logistic map” 1 may refer to the quadratic transfer
function

T (z) = Elus(z) = s z (1−z) [logisticop] (7.1)

Usually, parameter s is assumed to be a real number. Term
“map” is used also in the context of the “complex map”, and
this may cause confusions. For this reason I give this func-
tion name Elus. The thee characters of the name are taken from the
last name of Pawel Elutin (see Figure 7.1), my teacher of Quantum Me-
chanics. He asked me to construct the analytic extension of iterates of
function T by (7.1) in the private communication [58]. In such a way,
this chapter could be called also “Elutin function”. Here I present some
results of publication [69] that appeared as the answer on the request
by Elutin.

Historically, iterates of another transfer function had been considered
before the iterates of the Elutin function. I mean, iterates of factorial
[65]. The request to do the same of the logistic map appeared as result of
the publication about the half iterate of factorial. In this Book, I do not
follow the history; first, I describe the superfunction, abelfunction and
iterates of the logistic map, or iterates of the Elutin function by (7.1);
these iterates seem to be simpler than those for the factorial. For various
values of parameter s, iterates of Elus are shown in figure 7.2. In order
to plot this figure, I use the specific superfuction and the corresponding
abelfunction. I describe them in this chapter.

The logistic sequence is solution F of the logistic equation

F (z+1) = Elus(F (z)) [LOGEQ] (7.2)

1http://en.wikipedia.org/wiki/Logistic_map
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Figure 7.2: Iterates of the Elutin function (7.1): y=Eluns (x) for s=3, left; for s=4,
center; for s=5, right; curves for n=1, n=0.8, n=0.5, n=0.2 are drawn.

Equation (7.2) is, actually, the transfer equation (2.12), with the Elutin
function (logistic map) Elus by (7.1) as the transfer function T . In order
to define the sequence, the initial value F (0) should be specified.

In publications about the logistic equation (7.2) with transfer function
(7.1), the argument of function F is assumed to be an integer number
[25, 29, 31, 56]. For integer argument of the solution F of equation (7.2),
the solution catches some properties of transition of the physical systems
to chaos [55, 22, 21]. Iterates of the transfer function T by (7.1) appear
as a rough description of the stochastic physical systems, as a simple,
heuristic approach for the problems of hydro- and aero- dynamics, and
also the transition regime of the stochastic lasers, in vicinity of the single-
mode regime of generation. Here I consider the holomorphic extension
of the logistic sequence for not only integer, but complex values of the
argument.

1 Logistic sequence

Iterates of the Elutin function (logistic map) T = Elus by (7.1), as
functions of real argument, are shown in figure 7.2 for s=3 (left picture)
s= 4 (central picture) and s= 5 (right picture); y= Elun

s (x) is plotted
versus x for n=0.2, n=0.5, n=0.8 and n=1. All the graphics in figure
7.2 are plotted with the same formula

Eluns (z) = F (n+G(z)) [ite] (7.3)
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Figure 7.3: Pavs(x) by formulas (7.4),(6.12), (7.8) for s = 3, s = 3.4,
s=3.8, at the top picture, and for s=3.9, s=4, s=4.1, bottom. [logi56]

where F is specific superfunction, solution of equation (7.2), and G=

F−1 is the inverse function (id est, abelfunction of Elus). Superfunction
F appears as holomorphic extension of the logistic sequence [69]. Su-
perfunction F can be constructed with the regular iteration, described
in the previous chapter. This construction is described below.

At the construction of a superfunction, the key question is about the
fixed points of the transfer function. For transfer function T = Elu by
(7.1), equation Elus(z) = z has two solutions, z = 0 and z = 1−1/s.
First of these solutions does not depend on s. This solution is used for
construction and evaluation of the “holomorphic extension of the logistic
sequence”, id est, the specific solution F = Pavs of equation 7.2, shown
in figure 7.3 below. Then I can construct the inverse function G = F−1,
which is the corresponding abelfunction. These F and G allow to plot
figure 7.2 by formula (7.3). Construction of these functions is described
in the next section.

2 Fixed point L=0

For the Elutin transfer function by (7.1), with the regular iteration at
the fixed point L=0, I construct the superfunction F = Pavs. Graphics
y=Pavs(x) are shown in figures 7.3 for different s. The complex maps
are shown in figures 7.4, 7.5, 7.6. Below I describe the construction and
evaluation of this superfunction.
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Figure 7.4: u+iv=Pav3(x+iy) by (7.8) [logi2c3]

I need some name to denote superfunction for the transfer function Eluz;
For this superfunction, I suggest name “Pav”. In this name, I use first
2.5 characters of the first name Pawel of my teacher (who had asked me
to construct this function; half of letter w appears as v). First three
characters of his last name Elutin are already used below to denote the
quadratic function (7.1), known also as “logistic map”. My excuse for
defining of the new name is the following: the “logistic map”, as it is
called in the literature, is not actually map in the common sense of
this word; it is holomorphic function; and the similar note refers to the
so-called “logistic sequence”. So, I use term “Elutin function” insteat
of “logistic map”, in the context of this book, it is holomorhic function
rather than a map.
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Figure 7.5: u+iv=Pav4(x+iy) by (7.8) [logi2c4]

In order to define function Pavs, first, I construct its asymptotic. For
the fixed point L= 0, in the expansion (6.2), increment k= log s, and
the expansion parameter ε=sz; This gives the primary expansion of the
superfunction

F̃ (z) =
N−1∑
n=1

ans
nz +O(sNz) [as] (7.4)

For the representation (6.2), I set also a1 = 1. Variation of this pa-
rameter causes only the displacement of the argument of the resulting
superfunction; this does not affect the iterates of the transfer function
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Figure 7.6: u+iv=Pav5(x+iy) by (7.8) [logi2c5]

Elus. Expressions (6.10) determine the coefficients a. In particular,

a2 =
1

1−s
[logia2] (7.5)

a3 =
2

(1−s)(1−s2)
[logia3] (7.6)

a4 =
5 + s

(1−s)(1−s2)(1− s3)
[logia4] (7.7)

The primary representation F̃ (z) by (7.4) allows the accurate (precise)
evaluation of F (z) at large negative values of <(z). Then, the continual
extension of the logistic sequence, shown in figure 7.3, appears as limit

F (z) = Pavs(z) = lim
n→∞

Elu n
s

(
F̃ (z−n)

)
[logilim] (7.8)
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For real argument, graphics of superfunction F = Pavs are shown in
figure 7.3 for s= 3, s= 3.4, s= 3.8 at the top picture and for s= 3.9,
s = 4, s = 4.1 at the bottom picture. For s = 3, s = 4 and s = 5, the
complex maps of function F = Pavs are shown in figures 7.4, 7.5, 7.6
announced above.
While s < 3.5 (id est, does not exceed the “Pomequ-Mannevill con-
stants” [69, 19, 53] ), the logistic sequence F (as for integer values of the
argument, as for the real values) shows pretty boring and regular oscil-
lations. At larger values of s, at the argument grows, the oscillations
become dense. Observation of F (n) = Pavs(n) at the integer values of
n make an impression of quasi-random sequence. While s≤ 4, at real
x, function F (x) oscillates within segment [0,1], and only at s = 4 it
touches the borders of this segment. At s> 4, the function has “gaps”;
they become deeper and deeper at the increase of the argument x or
parameter s.

At s= 4, the holomorphic extensiion Fs= Pavs of the logistic sequence
can be represented as the elementary function,

Pav4(z) = (1− cos(2z))/2 [logicos] (7.9)

The curve, corresponding to s= 4 at figure 7.3, could be plotted even
without the regular iteration; the same applies to map at figure 7.5.

At consideration of the holomorphic extension of the logistic sequence
in the complex plane, its behaviour is regular. However, at large s,
the oscillations become more and more dense with the increase of the
argument.

Superfunction Fs, built with regular iteration at the fixed point L= 0,
is entire and periodic. The period is pure imaginary (for real s):

P = 2πi/ ln(s) [logiperiod] (7.10)

This periodicity is seen in figures 7.4, 7.5, 7.6: The isolines are repro-
duced with the corresponding translations along the imaginary axis. A
little bit more than one period fit the height of the map in figures 7.4,
7.5, 7.6.

With holomorphic extension of the logistic sequence, id est, superfunc-
tion Pavs, one can construct the non-integer iterates of the logistic
map, id est, iterate the Elutin function Elus by (7.1); in particular,
the half iterate of this transfer function can be constructed. However,
for this, the inverse function is also required, I mean, the abelfunction
Gs=ArcPavs=Pav−1

s .
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Figure 7.7: u+iv = ArcPav3(x+iy) [logi2d3]

The complex maps of the abalfunction ArcPavs are shown in figures 7.7,
7.8, 7.9 for s= 3, s= 4 and s= 3. This abelfunction is described in the
next section.

3 Abelfunction for the Elutin function

This section describes the Abel function of the Elutin function Elus by
(7.1). I call this function ArcPavs. It is inverse function of function
Pavs by (7.8), described in the previous section.

Function G=Gs=ArvPavs=Pav−1
s satisfies the Abel equation

Gs(Elus(z)) = Gs(z) + 1 [GT] (7.11)
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Figure 7.8: u+iv = ArcPav4(x+iy). [logi2d4]

This equation is the same as (2.13), the only additional subscript s

is gaffed to indicate the parameter in the transfer function T = Pavs.
Complex maps of functionGs are shown in figures 7.7, 7.8, 7.9 for various
values of s. This section describes evaluation of this function.

The asymptotic expansion G̃ for abelfunction G can be found with in-
version of expansion (7.4) for superfunction F ; it has the following form:

G̃(z) = logs

(
N−1∑
n=1

Cnz
n +O(zN)

)
[GC] (7.12)

In the software Mathematica, there is special procedure InverseSeries
for such inversions.

Coefficients C in equation (7.12) depend also on parameter s, but this
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Figure 7.9: u+iv = ArcPav5(x+iy). [logi2d5]

dependence is not indicated explicitly, in order to keep the expression
compact. The same coefficents can be found also substituting the ex-
pansion (7.12) into the Abel equation (7.11) with transfer function Elus
and equalising the coefficients at equal powers of z in the left and in the
right hand sides. In particular,

C1 = 1 (7.13)

C2 =
1

s− 1
(7.14)

C3 =
3s

(s− 1)(s2 − 1)
(7.15)

C3 =
(s2−5)s

(s−1)(s2−1)(s3−1)
(7.16)
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The truncated series of expansion (7.12) gives way to evaluate abefunc-
tion G at small values of the argument. At large values, the representa-
tion can be extended with

G(z) ≈ G̃(Elu−ns (z)) + n [Git] (7.17)

for some large enough integer n. The negative integer iterates of the
transfer function can be evaluated, using representation of the inverse
of the transfer function:

ArcElu−1
s (z) = ArcElus(z) =

1

2
−
√

1

4
− z

s
(7.18)

Symbol “≈” in expression (7.17) should not make an impression, that
only the approximation of the Abel function is constructed. The exact
Abel function can be expressed through the limit

ArcPavs(z) = G(z) = lim
n→∞

(
G̃(Elu−ns (z)) + n

)
(7.19)

where symbol G̃s denotes the truncated series in the expansion (7.12).
This representation is used in generators of figures 7.7, 7.8, 7.9 . The
same representation is used to plot iterates of the transfer function in
figure 7.2. at s=3, s=4 and s=5.

Function ArcElus(z) by (7.18) has the branch point z = s/4. This
determines also the branch of the abelfunction ArcPavs and cuts in the
right hand sides of maps in figures 7.7, 7.8, 7.9 . The non-integer iterates
of the transfer fiunction, shown in figure 7.2, have the similar branching.
The half iterate is special case of the non-integer iterate; this case shown
in figures 7.10, 7.11, 7.12 and described in the next section.

4 Halfiteration of logistic operator

With superfunction Fs and abelfunction Gs = F−1
s , iterates of the trans-

fer function Ts are expressed with formula (7.3). This representation is
used to generate figure 7.2. In particular, T 0.5

s by (7.3) is solution of the
problem, formulated by P.Elutin: The function hs is built as

hs=Elu0.5
s [logih] (7.20)

such that its second iterate gives the logistic operator (7.1); id est, for
some range of values of z, the relation below holds:

h2(z) = h(h(z)) = T (z) = Elus(z) = s z (1−z) (7.21)
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Figure 7.10: u+iv = Elu
1/2
3 (x+iy). [logi2b3]

Complex maps of function hs are shown in figures 7.10, 7.11 and 7.12
for various values of parameter s. These maps look similar, because, at
large values of the argument z, the approximate relation takes place:

Elus(z) ≈ τ(z) = −s(−z)2 [lopbig] (7.22)

Iterates of function τ by (7.22) can be calculated in analogy with iterates
of the transfer function by (4.19).

The readers are invited to plot the superfunction and the abelfunction
for the transfer function τ . This can be done in analogy with the iterates
of the power function, presented in Table 3.1. In particular, the half
iterate can be written as follows:

τ 1/2(z) = −α(−z)
√

2 [logita] (7.23)
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Figure 7.11: u+iv = Elu0.5
4 (x+iy) [logi2b4]

where α = s1/(1+
√

2) is constant, and this constant depends on parameter
s slowly.
Figure 7.13 shows the map of function τ 1/2 by formula 7.23 at α = 1.8;
it should be compared to maps 7.10, 7.11 and 7.12 , that correspond to
various values of s. At large values x2+y2, the only quadratic term in the
expansion of the transfer function is important, and all the four maps
at figures 7.13, 7.10, 7.11 and 7.12 look similar. In order to make the
difference seen, these maps occupy all the width of the page available.

When the non-integer iterate of some function is constructed, it has
sense to check the results of iteration of this iterate. For the transfer
function Elus and its half iterate h=Elu0.5

s , such a check, test is shown
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Figure 7.12: u+iv = Elu0.5
5 (x+iy) [logi2b5]

in figure 7.14. This figure shows the map pf function h2 for s=3, s=4

and s = 5, id est, for the same values of parameter, that are used in
figure 7.2.

In the left hand side of maps in figure 7.14, the second iterate of function
h coincides with the logistic mapping. The scratched lines show the limit
of applicability of relation (7.21).

Relation h(h(z)) = T (z) is valid at least for <(z) < 1/2 . In such a
way, the holomorphic extension of the logistic sequence, and also the
corresponding non-integer iterates of the logistic operator correspond to
the intuitive expectations about these functions.

There is nothing specific in the half iterate of a function, while it is
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Figure 7.13: u+iv = −1.8(−(x+iy))
√

2

expressed through the superfunction and the abelfunction. It is just
non-integer iterate, while number n of iterate is 1/2. On the other
side, in the literature, the iteration half is often considered as something
magic; perhaps, because for iterate half of some transfer function, the
verification is especially simple; just iterate the halfiterate twice and see
the region, where the result coincide with the original transfer function.
Figure 7.14 appears as an example of such a verification.

Interest to iterate half, since the half iterate of factorial (
√

! ) [36, 37]
appears as a tradition. Namely iterate half is mentioned in the titles
of publications [10, 92]. So, I follow this tradition and analyse range of
validity of representation of a function through its iterate half.
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Figure 7.14: u+iv=h(h(x+iy)) by (7.20) for s=3, s=4 and s=5
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Figure 7.15: Superfunction Paw4(x) by (7.25),(6.12): explicit plot y=Paw4(x), top
picture, and complex map u+iv = Paw4(x+iy), bottom picture, by (7.28) [logi5ab4]

5 Another fixed point, L = 1− 1/s

Holomorphic extension Fs of the logistic sequence by formulas (7.4),(6.12)
is regular and periodic; the period Pa by (7.10) is pure imaginary and
slowly (as logarithm) depends on parameter s. This solution is not
unique. In analogy with the solution, that approaches the fixed point
L=0, one may construct other solutions, that approach the fixed point
L= 1−1/s at minus infinity. Complex map of one of such solutions is
shown in figure 7.15; this superfunction is described in the is section.

The logistic operator, id est, the transfer function Ts by (7.1) has two
fixed points, L= 0 and L = 1 − 1/s. Consider the last of these fixed
points. By the general way of regular iterations, I construct the super-
function f , that approaches 1−1/s at minus infinity, as follows:

f̃(z) =
s− 1

s
+

N−1∑
n=1

dn

(
(s−2)z cos(πz + ϕ)

)n
[logina] (7.24)

f(z) = Paws(z) = F̃ (z) +O
(

(s−2)z cos(πz + ϕ)
)N

[L11s](7.25)

where d are real parameters and ϕ is real constant. Substitution of this
expansion into equation (2.12) gives the chain of equations for coeffi-
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cients d. As in the previous cases, I set d1 = 1; then

d2 =
−s

(s− 1)(s− 2)

d3 =
−s2

(s− 1)(s− 2)(s− 3)
[logid2] (7.26)

d4 =
−(s− 7)3 s3

(s− 2)(s− 3)(s3 − 8s2 + 22s− 21)

The truncated series gives the accurate approximation of function F (z),
while the effective parameter of expansion, id est (s−2)z cos(πz + ϕ) is
small. Truncation with 4 coefficients in (7.25) provides of order of 10
significant figures while

π|=(z)|+ln(s−2)<(z) < 4 (7.27)

The range of approximation can be extended with iterations (6.12); this
can be used both for definition and algorithm of precise evaluation of
the superfunction:

f(z) = Paws(z) = lim
n→∞

Elun
s (f̃(z−n)) [inoelim] (7.28)

I denote this function with Paws, in order to distinguish it from Pavs
in the previous sections; I hope, use of generic name F for different
superfunctions will not cause confusions. Representation (7.28) is used
to generate figure 7.15.

Superfunction Paws by (7.28) is asymptotically–periodic; the asymp-
totic period

P =
2π

ln(s−2) i + π
[logiquasiP] (7.29)

in the upped half plane and P ∗ in the lower half plane.

In contrast with superfunction Pavs, that is built up at the fixed point
zero, for superfunction Paws, the choice of the inverse function is not
straightforward. One needs to choose, which of the oscillations should
be used to return the value of function. For this reason I do not provide
the corresponding abelfunction here. The Reader is invited to construct
it according to own preferences.

Following the 6th of the TORI axioms, about the simplicity, I consider
the superfunction by (7.4),(7.8) as “principal”, because it seems to me
simpler than that by (7.24). For the logistic operator as transfer func-
tion, the regular iteration provides the regular superfunction; however,
superfunctions, constructed at different fixed points, may show pretty
different behaviour.
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Chapter 8
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Figure 8.1: y=Factorial(x)

Factorial is holomorphic solution of
equation

Factorial(z+1) = z Factorial(z) (8.1)

Factorial can be expressed with

Factorial(z)=

∫ ∞
0

tze−t dt (8.2)

I use this notation instead of that with
with exclamation, Factorial(z) = z!,
in order to simplify indication of the
number of iterate in the upper super-
script.

Graphic y = Factorial(x) versus x is
shown in figure 8.1. At x>2, factorial
shows fast monotonous growth. At 0 < n < 1, the iterates Factorialn

should show the similar, but slower growth. These iterates are topic of
this chapter.

This chapter describes the superfunction of factorial, denoted below as
SuFac, and the Abel function, denoted as AuFac. Then, the iterates of
Factorial appear as

Factorialn(z) = SuFac
(
n+ AuFac(z)

)
[faciterge] (8.3)

Below, I construct functions SuFac and AuFac and describe their prop-
erties. In this chapter, I retell the basic concept of publication in the
Moscow University Physics Bulletin, 2010 [65].
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1 Physics department

Iterates of factorial and its superfunction and abelfunctions had been
reported in 2010 [65], before iterates of the logistic map (Elutin func-
tion), described in the precious chapter. In this section I explain, why I
consider this function as important.

Past century, during the USSR, my teacher of Quantum Mechanics had
asked students to give the physical sense to the operator “square root
of factorial”. That sign was well known in the USSR as symbol of the
Physics Department of the Moscow State University shown in figure 2.4.
In analogy with other operators of Quantum Mechanics, “square root of
factorial” should be some function h such that its second iteration gives
factorial, h2 =Factorial, id est,

h(h(z))=z! = Factorial(z) [hhzfac] (8.4)

One could guess, that this function should be real-holomorphic, growing
faster than any polynomial but slower than any exponential. That time
it was difficult (if at al), to evaluate such a function h: the formalism of
superfunctions had not yet been developed.

In principle, the Schroeder function and the scaling function could be
used to construct and evaluate the solution h of equation (8.4), instead
of superfunctions. That time, for students, dealing with Quantum Me-
chanics, it was difficult to guess, that for the square root of factorial,
the Schroeder (Schröder) equation should be used instead of the widely
known Schroedinger (Schrödinger) one 1. In addition, that time, no algo-
rithms for evaluation of the scaling function and the Schroeder function
were available.

After the successful evalation of tetration to base
√

2, reported in 2009
in journal Mathematics of Computation [61], the problem with iterates
of factorial (and, in particular, of the half iterate) happen to be pretty
solvable. The solution is published in the Moscow University Physics
Bulletin [65] and described below.

I feel, first I should remind the properties of factorial. This is matter of
the next section.

1Iterates of factorial and
√

! can be evaluated also with the scaling function f and the Schroeder
function g by (6.33)
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2 Factorial and its fixed points

For real argument, the explicit plot of factorial is shown in figure 8.1. I
extend a little bit that plot in figure 8.2, and I add some other related
functions. The complex map of factorial is shown in figure 8.3.
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Figure 8.2: Factorial and related functions for real argument [figfac]

91

http://mizugadro.mydns.jp/t/index.php/File:FactoReal.jpg


y

6

4

2

0

−2

−4

−6

−8 −6 −4 −2 0 2 4 6 x

v=0
u=0
v=0
u=0
v=0

u
=

0
v=

0
u
=

0
v
=

0
u
=

0

v=
0

u=
0

v=
0

u=0

v=0

http://mizugadro.mydns.jp/t/index.php/File:Factorialz.jpg

Figure 8.3: Complex map: u+iv = Factorial(x+iy) [facmap]

For construction of superfunction of any transfer function, there is im-
portant question about its fixed points. The fixed points of factorial
are solutions L of equation Factorial(L) = L . For real values of ar-
gument, the explicit plot of factorial is shown in figure 8.2 with thick
curve, y=Factorial(x). The fixed points correspond to intersections of
this curve with line y=x, also shown in the figure. For comparison, the
thin curves show functions Factorial−1 and z 7→ Factorial(z)−1. These
curves are added in order to remind, that Factorialn(z), Factorial(zn)

and Factorial(z)n have pretty different meanings. Complex maps of
factorial and ArcFactorial are shown in figures 8.3 и 8.4.

I had found no C++ implementations of factorial and arcfactorial for
complex arguments in the literature. Mathematica software allows the
evaluation, but does it a little bit slowly; the Maple software happened
to be not better [51], see also the appendix, chapter 22, section 2.
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Figure 8.4: u+iv = ArcFactorial(x+iy) [arcfacmap]

For evaluation of superfunction and the abelfunction, the transfer func-
tion and/or its inverse should be evaluated many times, and the efficient
(quick and precise) implementation is important. For this reason, the
original “complex double” procedures for factorial and arcfactorial are
suggested and loaded as
http://mizugadro.mydns.jp/t/index.php/Fac.cin and
http://mizugadro.mydns.jp/t/index.php/Afacc.cin
These implementations are used to plot figures of this Chapter.

In figure 8.2, I show also line y = x and graphics y = Factorial−1(x)

and y = Factorial(x)−1. Some extremal points of factorial are shown;
the local minimum at point x=ν0 and local maximum at point x=ν1;
Values of factorial in these points are denoted as µ0 и µ1. Function
y = Factorial−1(x) has the branch point x= µ0, and ν0 is its value at
this point.
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3 Regular iteration for factorial

The asymptotic expansion of superffactorial can be written as follows:
F (z) = L+ exp(kx) + a2 exp(2kz) + a3 exp(3kz) + ..

= L+ ε+ a2ε
2 + a3ε

3 + .. [sufass] (8.5)
where ε = exp(kz), for some constant increment k and constant coeffi-
cients a According to the general formulas (6.9), (6.10), (6.11), substi-
tution of this expansion into the transfer equation

Factorial
(
F (z)

)
= F (z+1) [Tfac] (8.6)

gives the value of the increment. For Factorial’s fixed point L=2, I get
k = ln

(
3+2 Factorial′(0)

)
= ln(3−2 γ) ≈ 0.61278745233070836 (8.7)

where γ = −Γ′(1) ≈ 0.5772156649 is Euer constant. I set a0 = 2 and
a1 =1; then the partial sum in expansion (8.5) is easy to program. I get

a2 =
π2 + 6γ2 − 18γ + 6

12(3− 5γ + 2γ2)
≈ 0.798731835172434541585621 (8.8)

a3 =
(
− 36− 39π2 − 738γ2 + 324γ + 99π2γ − 60π2γ2 − π4 + 24γ5

+594γ3 − 120ζ(3)γ + 48ζ(3)γ2 + 12γ3π2 + 72ζ(3)− 204γ4
)
/(

144(−18 + 69γ − 104γ2 + 77γ3 − 28γ4 + 4γ5)
)

≈ 0.5778809754764832358038 (8.9)

In equation (8.9), the Riemann zeta-function appears, ζ(z) =
∞∑
n=1

1

nz
.

We need ζ(3)≈ 1.202056903 ; values of function ζ at other arguments
are not used for evaluation of coefficients a. Approximate values of
coefficients in expansion (8.5) are shown in table 8.1.
For factorial, the increment k > 0; expansion (8.5) gives good approxi-
mation F̃ (z) at −<(z)� 1. For other z, I use the integer iterates; the
superfunction

F (z) = lim
n→∞

Factorialn
(
F̃ (z−n)

)
[regufac] (8.10)

For <(z)∼1, it is sufficient to iterate expression (8.10) only few times,
in order to get ε of order of 0.1 or less. Then, some 15 terms in the
expansion (8.5) provide of order of 14 correct significant figures of F (z).
Let z3 be is real solution of equation F (z3) = 3; the evaluation gives
z3≈−0.91938596545217788 ; then, I define

SuFac(z) = F (z3+z) [SuFac] (8.11)
Function SuFac is also superfunction of factorial, and SuFac(0)=3 .
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Table 8.1: Coefficients a and U in the expansions (8.5) and (8.14)
n an Un

2 0.7987318351724345 −0.7987318351724345

3 0.5778809754764832 0.6980641135593670

4 0.3939788096629718 −0.6339640557572815

5 0.2575339580323327 0.5884152357911399

6 0.1629019581037053 −0.5538887519936520

7 0.1002824191713524 0.5265479025985924

8 0.0603184725913977 −0.5041914604280215

9 0.0355544582258062 0.4854529800293392

10 0.0205859954874424 −0.4694346809094714
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Figure 8.5: y = x! and y = SuFac(x) by
(8.10),(8.11) versus x

I have displaced the argu-
ment of superfactorial, in
order to let it have inte-
ger value at zero. This is
smallest integer, that is still
greater than the fixed point
L = 2.
Graphic of function SuFac of
the real argument is shown
in figure (8.5), y=SuFac(x).
For comparison, in the same
figure, factorial is shown,
y = Factorial(x). Graphic
of factorial passes through
poins with coordinates (0,1),
(1,1), (2,2), (3,6). Graphic
of the super factorial passes
through points with coordi-
nates (0,3), (1,6), (2,720);
the last point is far away
from the range of the figure.

Complex map of SuFac is shown in figure 8.6. This function has period

P =
2πi

k
= 2πi ln

(
3+2 Factorial′(0)

)
≈ 10.253449681156 i (8.12)

This period is pure imaginary. A little bit less than two periods fit the
height of the upper map in figure 8.6.
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Figure 8.6: u+iv=SuFac(x+iy) and the zoom-in of the central part
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In the half-strips

x>2,
∣∣y + n|P |

∣∣ < 1, for integer n [sufastrips] (8.13)

SuFac(x + iy) has countable set of singularities. At the map, every
negative integer value of =(SuFac(x+iy)), at the translation for unity
along the real axis, produces the singularity, due to the transfer equation
(8.6). In order to show the structure of these singularities, the zoom-in
of the map is shown at the bottom of figure 8.6. Outside the half-strips
(8.13), factorial is regular; it approaches to the fixed points L of factorial:
L=2 in the left hand side and L=1 in the right hand side of the map.

The fast growth of factorial implies the slow growth of the inverse func-
tion, id est, growth of the abelfactorial. I denote this function with
symbol AuFac. Complex map of AuFac = SuFac−1 is shown in figure
8.7; this function is considered in the next section.

4 Abelfactorial

The asymptotic series for super factorial can be inverted. This gives the
asymptotic expansion of abelfactorial (arcsuperfactorial) in vicinity of
the fixed point L=2:

G̃(z) =
1

k
ln

(
N−1∑
n=1

Un(z−2)n +O(z−2)N

)
[abelFacExp](8.14)

Parameter k has the same meaning, as in expansion (8.5); its value is
determined by (8.7). The first two coefficients U are

U1 = 1 (8.15)

U2 = −π
2 + 6γ2 − 18γ + 6

12(3− 5γ + 2γ2)
≈ 0.7987318 [UAFac] (8.16)

The Mathematica routine InverseSeries allow to calculate these coef-
ficients analytically, although the expressions for the highest U are a
little bit long. The approximate values of these coefficients are shown
in the right column of table 8.1.

For argument close to 2, the truncated series in (8.14) provides the
precise evaluation. For other values, the repeated application of the
recurrent formula

G(z) = G
(

ArcFactorial(z)
)

+ 1 [AbelFacDrugaya] (8.17)
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Figure 8.7: u+iv = AbelFactorial(x+iy). [AbelFactorialMap]

is used, until |z−2| becomes small. This algorithm determines the cut
line of the abelfctorial AuFac; the cut goes from 2 to −∞.

The abelfunction G of factorial can be defined with

G(z) = lim
n→∞

G̃(Factorial−n(z) + n [facG] (8.18)

then, AuFac=AbelFactorial=SuFac−1, appears as

AuFac(z) = G(z)− z3 = G(z)−G(3) [AuFac] (8.19)

where z3 = G(3) ≈ −0.91938596545218. This expression automatically
provides condition AuFac(3)=0. In such a way,

AuFac(z) ≈ AuFacn(z) = G̃
(

ArcFactorialn(z)
)

+ n− z3 (8.20)
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Figure 8.8: ArcFactorial and AuFac

Function AuFac is plotted
in figure 8.8. For compari-
son, graphic of ArcFactorial
is also shown. Graphic of
ArcFactorial goes through
points (1,1), (2,2), (6,3),
(24,4), although the last
one is already out of range
of the figure (and out of
range of the page. Graphic
of AuFac passes through
points (3,0), (6,1), (720,2),
and the last one is not only our of range of the page, but also out of
room, were this Book is written, and the next point, where AuFac takes
the integer value, id est, (720!, 3) is far away from the visible part of
our Universe.

Function AuFac grows very slowly. If the argument of this function
represents some physical quantity (distance, mass, charge, number of
atoms, etc.), measured in any reasonable units, then, there is no way to
make this quantity so big, that AuFac of it reaches 3.

While superfactorial and abelfactorial, id est, SuFac and AuFac, are
already constructed and implemented, one can use them to evaluate the
non-integer iterates of factorial. These iterates are matter of the next
section.

5 Iterates of factorial

With super factorial and abelfactorial, the nth iterate of factorial can
be written as follows:

h(z) = Factorialn(z) = SuFac
(
n+ AuFac(z)

)
[Facc] (8.21)

In this representation n has no need to be integer. Figure 8.9 shows
graphic y=Factorialn(x) versus x for various real n. Figure 8.9 should
be compared to figures 4.2, 4.5, 4.6, 4.7, 4.8, 4.13, 5.11, that show iterates
of other functions, that can be expressed through the special functions,
known at least since century 20. There is no similar representation for
the abelfactorial. I hope, in century 21, some of new superfunctions,
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Figure 8.9: y=Factorialn(x) versus x for various n [facit]

including SuFac, AuFac will be included in the handbooks on the spe-
cial functions and implemented as built-in routines in the programming
languages; then, the difference between iterates of factorial and iterates
of other functions, mentioned in the previous chapters, will be even less
significant.

At n = 1/2, formula (8.21) gives the half iterate of factorial. Map of
function h= Factorial1/2 is shown in figure 8.10. This function can be
interpreted as “square root of factorial”

√
! , used as logo of the Phys.

Dep. of the Moscow State University, shown in figure 2.4.

Concept of square root of factorial caused confusions and discussions.
Some colleagues did not want to see difference between expiressions
Factorial1/2(z) and Factorial(z)1/2, interpreting

√
Factorial(z) as equiv-
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Figure 8.10: u+iv = Factorial0.5(x+iy) [QFacMap]

alent of
√

Factorial(z). In order to eliminate, en fin, this confusion,
function h=Factorial1/2 is considered here with more details.

The key for the verification of interpretation of function h =
√

! , is
analysis of the range of validity of relation

h(h(z)) = Factorial(z) = z! [hh] (8.22)

Map of function h2 in the left hand side of equation (8.22) is shown in
figure 8.11. This figure should be compared to figure 8.3, that represents
the complex map of factorial.

In the right hand side of figure 8.11, complex map of the second iterate
of function h, id est, h ◦ h = h2, coincides with the map of factorial,
shown in figure 8.3. At least in the halfstrip <(z)>1, |=(z)|≤4, relation
(8.22) holds. The resulting half iteration of factorial corresponds to the
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Figure 8.11: u+iv = h2(x+iy). [QQFacMap]

intuitive expectations about this function.

Range of validity of relation (8.22) is limited with cut lines, shown in
figure 8.11. Such cutlines are typical for non-integer iterates, if the
superfunction cannot be represented through elementary function.

Factorial is not exotic, not an exception. With superfunctions, one can
build-up non-integer iterates for other holomorphic functions too. More
examples are considered in the following chapters below.

Many transfer functions can be treated in a way, similar to that of this
chapter. One of them, namely, the exponential to base b =

√
2, is

considered in the next chapter.
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Chapter 9

Exponent to base sqrt(2)
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Figure 9.1: Exponent to base b=
√

2

Exponent to base
√

2 happened to be first function treated with the
regular iteration [61]. With this example (and for this function), the
methods, described in chapter 6, were developed. In this chapter, this
exponent to this specific base is considered as transfer function T .

Exponent to base
√

2 can be expressed through the natural exponent:

T (z) = exp√2(z) = exp
(

ln(
√

2)z
)

= exp

(
ln(2)

2
z

)
[Texpq2] (9.1)

Explicit plot of this function is shown in figure 9.1.

For exponential to base b=
√

2, the fixed points L= 2 and L= 4 are
natural numbers. In figure 9.1, they correspond to intersections of curve
y=T (x) with the straight line y=x.
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Figure 9.2: u+iv = exp√2(x+ iy)

Complex map of exponent to base b=
√

2 is shown in figure 9.2. This
function is periodic; its period

P =
2 π i

ln(b)
=

2π i

ln
(√

2
) ≈ 18.1294405673 i [Q2P18] (9.2)

is pure imaginary. A little bit less than one period fits the height of map
in figure 9.2.

For the exponential to base b=
√

2, the inverse function is logarithm to
base b; this logarithm can be interpreted as minus first iterate:

T−1(z) = log√2(z) = logb(z) =
2

ln(2)
ln(z) [logsqrt2] (9.3)

Complex map of logarithm to base b=
√

2 is shown in figure 9.3. The
dashed line marks the cut of the range of holomorphism; that cut runs
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Figure 9.3: u+iv = log√2(x+ iy) [LogQ2map]

from zero along the negative part of the real axis. The jump at the cut
line is determined by the period (9.2) of the exponent:

log√2(x+ io)− log√2(x− io) = P ≈ 18.1294405673 i (9.4)

for x < 0. At the map, the levels v = =(log√2(x+iy)) = −9 and v =

=(log√2(x+iy))=9 are seen close to the negative part of the real axis.

Fixed points L= 2 and L= 4 of the exponent are also fixed points of
the logarithm; these points are seen in figures 9.1, 9.2 and 9.3.

This chapter describes the regular iteration of exponential to base
√

2

at the fixed point L=4. The next section describes the construction of
the supedfunction, id est, the growing superexponential to this base.
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1 Superfunction at fixed point L=4

y

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−3 −2 −1 0 1 2 3 x

y
=

S
u
E

x
p
√ 2
,5

(x
)

y=
ex

p
√ 2

(x
)

ht
tp

:/
/m

iz
ug

ad
ro

.m
yd

ns
.j

p/
t/

in
de

x.
ph

p/
Fi

le
:S

qr
t2

3u
pl

ot
.j

pg

Figure 9.4: y = SuExp√2,5(x) by
(9.13) and y=exp√2,5(x)

Chapter 6 describes the construction
of iterates of a transfer function, that
are regular in vicinity of its fixed
point. Here, that method is used
for T = exp√2 ; the superfunction
is constructed, that exponentially ap-
proaches the fixed point L=4 at large
negative values of the real part of the
argument, and grows to infinity at the
large positive argument. This func-
tion is denoted with SuExp√2,5. The
last superscript in the name of the
function indicates its value at zero,
SuExp√2,5(0) = 5. In figure 9.4, curve
y= SuExp√2,5 is compared to that of
y = exp√2(x). Below I construct and
describe function SuExp√2,5.

I use formula (6.2) of the asymptotic
expansion of superfuction f :

f(z)=
N−1∑
n=0

an enkz+O
(
eNkz

)
(9.5)

Here I assume, that a0 = L = 4 and
a1 = 1. Coefficient a1 could be cho-
sen arbitrary, but then other coeffi-
cients depend on a1. Alteration of a1

is equivalent of scaling of parameter
ε and displacement of the argument
of the superfunction. Then, formula
(6.9) gives

k=ln
(

expb
′(4)
)

=ln
(

4 ln(
√

2)
)

=ln(2 ln(2))≈0.32663425997828 (9.6)

This value determines periodicity of the superfunction; its period

P = P4 =
2π i

k
=

2πi

ln(2 ln(2))
≈ 19.236149042042854712 i (9.7)

I use equations (6.10),(6.11) or directly the transfer equation (which
gives the same results) to get coefficients a. While the transfer function
is exponent to base

√
2, the transfer equation can be written as follows:

f(z+1) =
(√

2
)f(z)

[q2Transfereq] (9.8)

106

http://mizugadro.mydns.jp/t/index.php/File:Sqrt23uplot.jpg


Table 9.1: Coefficients a and U in expansions (9.5), (9.15)

n an Un

1 1.0000000000000000 1.0000000000000000

2 0.4485874311952612 −0.4485874311952612

3 0.1903722467978068 0.2120891200549197

4 0.0778295765369683 −0.1021843675069717

5 0.0309358603057080 0.0496986830373718

6 0.0120221257690659 −0.0243075903261196

7 0.0045849888965617 0.0119330883965109

8 0.0017207423310577 −0.0058736976420089

9 0.0006368109038799 0.0028968672871058

10 0.0002327696003030 −0.0014309081060793

11 0.0000841455118381 0.0007076637148566

12 0.0000301156464937 −0.0003503296158730

13 0.0000106807458130 0.0001735756004664

14 0.0000037565713616 −0.0000860610119291

15 0.0000013111367785 0.0000426959089013

16 0.0000004543791625 −0.0000211930290682

17 0.0000001564298463 0.0000105244225996

18 0.0000000535232764 −0.0000052285174354

19 0.0000000182077863 0.0000025984499916

20 0.0000000061604765 −0.0000012917821121

Substitution of expansion (9.5) into the transfer equation (9.8) deter-
mines coefficients am for m>1. In particular,

a2 =
ln(2)/4

1− 2 ln(2)
≈0.448587431195261 (9.9)

a3 =

(
1−ln(2)

)
ln(2)2/12

1−2 ln(2)−4 ln(2)2+8 ln(2)3
≈0.1903722467978067 (9.10)

Similar (but longer) expressions can be written for the other coefficients
a. The first column in table 9.1 suggests the approximate values of
coefficients a in expansion (9.5).
I use the truncation of the expansion (9.5), taking into account N =20
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Figure 9.5: u+iv = f̃(x−1.11520724513161 + i y) ; [sqrt2figf45b][mapeq2F4]

terms. This gives the primary approximation f̃ for superfunction f :

f̃(z) =
19∑
n=0

an exp(nkz) [q2Fz4tilde20] (9.11)

Approximation f̃ is shown in figure 9.5. In order to simplify the com-
parison with other maps, the argument of function in this figure is
displaced for the real constant x45 ≈ −1.11520724513161; this con-
stant provides approximate condition f(x45) ≈ 5 and the exact equality
SuEx√2,5(0) = 5 for the superfunction constructed below and shown in
figure 9.6.
The primary approximation (9.11) allows to plot the complex map of
superfunction in the left hand side of the complex plane. The residual at
the substitution of the approximation (9.11) into the transfer equation
(9.8) becomes of order of rounding errors at <(z)<−2. The readers are
invited to plot this residual by themselves (preferably), or to look at it
in the right hand side of figure 4 of the original publication [61].
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Figure 9.6: u+iv = SuExp√2,5(x+iy) by (9.13) [sqrt2f45map]

Superfunction f appears as limit

f(z) = lim
n→∞

expb
n
(
f̃(z−n)

)
[sqrt2regi45] (9.12)

This limit does not depend on the number N of terms in the primary
approximation (9.11). Instead of 19 terms, one could choose another
constant. However, the more terms are taken into account, the faster
does the limit converge. Choosing N=19, I keep in mind the implemen-
tation complex double. For the approximation of f with 14 significant
figures, it is sufficient to choose n><(z)+2.
It is convenient, when at zero the superfunction takes integer value. I
choose this value to be 5. This is smallest integer, that is still greater
than the chosen fixed point L = 4. I denote this superfunction with
symbol SuExp√2,5 and define it as follows:

SuExp√2,5(z) = F (z) = f(x45 + z) [Ff45] (9.13)
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where x45 ≈ −1.11520724513161 is real solution of equation f(x45)=0.
Namely this constant is used for the displacement of the argument of
function f̃ in figure 9.5 in order of simplify the comparison with map of
function SuExp√2,5 shown in figure 9.6.

In the left hand side of the complex plane, functions z 7→ f̃(z+x45) and
SuExp√2,5 practically coincide. In the whole complex plane, the super-
function can be approximated with any arbitrary precision; so, it should
be qualified as exact solution. In such a way, the primary approxima-
tion f̃ provides the exact solution for the superfunction SuExp√2,5 in
the whole complex plane.
For the transfer function as exponential to base b =

√
2, the regular

iteration at the fixed point L=4 gives the function F =SuExp√2,5 that
is holomorphic in the whole complex plane. Graphic of this function is
shown in figure 9.4. Complex map of function SuExp√2,5 is shown in
figure 9.6.
For function F = SuExp4,5, value at zero is chosen a smallest integer,
which is still greater than L = 5; so, F (0) = 5. Then, function F =
SuExp4,5 can be interpreted as iterate of exponent with initial value 5:

F (z) = SuExp√2,5(z) = expz√
2,u

(5) [expq2z5] (9.14)

where subscript u indicates, that the regular iteration is built-up at the
highest (“upper”) fixed point of the exponent. In order to evaluate the
non-integer iterates of other argument, the abelfunction is also required,
I mean, G = F−1 = AuExp√2,5. This abelfunction is described in the
next section.

2 Abelfunction at fixed point L=4

Superfunction F =SuExp√2,4 of the exponent to base
√

2 is descried in
the previous section. This section considers the inverse function, G=
AuExp√2,4 =F−1 =SuExp−1√

2,4
. Then, the combination of superfunction

F and abelfunction G allows to evaluate the non-integer iterates of the
transfer function T =exp√2 by the general formula (2.14).

Expansion for the abelfunction g = f−1 can be obtained, inverting the
asymptotics (9.5). This gives for the abelfunction g expansion g̃ in the
following form:

exp(kg̃(z)) =
N−1∑
n=1

Um (z−L)n +O(z−4)N [q2Gz4] (9.15)

where U0 =0; this implies, that at the fixed point L, function g becomes
infinite. Then, according to expansion (9.5), we get U1 =1 and U2 =−a2.
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While coefficients a are represented with exact expressions (with infinite
precision), Matgematica or Maple can calculate of order of 10 coefficients
U in expansion (9.15). Routine, that perform this inversion, is called
InverseSeries. In particular,

U2 =
ln(2)/4

1− 2 ln(2)
≈−0.4485874311952612289 (9.16)

U3 =

(
1+4 ln(2)

)
ln(2)2/24

1−2 ln(2)−4 ln(2)2+8 ln(2)3
≈ 0.21208912005491969757 (9.17)

Approximate values of coefficients U are shown in the right hand side
column of table 9.1. The same coefficients can be obtained also indepen-
dently on the expansion of superfunction, by substitution to expansion

g̃(z) =
1

k
ln

(
N−1∑
n=1

Um (z−L)n +O(z−4)N

)
[eq2ga](9.18)

into the Abel equation

g(expb(z)) = g(z) + 1 [eq2gass] (9.19)

In order to fit the with of the screen (at the authomatic computation) or
the width of the page (at the calculation with paper and pen), getting
g̃(z) by formyla (9.18) it worth to use the new variable ζ=z−L=z−4.
Then, first coefficients U in expansion (9.15) can be found even without
computer.
Truncated expansion g̃(z) approximates g(z) at |z−4|< 2. For other
values, the iterates with the Abel equation (9.19) can be used. Abel-
function G=F−1, shown in figure 9.7, appears as limit of these iterates:

AuExp√2,5(z) = G(z) = lim
n→∞

g̃
(

logb(z−n)
)

+ n+ x45 [eq2G](9.20)

where x45 ≈ −1.11520724513161 is the same constant, that appears in
the definition (9.13) of the superexponent F = SuExp√2,5, providing
F (0)=5.
The inverse function of any non-trivial entire function has cut(s). The
abelexponent G = AuExp√2,5 is not exception. The cut of the range
of its holomorphism is shown in figure 9.7 with dashed line. This cut
goes along the real axis from minus infinity to the branch point 4. The
abelexponent has logarithmic singularity at this point. This singularity
corresponds to the exponential approach of the superesponent to the
fixed point, as the real part of the argument goes to minus infinity.
The readers are invited to plot the map of the region, where the relation
below holds:

SuExp√2,5

(
AuExp√2,5(z)

)
= z [SuExpAuExpQ23] (9.21)
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Figure 9.7: u+iv = AuExp√2,5(x+iy) by formula (9.20)

and the map of range of validity of relation

AuExp√2,5

(
SuExp√2,5(z)

)
= z (9.22)

Especially for the exponent to base
√

2, the algorithms of evaluation of
the growing superfunction and the abelfunction are loaded as
http://mizugadro.mydns.jp/t/index.php/F45E.cin and
http://mizugadro.mydns.jp/t/index.php/F45L.cin
They are implemented in C++ as complex double functions of complex
double arguments. With these algorithms, the Reader can reproduce
figures of this chapter, even without downloading generators of these
figures.
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3 Notations

The most of notations, used in this Book, are already introduced. This
section suggests some kind of short overview of these notations. for
the transfer function (practically, it is any holomorphic function, for
which the superfunction and abelfunctions are considered): F for the
superfunction, and G=F−1 for the corresponding abelfunction. These
notations are convenient, while it is clear, which transfer function is kept
in mind, and which of its superfunctions is denoted with F and which
of its inverse G is assumed.

However, these notations may cause confusions, if cited from other chap-
ters. Functions T , F and G may have (and actually have) different
meanings in different chapters. For this reason, in this chapter, I intro-
duce also long names SuExp√2,5 = F and AuExp√2,5 =G. The names
above have simple mnemonics. The first letter indicates, that it refers
to Superfunction or to Abelfunction. This letter is capitalised, following
the tradition of language Mathematica. The second letter indicates, that
the biggest, “upper” fixed point of the transfer function is used. This
have sense, if the transfer function T is real-holomorphic, and has real
fixed point(s), and one of them can be qualified as maximal, upper. This
takes place for the exponent to base

√
2. The following three characters

refer to the name of the transfer function, id est, exp; again, its first
letter is capitalised. The subscript indicates the base of this exponent,
b=
√

2 and value of this superexponent at zero; F (0)=5 and G(5)=0.

4 Iterates of exponent to base b =
√
2

With superfunction F =SuExp√2,5 and abefunction G=AuExp√2,5, the
nth iterate of transfer function T =exp√2 can be expressed as follows:

T n(z) = exp n√
2,u

(z) = SuExp√2,5

(
n+AuExp√2,5(z)

)
[q2Tn5] (9.23)

This formula is valid at least for <(z)> 4. If one choose the upper (or
lower) border at the cut of abelfuntion G=AuExp√2,5 between 2 and 4,
the resulting iterate T n(z) is holomorphic in the whole compilex plane
except the cut along line z≤2. In figure 9.8, this T n(x) is shown versus
x for various real values of n. These iterates are defined at least for
x>2. For integer n, the curves can be extended also to x≤2.

For n= 1/2, the complex map of function T n(z) by (9.23) is shown in
figure 9.9. This is half iterate of exponential to base

√
2:
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Figure 9.8: y=exp n√
2,u

(x) by (9.23) for various n. [iterEq2plot]

T 1/2(z)=exp
1/2√

2,u
=F

(
1

2
+G(z)

)
=SuExp√2,5

(
1

2
+AuExp√2,5(z)

)
(9.24)

I remind, that symbol “u” in the subscript indicates, that for the reg-
ular iterate, the highest (“upper”) fixed point is used as asymptotics of
superfunction at infinity.

Abelfunction G, built up at the fixed point L= 4, has logarithmic sin-
gularity at this point, and the corresponding cut; the jump at this cut
is constant; and this constant is just period of the superfunction F . For
this reason, the iterates, even non-initeger, and in particular, the half
iterate by equation (9.24), are regular at the point L = 4. However,
the non-integer iterates have branch point at another fixed point of the
transfer function, namely, L=2. In figure 9.9, the corresponding cut is
marked with dashed line.
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Figure 9.9: u+iv=T 1/2(x+iy) by formula (9.24). [iterEq2map]

5 Intermediate finish

Figure 9.10: View from the saddle point

Several results and tools for super-
functions abelfunctions and non-
initeger iterates are already pre-
sented above. Here I make a view
on the way already past and an-
nounce, what will be in the future
way, as it is shown in figure 9.10.

This chapter, above, deals with
transfer function T (z) =

(√
2
)z

=

exp√2(z); superfunction F , abel-
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functon G and iterates of the transfer function T are described:

F = SuExp√2,5 (9.25)
G = AuExp√2,5 (9.26)

T n(z) = F (n+G(z)) = exp n√
2,u

(z) [expbc] (9.27)

Iterates by equation (9.27) are shown in figure 9.8. These iterates look
similar to iterates of other growing functions, in particular, those shown
in figures 4.13 for iterates of the power function and 8.9 for iterates
of factorial. One may expect, at least for the real-holomorphic growing
functions, the similar iterates can be constructed in the similar way, even
if the superfunction and the abelfunction cannot be expressed through
the special functions described in the textbooks of century 20. I mean,
with the regular iteration,

With the examples above, the Reader already understands, how can one
iterate a holomorphic function in such a way, that the number to iterates
has no need to be integer. These iterates greatly extends the tools,
available for scientific description of various processes, for approximation
(fitting) of physical (and, perhaps, not only physical) dependences. The
non-integer iterates of exponential can be used, and, in particular, those
to base

√
2. The example of such a non-integer iterates is shown in

figure 9.9. I believe, the Reader can easy plot other examples of the
iterates of the exponential to this base, and also for some other values
of base.

The results presented above may cause impression, that they finish the
investigation of superfunctions, abelfunctions and non-integer interates,
and that, in future, one needs just to apply the regular iteration to
various special functions. Actually, it is not the case.

For some functions, the regular iterates with asymptotic (6.2),(6.3) can-
not be constructed, as the equations for the coefficients of the expansion
have no solution. One of these cases is considered in the the next chapter
and qualified as “exotic”.
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Chapter 10

Exotic iteration and exp to base e1/e
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Figure 10.1: y=bx for b=η=e1/e≈1.44466786 and b=
√

2≈1.41421356

The regular iteration by (6.2)-(6.12) looks as general method of construc-
tion of superfunctions. However, in some cases, it cannot be applied as
is. In particular, the asymptotic expansion (6.2) becomes invalid, if the
derivative of the transfer function at the fixed point is unity:

T (L) = L , T ′(L) = 1 [Tprimeu] (10.1)

In this case, expression T ′−1 = T ′(L)−1 in denominator of fraction
in the right hand side of equation (6.10) becomes zero; and the co-
efficients in expansion (6.2) loss their meaning. Exponential to base
b= e1/e≈1.44466786 is an example of such an exotic transfer function;
construction of superfunction for such a case is matter of this chapter.
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1 Exotic iterate

Figure 10.2: Exotics

The coincidence, that the derivative in equation
(10.1) becomes unity, can be qualified as exotic.
This determines the title of the chapter and that
if this section. Condition (10.1) is not only ex-
otic possible, (see figure 10.2), but, first, I consider
namely case (10.1).

The general formulas of chapter 6 fail for the special case T ′(L)=1, and
Henryk Trappmann expected, that for this case the precise evaluation
of superfunction is very difficult, if at all. In order to convince him, that
it is doable, we had to write the paper [79]. Part of that publication is
described below.
This section considers the case, when the derivative of the transfer func-
tion T in the fixed point L is unity. Then, formulas of section 6 for the
regular iteration cannot be applied as is.

Calculation of iterates of a function is simpler, if its fixed point is zero.
If the fixed point L of transfer function T is not zero, then, the super-
function F can be represented in the following form:

F (z) = f(z) + L [FfL] (10.2)

Then, for function f , we get

f(z+1) = F (z+1)− L = T (F (z))−L = T (L+f(z))− L (10.3)

We may define

Tnew(z) = T (L+ z)− L [TnewTLzL] (10.4)

and interpret this Tnew as new transfer function, and f is superfunc-
tion for it. Below, the subscript new is omitted. This is equivalent to
assumption

T (0) = 0 (10.5)

Let the Taylor expansion of the transfer function have the following
form:

T (z) = z + vz2 + wz3 + .. [TExpan] (10.6)

where v 6=0. For such a transfer function, it is difficult (and, perhaps, im-
possible) to built-up any superfunction, that exponentially approaches

118



zero at infinity. But it is possible to construct the superfunction, that
decays, roughly, as the inverse proportional function. Let

f(z) =
a

z
+
b`

z2
+
α`2+β`+γ

z3
+ .. [FExpan] (10.7)

where a, b, α, β and γ are constants, and `= ln(z). Below I assume,
that coefficients v and w of the expansion (10.6) are known, and show,
how to calculate coefficients a and b of the asymptotic (10.7).

For the displacement of the argument z 7→ z+ 1, expressions in the
asymptotic representation (10.7) are transformed in the following way:

1

z
7→ 1

z+1
=

1

z

(
1 +

1

z

)−1

=
1

z
− 1

z2
+

1

z3
+ .. (10.8)

1

z2
7→ 1

(z+1)2
=

1

z2

(
1 +

1

z

)−2

=
1

z2
− 2

z3
+

3

z4
+ .. (10.9)

`=ln(z) 7→ ln(z+1) = ln

(
z ·
(

1 +
1

z

))
= ln(z) + ln

(
1 +

1

z

)
= `+

1

z
− 1

2z2
+ .. (10.10)

Using these preparations, the left hand side of the transfer equation

f(z+1) = T (f(z)) [transff] (10.11)

can be written as follows:

f(z+1)=
a

z
− a

z2
+
a

z3
+
b`+ b/z

z2

(
1− 2

z

)
+
α`2+β`+γ

z3
+ ..

=
a

z
+

1

z2

(
−a+b`

)
+

1

z3

(
a+b− 2b`+ α`2+β`+γ

)
+ .. (10.12)

The right hand side of equation (10.11) becomes

T (f(z)) =
a

z
+
b`

z2
+
α`2+β`+γ

z3
+ v ·

(
a

z
+
b`

z2
+ ..

)2

+ w
(a
z

+ ..
)3

..

=
a

z
+

1

z2

(
b`+va2

)
+

1

z3

(
α`2+β`+γ+2vab`+wa3

)
+.. (10.13)

We should equalize the right hand sites of equations (10.12) and (10.13).
Coefficients at 1

z coincide automatically. Coefficients at 1
z2 gives

−a = va2 [ava2] (10.14)
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Equalisation of coefficients at 1
z3 gives

a+ b− 2b` = 2vab`+ wa3 [f1tttttt] (10.15)

Variable ` = ln(z) depends on z, but equation (10.15) should be valid
for various z. So, we get the two equations:

−2b = 2vab [again] (10.16)

which, at b 6=0, gives the same, as (10.14), and also

a+ b = wa3 [f1tttt] (10.17)

Solving these two equations, I get

a =
−1

v
, b =

−w
v3

+
1

v
[avbwv] (10.18)

One can add more terms in the expansion (10.7), and, in the similar
way, calculate coefficients α, β, γ and even higher, assuming, that the
expansion (10.6) of the transfer function is known. In such away, the
coefficients of the asymptotic expansion (10.7) of the superfunction f

are determined by the coefficients of expansion of transfer function T .

The asymptotic solution (10.7) allows evaluation of the transfer function
at large z. Then, as in the case of the regular iteration, the asymptotic
solution can be extended to the whole complex plane (except the cut
lines) with the transfer equaltion, applying one of the two formulas be-
low:

f(z) = T n
(
f(z − n)

)
[iterA] (10.19)

or

f(z) = T−n
(
f(z + n)

)
[iterB] (10.20)

in order to make the argument of the superfunction large, bringing it to
the range, where the truncated asymptotic expansion (10.7) provides the
required precision. The choice of one of the formulas (10.19) or (10.20)
determines the position of the cut lines of the resulting superfunction.
The direction of the cut lines can be changed also with replacement of
` = ln(z) to ` = ln(−z). In order to get unique solution, we need to
choose (and postulate) the asymptotic behavior of the function we want
to construct. In the following section, the method above is applied to
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exponential to base e1/e, and then, in the following chapters, to other
functions.

In principle, even with two terms in equation (10.7), one can get the
camera-ready maps of the superfunction and related functions. Per-
haps, this is sufficient for the application in physics and other sciences,
where the precision of measurements is usually less than 14 decimal
digits. The precision can be infinitely improved with modification of
the argument of the primary approximation f with equations (10.19) or
(10.20), increasing the number n of iterates.

However, for the numerical tests, it worth to calculate several coefficients
of expansion of superfunction. This reduces the time of evaluation and
improves the precision. For various transfer functions, that are holomor-
phic in vicinity of the fixed point and have expansion beginning with
(10.6), some tens of coefficients of the expansion (10.7) can be calculated.
Examples of the numerical tests for such expansions are presented below.

2 Exponent to base exp(1/e)

Let us apply the formalism of exotic iterations above to the exponential
to base b=η=exp(1/e)≈1.44466786 . This section deals with function
T by

T (z) = ηz = expη(z) = exp(ln(η) z) = exp(z/e) [etaz](10.21)

Explicit plot of this transfer function is shown in figure 10.1 with thick
curve. For comparison, the thin curve shows the exponent to base

√
2,

considered above in chapter 9; this curve is borrowed from figure 9.1.
The curves at this figure look close; at small and negative values of the
argument, they almost overlap. However, the deviation is significant at
large positive values of the argument, and this determines the pretty
different behaviour of the corresponding superfunctions.

Complex map of the transfer function expη is shown in figure 10.3. This
map looks similar to the map at figure 9.2; the only period is slightly
different. For the base η, this period

Pexpη = 2π i e ≈ 17.0794684453 i [Pexpeta] (10.22)

It is amassing, that the simple formula (10.22) combines the 3 fundamen-
tal constants, : π, i and e. In addition, the Henryk base η=exp2(−1)=
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Figure 10.3: u+iv = expη(x+iy) [expe1emap]

exp(1/e) ≈ 1.44466786101 also is mathematical constant. A little bit
leas than one period Pexpη fits the range of map in figure 10.3.

For transfer function T = expη, the inverse function is T −1 = exp−1
η =

logη. Complex map of this function is shown in figure 10.4. This map
looks similar to the map of logarithm to base

√
2, shown in chapter 9 at

figure 9.3. At that map, the mesh of isolines is a little bit more dense;
for example, all the line u= 6 happen to be in the range of the map,
while at the map at figure 10.4 the only part of this line is seen; as for
level v=±9 it happen to be beyond the cut line and, therefore, not seen
in the map.

Value b = η is maximal real base, at which the exponent still has at
least one real fixed point. Below, for this exponent, the superfunction
is constructed.

122

http://mizugadro.mydns.jp/t/index.php/File:Expe1emapT1000.jpg


y

6

4

2

0

−2

−4

−6

−6 −4 −2 0 2 4 6 x

v
=

4

v
=

3

v=
2

v=1

v
=

6

v=7

v=8

v=0

v=−8

v=−
7

v=
−6

v=−1

v=−
2v

=
−

3

u=1
u=2
u=3

u=4

u=5

cut

http://mizugadro.mydns.jp/t/index.php/File:Loge1emapT1000.jpg

Figure 10.4: u+iv=logη(x+iy) [loge1emap]

3 Superexponent to base η=e1/e=exp2(−1)

This case had been considered by request from Henryk Trappmann. He
believed, that for the exponential to base

η = exp(1/e) = exp2(−1) ≈ 1.44466786101 [eta] (10.23)

I cannot construct the efficient (fast and precise) algorithm of evaluation.
The similar opinion had been expressed in century 20 by Peter L. Walker
[24].

In order to convince Henryk, we had to write the special article for the
journal Mathematics of Computation [79]. Some formulas and figures
from that publication are repeated below.
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Let the transfer function T be defined with equation 10.21 of the pre-
cious section; let

T (z)=ηz=expη(z)=exp
(

ln(η) z
)

=exp(z/e) (10.24)

In order to apply the formalism of exotic iteration from the previous
section, I define the new, “displaced” transfer function, as it is suggested
by equation (10.4); for the initial transfer function T by (10.24). To
distinguish these transfer functions, I use slightly different fonts for the
letter T in the names. The new (displaced) transfer function

T (z)=T (z + e)−e=exp
(
(z+e)/e

)
− e = exp(z/e+1)−e (10.25)

For this transfer function,

T (0) = 0 (10.26)

T ′(0) = 1 (10.27)

T ′′(0) = 2 v = 1/e (10.28)

T ′′′(0) = 6w = 1/e2 (10.29)

... (10.30)

T (n)(0) = 1/en−1 (10.31)

In the last formula, in the left hand side, the parenthesis in the su-
perscript indicates not a number if iterate, but number of derivative;
function T is differentiated n times.

For this case, the formalism of exotic iteration, described in the precious
section, can be applied as is. Expansion (10.6) can be written as follows:

T (z) = z +
1

2e
z2 +

1

6e
z3 + .. (10.32)

For v=
1

2e
and w=

1

6e2
, formulas (10.18) give

a = −2e ≈ −5.43656365691809 (10.33)

b = −e

3
+

1

8e3
≈ 1.604598172578777 (10.34)

Then, the primary approximation f for superfunction (10.7) has the
following form:

f̃(z) = −1

z
+
(

1 +
1

e

) ln(±z)

z2
+ .. [fe1ez2] (10.35)
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More terms of this expansion can be calculated analytically, especially,
if some Mathematica or Maple are used. In principle, the truncated
series in (10.35), even with two terms, approximates the superfunction
and can be used for its definition. For |z|> 100, such a representation
gives few correct decimal digits and can be used to plot the complex
maps.

For the accurate representation of superfunction, more terms in the ex-
pansion, similar to (10.35), should be calculated. The asymptotic ex-
pansion can be written as follows:

F̃ (z) =
−2e

z

(
1 +

M∑
m=1

Pm
(
− ln(±z)

)
(3z)m

+O
(

ln(±z)/z
)M+1

)
(10.36)

where

Pm(x) =
m∑
n=0

cm,nx
n [e1ePm] (10.37)

One may choose the first coefficient c0,0 = 1; then, P0(t) = 1. Other
coefficients c are determined by the substitution of the expansion (10.36)
into the transfer equation

F̃ (z+1) = exp
(
F̃ (z)/e + 1

)
− e

The first 5 polynomials P are shown below:

P1(t) = t (10.38)

P2(t) = t2 + t+ 1/2 (10.39)

P3(t) = t3 +
5

2
t2 +

5

2
t+

7

10
(10.40)

P4(t) = t4 +
13

3
t3 +

45

6
t2 +

53

10
t+

67

60
(10.41)

P5(t) = t5 +
77

12
t4 +

101

6
t3 +

83

4
t2 +

653

60
t+

2701

1680
(10.42)

The superfunction F appears as limit

F (z) = lim
n→±∞

T n(f(z − n)) [e1elim] (10.43)

where function f is just truncation of the asymptotic expansion in
(10.36) at some positive integer M , and n is chosen positive or neg-
ative, dependently on the sign in the argument of logarithm in formula
(10.36).
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It is convenient to deal with functions, that have integer value at zero;
so, I use the translation of the argument in order to define iteration tetη
and the growing sperexponential SuExpη,3 with the following formulas:

tetη(z) = F1(z) = f(z+x1) [e1etet] (10.44)

SuExpη,3(z) = F3(z) = f(z+x3) [e1eSuExp] (10.45)

where constants x1≈2.798248154231454 and x3≈−20.28740458994004

are chosen to provide relations F1(0)=1 and F3(0)=3.

Function tetη corresponds to the upper sign go the ± in formuas (10.36),
(10.43), while finction SuExpη,3 by (10.45) refers to the lowerst sign. In
such a way, F1 and F3 are pretty different functions, and it is difficult
to express one of them through another.

In formulas (10.44) and (10.45), for the two superfunctions F1 and F3, a
little bit longer names tetexp(1/e) and SuExpexp(1/e) are suggested. These
long names simplify the identification at the use from other chapters of
this Book (and also from other publications), where the base b may have
various values, and not necessary b=η.

I repeat the meanings of the names suggested. tetη, indicates, that this
refers to tetration. For any tetration (to any base b), I assume condition
tetb(0)=1.

The shoice of value at zero of the growing super exponential F3 is not
so obvious. In publications [61, 79] (and not only there), the value at
zero is chosen as minimal integer, that is still larger, than the real fixed
point. Such a choice has sense, while the only one transfer function
without parameters is considered, or if value of its parameter is fixed,
and no continuity properties with respect to this parameter are analysed.
However, if we treat base b as parameter, then, the choice of integer value
at zero leads to discontinuity with respect to base b. For the case, if such
a dependence will be requested, the notation SuExpη,3; is used; the value
at zero is indicated as the additional subscript.

For the real argument, functions F3 and F1 are shown in figure 10.5.
Complex maps of these superfunctions are shown in figure 10.6. These
functions are pretty different. In order to release the notation F with
subscripts for other functions, used in other chapters (and in other pub-
lications), I give them the special names SuExpη,3 = F3 and tetη = F1.
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Figure 10.5: Two super-exponentials to base b=exp(1/e) [e1eplot]

Symbol tet refers to tetration; in the following chapters, it is defined
also for other values of base.

Along the real axis, function SuExpη,3 infinitely grows at the positive
values of the argument, and approaches its limiting value e at large
negative values. The function approaches to the same value in the most
of the complex plane, except the strip along the positive direction od
the real axis.

Function tetη, at large values of the argument, approaches its limiting
value η almost everywhere, but has logarithmic singularity at −2, going
to infinity at this point. Tetration to any base has this singularity;
it follows from the additional condition tetb(0) = 1 and the transfer
equation, that in vicinity of the real axis can be rewritten in the following
form:

tetb(z)=logb

(
tetb(z+1)

)
(10.46)

For iterates of exponent to base η, we need not only the superfunc-
tions, but also the corresponding abelfunctions. These abelfunstions are
considered in the next section.
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4 Abelexponent to Hernyk base

Historically, the exponent to base η = exp(2/e) is first function, for
which the exotic iteration had been applied [79]. The two superfunctions
for this exponent are specified in the previous section. Here, I describe
the inverse functions, id est, the two abelfunctions of the exponent to
base η.

Let G1 = F−1
1 and G3 = F−1

3 . Maps of these functions are shown
in figure 10.7. For evaluation of functions G1 and G3, the asymptotic
representations are used:

g(z) = g±(z) =
ln(±t)

3
+

2

t
+

15∑
n=1

cnt
n +O(t16) [e1egpm] (10.47)

where t=(z−e)/e. The coefficients c can be found inverting the expan-
sion for the superfunction, and also by substituting expansion (10.47)
into the Abel equation

g(z) + 1 = g
(

exp
(
g(z)/e

))
[e1eAbeleq] (10.48)

The truncation of the series, id est, omitting of O in the right hand side
of (10.47), provides the algorithm for evaluation of the abelfunction g
with at least 15 significant figures, while |t| < 1/2. For larger values,
the argument of g should be transformed, using the equation (10.48).

Then the inverse functions G1 = F−1
1 and G3 = F−1

3 can be defined,
adding the corresponding constants,

ateη(z) = G1(z) = g(z)− g(1) ≈ g(z)− 3.029297214418 (10.49)

where the upper sign in (10.47) is used, and

AuExpη,3 =G3(z)=g(z)−g(3)≈g(z)+20.0563555297533789 (10.50)

where the lower sign in (10.47) is used.

The additional names ate and AuExp are introduced in order to simplify
identification and referencing to these functions from other chapters.

Representations (10.49) and (10.50) provide relations G1(1) = 0 and
G3(3) = 0, as it is supposed to be for the inverse functions of F1 and
F3. The numerical tests confirm, that in wide ranges of values z, the
relations

F1(G1(z))=z , F3(G3(z))=z , F1(G1(z))=z , G3(F3(z))=z (10.51)
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hold with 14 significant figures. The readers are invited to plot the map
of the agreement function

A(z) = − lg

(
|F (G(z))− z|
|F (G(z))|+ |z|

)
[e1eA] (10.52)

adding appropriate subscripts and exchanging F ↔ G. as numerical
check of equalities in statement (10.51). Levels of A(x+iy) in the x, y
plane indicate, where the algorithm works almost without loss of pre-
cision, id est, close to the maximal precision allowed for the complex
double variables.

5 Iterates

With function F3 and G3, one can express the iterates of exponential to
base exp(1/e). For T (z)=exp(z/e),

T nu (z)=expnη,u(z)=F3(n+G3(z))=SuExpη,3

(
n+AuExpη,3(z)

)
(10.53)

Here, the subscript u indicates, that the this iterate is holomorphic at
the highest, upper range of the real values of the argument, and, in
particular, in the vicinity of the half-line z>e.

In the representation (10.53), neither argument z nor number of iterate
has need to be real. For n=1/2, the complex map of the half iteration
of exponential to base exp(1/e) is shown in figure (10.9).

For real values of argument T nu (x) versus x for various values of number
n of iteration is shown in figure 10.8. The thick curves correspond to
the integer values of n. The non-integer iterates are holomorphic at
least in some vicinity of falf-line x > e. The integer iterates can be
extended to −∞ for positive b or to the closest vertical asymptotic
of the corresponding logarithm for negative number of iteration. The
bissectrisse of the First quadrant of the coordinate plane corresponds to
the identity function.

Тhe non integer iterates by (10.53) are shown in figure 10.8 with thin
lines. These lines cannot be extended beyond the fixed point e; this is
branch point of the non-integer iterates. These lines remain in the range
x>η, y>η; in particular, they cannot be holomorphically extended into
the third quadrant.

The non-integer iterates by formula (10.53) have cut line along the real
axis from −∞ to e ≈ 2.71; in order to shown this cut, figure 10.9
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Figure 10.8: y = exp n
η,u(x) by (10.53) versus x for various n [e1eiter]

represent the complex map of the half iterate, n = 1/2. This cut is
traced with dashed line and labeled with symbol cut.

As other complex maps of other iterates of a real-holomorphic function,
the map at figure 10.9 is symmetric with respect to reflection from the
real axis,

exp1/2
η,u (z∗) = exp1/2

η,u (z)∗ (10.54)

In order to remind this symmetry, I plot the maps, placing the real axis
at the centre of the figure. However, sometimes, there is not enough
space at the page, then I plot the only upper part of the map. I hope,
the Reader has enough imagination, that allows him or her to consider
the imaginary mirror, and imaginate in this imaginary mirror the func-
tion with inverted sign of the its imaginary part. With hopes for such
imagination, in Figure 10.10, I show the iterates of the exponent to base
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Figure 10.9: u+iv = exp
1/2
η,u (x+iy) by (10.53) for n=1/2 [e1eghalf]

η for various number of iterate n in a similar way, as the case n= 1/2

is shown in Figure 10.9. However, the only halts of the maps are shown
in Figure 10.10.

6 Not only exp

Exponential to base η = exp(1/e) = exp2(−1) is not only transfer
function, that have derivative unity at its fixed point, T ′(L) = 1. Some
of such transfer functions can be treated with the method of exotic
iteration, described in this chapter.

One more example is considered in the next chapter, referring to the
elementary transfer function T (x) = zex(x) = z exp(z). It is treated in
a pretty similar way, as expη.

Then, in the following chapters, even more exotic cases are treated, when
T ′(L) = 1 and T ′′(L) = 0 also can be treated. However, I try to go step
by step. So, open the next chapter and read about iterates of zex.
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Chapter 11

LambertW and zex

y
e

2

1

0
−1/e

−3 −2 −1 1 2 x

y=zex(x)

http://mizugadro.mydns.jp/t/index.php/File:ZexPlot.png

Figure 11.1: y=zex(x)=x exp(x) [zexplot]

This chapter deals with function ArcLambertW,

ArcLambertW(z) = ArcProductLog(z) = zex(z) = z exp(z) (11.1)

O
H H

Figure 11.2:
Dihidrogena
monoxide

shown in figure 11.1. The long name ArcLambertW is equiv-
alent to even longer name ArcProductLog. This name looks
so long, as “Logistic map” or “dihidrogena monoxide” shown
in figure 11.2. Formally, the name is correct; the inverse
function of ProductLog can be called ArcProductLog in
analogy with arcsin or ArcTetration. But name zex is shorter.
Complex map of function zex is shown in figure 11.3.
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Figure 11.3: u+iv=zex(x+iy) by (11.1) [zexmap]

Short name zex is created from the first three characters in the right
hand side of equation (11.1). Hope, this long explanation helps to avoid
confusions. In the chapter name I keep the indication to LambertW, as
it is used in many other publications and algorithmic languages. As the
negative iterates are allowed, if one can iterate zex, one can iterate also
LambertW. Function zex is simpler than LambertW, so, I consider zex
first.

Consideration in this chapter is very similar to that of the previous
one; the similar exotic iterates are constructed. I hope, the reader can
perform the calculus for iterates of zex in the same way, as the deduction
is performed in the previous chapter for the exponent to base η= e1/e.
On the other hand, I remember the old rule:
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If at your presentation, at the first desk you see some Hideki Yukawa
and Sofia Kovalevskaya, and at the last desk you see some Bart Simpson
and Shoko Okudaira, then you should address to Bart and Shoko. In
this case, you may hope, that Hideki and Sofia will understand at least
the main idea of your talk.

Adopting that rule to the Book, here I repeat the deduction of the
previous section for function zex. However, I would like the Readers at
least to try to make this deduction by themselves, using the Book only
to verify the results; then the Readers will be able to do the same also
for other functions (including exotic ones).

1 Holomorphic zex

For real argument, function zex by (11.1) is shown in figure 11.1. At
negative values of the argument, zex is negative, and it is positive for
positive argument. At large negative values of the argument, zex de-
creases, reaches its local minimum −1/e at −1, then grows up. The
graphic passes through point (0,0); zero is fixed point. At zero, its
derivative is unity; so the iterates of zex are qualified as exotic; the non-
integer iterates are not regular at the fixed point. Here, it may be a
good moment to go a little bit back, to the regular iteration, in order to
remember, what happens, for example, at the right hand side of equa-
tion (6.10), when the derivative T ′ of the transfer function at the fixed
point becomes zero.

Complex map of function zex is shown in figure 11.3. This function is
entire, it has no singularities. Map of the inverse function

zex−1 = ArcZex = zex−1 = LambertW (11.2)

is shown in figure 11.4. This function has cut, along the negative part
of the real axis. This cut is marched with dashed line.

Function LambertW can be defined as solution F of the differential
equation

F ′(z) =
F (z)

(1 + F (z)) z
[LambertWdifur] (11.3)

with additional condition F (0)=0, where the contour of integration goes
along the imaginary axis from zero to the imaginary part of argument z,
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Figure 11.4: u+iv=ArcZex(x+iy)=LambertW(x+iy)

and then, parallel to the real axis, to the value z. Solving the equation
(11.3), the Reader may verify, that the inverse function of the solution
is zex. Note, that the similar contour of integration is used in chapter 5
to define function Tania by equation (5.3). Indeed, function LambertW
is related to the Tania function: (5.3):

LambertW(z) = Tania
(

ln(z)− 1
)

[taniaLambertW] (11.4)

As the imaginary part of the logarithm is limited to the −π, π range, in
this expression, the argument of the Tania function is always inside the
strip along the real part, seen in the complex map of the Tania function
in figure (11.4). Function LambertW is in some sense simpler, than
function Tania: it has only one cut line (and one branch point −1/e),
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while the Tania functions has two.

I could not find good implementation complex double for function Lam-
bertW in C++ (in which I have good plotters of complex maps). For
this reason, I use the expansions listed below.

For small values of argument, LambertW can be expanded as follows:

LambertW(z) = z
∞∑
n=0

(n+1)n−1

n!
(−z)n

= z−z2+
3z3

2
−8z4

3
+

125z5

24
−54z6

5
+

16807z7

720
+ .. (11.5)

The series converges at |z|< 1/e≈ 0.367879 . With 48 terms, at |z| ≤
0.2, the truncated sum provides at least 16 correct decimal digits.

The expansion at of the branch point can be written as follows:

LambertW
(−1

e
+
t2

2e

)
= −1 + t− t2

3
+

11t3

72
− 43t4

540
+

769t5

17280
− 221t6

8505

+
680863t7

43545600
− 1963t8

204120
+

226287557t9

37623398400
− 5776369t10

1515591000
+ .. (11.6)

The expansion can be used for approximation of LambertW while |t|<
1, id est, while the argument of LambertW is close to − exp(−1) ≈
−0.367879 .

For large values of |z|, using notations L = ln(z) and M = ln2(z) the
expansion of LambertW(z) can be written as follows:

LambertW(z) = L−M +
M

L
+

M(−2 +M)

2L2

+
M(6− 9M + 2M 2)

6L3

+
M(−12 + 36M − 22M 2 + 3M 3)

12L4

+
M(60− 300M + 350M 2 − 125M 3 + 12M 4)

60L5

+
M(−120 + 900M − 1700M 2 + 1125M 3 − 274M 4 + 20M 5)

120L6

+ O
(M
L

)7

(11.7)
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where the effective parameter of expansion happens to be ε=ln2(z)/ ln(z);
at |ε| � 1, the asymptotics (11.7) can be used for the evaluation of
LambertW.Here, as usually, the upper superscript after the function in-
dicates the number of iterations, and the upper superscript after the
argument and the closing parenthesis indicates the power that is as-
sumed to be evaluated after the evaluation of the function. However,
ln−1(z) = exp(z) should not be confused with 1/ ln(z), nor ln2(z) =

ln(ln(z)) should be confused with ln(z)2, and so on.

The asymptotics above allow to implement the efficient and precise algo-
rithm for evaluation of LambertW. The C++ implementation is loaded
as http://mizugadro.mydns.jp/t/index.php/LambertW.cin.

With functions zex and LambertW=zex−1, the superfunction of zex and
its abelfunction can be implemented. The superfunction is considered
in the next section.

2 SuZex

Superfunction for the transfer function zex is solution F of the transfer
equation

F (z+1) = zex
(
F (z)

)
[suzexFeq] (11.8)

For some integer M > 1, search for the asymptotic expansion of the
solution in the following form:

F (z) = FM(z) +O

(
ln(±z)M+1

zM+2

)
[SuZexFMa] (11.9)

where

FM(z) = −1

z
+

1
2 ln(±z)

z2
+

1

z

M∑
m=2

Pm

(
ln(±z)

)
zm

[SuZexFM] (11.10)

Pm(z) =
m∑
n=0

cm,n(−z)n [SuZexP] (11.11)

The coefficients c can be found by substitution of expansion (11.9) into
the transfer equation (11.8). This can be done with the Mathematica
code below:
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zex[z_] = z Exp[z];
Foo[z_] = -1/z + a Log[z]/z^2
Soo = Series[Foo[z+1]-zex[Foo[z]], {z,Infinity,3}]
Eoo = Coefficient[Soo,1/z^3]
Ao = Extract[Solve[Eoo==0, a], 1]
F2o[z_] = ReplaceAll[Foo[z], Ao]
F20[z_] = F2o[z] + (a Log[z]^2 + b Log[z] + c)/z^3
S2o = Series[F20[z+1] - zex[F20[z]], {z,Infinity,4}]
S20 = ReplaceAll[S2o, Log[1/z] -> -L]
E2o = Coefficient[S20, 1/z^4]
E22 = Coefficient[E2o, L^2]
A1 = Extract[Extract[Solve[E22==0, a], 1], 1]
E2A = ReplaceAll[E2o, A1]
E21 = Coefficient[E2A, L]
B1 = Extract[Extract[Solve[E21==0, b], 1], 1]
E2B = ReplaceAll[E2A, B1]
C1 = Extract[Extract[Solve[E2B==0, c], 1], 1]
F3o[z_] = ReplaceAll[F20[z], {A1, B1, C1}]
F30[z_] = F3o[z]+(a Log[z]^3+b Log[z]^2+c Log[z]+d)/z^4
S3o = Series[F30[z+1] - zex[F30[z]], {z, Infinity, 5}]
S30 = ReplaceAll[S3o, Log[1/z] -> -L]
E3o = Coefficient[S30, 1/z^5]
E33 = Coefficient[E3o, L^3]
A3 = Extract[Extract[Solve[E33==0, a], 1], 1]
E3a = ReplaceAll[E3o, A3]
E32 = Coefficient[E3a, L^2]
B3 = Extract[Extract[Solve[E32==0, b], 1], 1]
E3b = ReplaceAll[E3a, B3]
E31 = Coefficient[E3b, L]
C3 = Extract[Extract[Solve[E31==0, c], 1], 1]
E3c = ReplaceAll[E3b, C3]
D3 = Extract[Extract[Solve[E3c == 0, d], 1], 1]
F4o[z_] = ReplaceAll[F30[z], {A3, B3, C3, D3}]
F40[z_] = F4o[z] +

(a Log[z]^4+b Log[z]^3+c Log[z]^2+d Log[z]+e)/z^5
S4o = Series[F40[z+1] - zex[F40[z]], {z, Infinity, 6}]
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Such a calculus leads to the following asymptotics:

F (z) = −1

z
+

1
2`

z2
+
−1
4 `

2 + 1
4`−

1
6

z3
+

1
8`

3 + −5
16 `

2 + 3
8`+ −7

48

z4

+
−1
16 `

4 + 13
48`

3 + −17
32 `

2 + 23
48`+ −707

4320

z5

+
1
32`

5 + −77
384 `

4 + 37
64`

3 + −83
96 `

2 + 1121
1728`+ −1637

8640

z6

+
−1
64 `

6 + 87
640`

5 + −205
384 `

4 + 443
384`

3 + −1619
1152 `

2 + 15427
17280`+ −274133

1209600

z6

+ O

(
`7

z8

)
(11.12)
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Figure 11.5: y = SuZex(x)

for some fixed integer M , the super-
function F can be expressed through
its Mth asymptotic as sollows:

F (z) = lim
n→∞

zexn
(
FM(z−n)

)
(11.13)

The resulting F does not depend on
the number M of terms taken into ac-
count in the primary approximation.
However, the rate of convergence of the
limit for larger M is higher.

In order to simplify the comparison of
different representations of the super-
function, it is convenient to define the
misplaced function

SuZex(z) = F (z1+z) (11.14)

where z1 ≈ −1.1259817765745026 is
solution of equation F (z1) = 1. This
definition gives a way to evaluate the
superfunction of zex. The complex
double implementation in C++ is loaded as http://mizugadro.mydns.
jp/t/index.php/SuZex.cin

For real values of argument, the explicit plot of function SuZex is shown
in figure 11.5 with thick line. For comparison, the thin line shows the
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Figure 11.6: u+iv = SuZex(x+iy)

zex function, id est, y=z exp(z). These curves cross at point (1, e) and
in vicinity of point (1.4, 6.2).

For real values of argument, SuZexp is positive monotonously growing
function. At −∞, it approaches zero, as the asymptotic representation
(11.10) prescribes.
Then, the curve passes through point (0, 1), and then - through point
(1, e). At this point it grows a little bit slower, than function zex, but
soon overdoes the zex, showing very fast growth; this growth is faster,
than growth of any exponential.

The same behaviour can be seen also at figure 11.6, that represents the
complex map of function SuZex. zex is entire function, id est, holomor-
phic in the whole complex plane. The inverse function, shown in figure
11.6, has cut. This inverse function is considered in the next section.
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Figure 11.7: u+iv = AuZex(x+iy) [auzexmap]

3 AuZex

Complex map of function AuZex = SuZex−1, id est, abelfunction for
the transferfunction zex, is shown in the right hand side of figure 11.7.
This section describes properties of function AuZex.

The asymptotic expansion for the abelfunction for the transfer function
AuZex can be obtained inverting the expansion of function SuZex, de-
scribed in the previous section. However, one may consider as well the
Abel equation for the abelfunction G :

G(zex(z)) = G(z) + 1 [AuZexGeq] (11.15)

The asymptotics of solution G = AuZex can be expressed with

G(z) ≈ −1

z
+

1

2
ln(z) +

N∑
n=0

bnz
n + .. (11.16)
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Coefficients bn for n > 1 can be found substituting this expansion into
the Abel equation (11.15). This asymptotics provides the precise ap-
proximation for small values of z; at large values, the inverse of the
Abel equation should be applied. For some fixed M , let

GM(z) ≈ −1

z
+

1

2
ln(z) +

M∑
m=0

bnz
n [zexGas] (11.17)

and let

AuZex(z) = lim
n→∞

FM

(
zex−n(z)

)
+ n

= lim
n→∞

FM

(
LambertW n(z)

)
+ n (11.18)

Coefficient C0 is chosen in such a way, that AuZex(1) = 0; then, the
relation

SuZex
(

AuZex(z)
)

= z [SuAuZexz] (11.19)

holds in wide range of values of z, except the negative part of the real
axis. With Mathematica software, the coefficients b of the asymptotic
expansion (11.17) can be calculated by the code below.

zex[z_] = z Exp[z];

S[k_, L_] = Sum[a[k, m] L^m, {m, 0, k}]

F[K_, z_, L_] = Sum[S[k, L]/z^(k + 1), {k, 0, K}]

Series[zex[F[4,z,L]] - F[4, z+1,L+Log[1+1/z]], {z,Infinity,3}]

a[0,0] = -1;

Series[zex[F[4, z, L]] - F[4, z+1, L+Log[1+1/z]], {z,Infinity,3}]

a[1, 1] = 1/2; a[1, 0] = 0;

Simplify[Series[zex[F[5,z,L]] - F[5,z+1, L+Log[1+1/z]], {z,Infinity,4}]]

n = 2;

s[n]=Series[zex[F[n+3,z,L]]-F[n+3,z+1,L+Log[1+1/z]],{z,Infinity,n+2}];

For[k = 0, k<=n,k++,m=n-k;

a[n,m] = ReplaceAll[a[n, m],So1[Coefficient[s[n] L,L*L^m] == 0, a[n,m]]];

Print[n, Space, k, Space, m, Space, a[n, m] ] ]

n = 3;

s[n]=Series[zex[F[n+3,z,L]]-F[n+3,z+1,L+Log[1+1/z]],{z,Infinity,n+2}];

For[k = 0, k<=n,k++,m=n-k;

a[n,m] = ReplaceAll[a[n, m],So1[Coefficient[s[n] L,L*L^m] == 0, a[n,m]]];

Print[n, Space, k, Space, m, Space, a[n, m] ] ]

and so on for higher n. The first 9 coefficients are copypasted below:
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n bn approximation of bn

1 −1/6 ≈ −0.1666666666666666667

2 1/16 ≈ 0.0625

3 −19/540 ≈ −0.0351851851851851852

4 1/48 ≈ 0.0208333333333333333

5 −41/4200 ≈ −0.0097619047619047619

6 37/103680 ≈ 0.00035686728395061728

7 18349/3175200 ≈ 0.005778848576467624

8 −443/80640 ≈ −0.005493551587301587

9 55721/21555072 ≈ −0.002585052835824441

(11.20)

The readers are invited to plot maps of ranges of validity of realtions

SuZex(AuZex(z)) = z (11.21)

AuZex(SuZex(z)) = z (11.22)

These maps can be considered as confirmation, verification of the de-
duction above.

4 Iterates of zex

With functions SuZex and AuZex, described in the previous sections,
the iterates of function zex can be expressed as follows:

zexn(z) = SuZex
(
n+ AuZex(z)

)
[zexn] (11.23)

As usually, the number n of iterate has no need to be integer; it can be
real or even complex.

Iterates y = zexn(x) versus x for different n are shown in figure 11.8.
The integer iterates are shown with thick lines.

The readers are invited to check the relation

zexn
(

zexm(z)
)

= zexm+n(z) [zexiteran] (11.24)

and describe the range of validty in simple terms. At least, this relation
should hold in some vicinity of the positive part of the real axis for values
of the parameters.
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Figure 11.8: y=zexn(x) by (11.23) versus x for various n [zexiteplo]

Iterates of function zex are shown in figure 11.8. They look similar to
iterates of other fastly growing functions with real fixed point. The
iteration keeps the unity derivative in this point, so, all the curves in
figure 11.8 approach the fixed point (id est, to the origin of coordinates)
with unity derivative. Id est, with angle 45 degrees to the abscisa axis.
This property takes place also for other transfer functions with unity
derivative at the fixed point. One of such functions is considered in the
next chapter.

I hope, the Readers can plot by themselves the complex maps of non-
integer iterates of function zex. The codes supplied to the figures above
have the complex double implementation of SuZex and AuZex.
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Chapter 12

Sin, super sin and iterates of sin

Not all exotic iterations can be constructed with formulas of the previous
sections. In the previous two sections, the transfer functions T with fixed
points L are considered such that T (L)=L, T ′(L)=1, T ′′(L)>0. That
deduction fails, if T ′′(L)=0. One of examples of such a transfer function
is considered here.

This chapter deals with transfer function T =sin. This function is often
used in various applications, so, I think, it deserves a special chapter.

Iterates of sin had been considered since century 19, but the rough ap-
proximations had been suggested only in 2011 [76, 77]. Then in 2014,
the efficient approximation had been reported in the Far East Journal
of Mathematical Science [91]. Below, I retell the key ideas of that pub-
lication.

I hope, the Reader can plot the complex maps of sin and arcsin. I
recommend that Reader does this as an exercise. And also, the explicit
plots of these functions. After to watch the pictures mentioned, one can
understand the sense of superfunction of sin, I call it SuSin. SuSun is
solution of the transfer equation, I repeat is once again,

sin
(
SuSin(z)

)
=SuSin(z+1)

Explicit plot of function SuSin of real argument is shown in figure 12.1.
In the next section, I describe the construction of this function.

y
π
2

1

0
0 1 2 3 4 5 6 7 8 9 x

y=
√

3/x

y=SuSin(x)

http://mizugadro.mydns.jp/t/index.php/File:Susinplot.jpg

Figure 12.1: y=SuSin(x) by (12.8) and its asymptotics (12.3) [susinplot]
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1 Super sin

Superfunction of sin, called SuSin, is shown in figure 12.1. It is solution
of the transfer equation with sin as transfer function; I repeat it once
again:

F (z+1) = sin
(
F (z)

)
[Fz1sinFz] (12.1)

In this section, the special solution F = SuSin is constructed with the
following properties:

SuSun(0) = π/2 [susinp2] (12.2)

SuSun(z) =

√
3

z

(
1 +O

(
ln(z)

z

))
[susin1o] (12.3)

The leasing term of the right hand side of (12.3) can be guessed replac-
ing F (z+1) to F (z) + F ′(z) in the left hand side of equation (12.1)
and solving the resulting differential equation. However, there is cer-
tain residual at the substitution of such an approximation into (12.1);
and this residual indicates the form of the the next term in expansion

(12.3). Expression
ln(z)

z
appears as the effective small parameter of the

expansion. The residual at the substitution of representation (12.3) into
the transfer equation (12.1) helps to guess a form of the higher term of
the expansion, and so on. After few such steps, I guess and verify the
following form of the approximation for the superfunction F of sin:

F (z) = FM(z) +O

(
ln(z)M+1

zM+3/2

)
[susinasymf] (12.4)

where

FM(z) =

√
3

z

(
1− 3

10

ln(z)

z
+

M∑
m=2

Pm(ln(z)) z−m

)
[susinFM] (12.5)

PM(z) =
m∑
n=0

am,n(−z)m [susina] (12.6)

and coefficients a are constants. These constants can be calculated with
the Mathematica code below:
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P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]
F[z_] = Sqrt[3/z] ( 1 + Sum[P[m, Log[z]]/z^m, {m, 1, M}])
M = 9; a[1, 0] = 0;
F1x = F[1 + 1/x];
Ftx = Sin[F[1/x]];
s[1] = Series[(F1x - Ftx)/Sqrt[x], {x, 0, 2}]
t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]
A[1, 1] = ReplaceAll[a[1, 1], t[1]]
su[1] = t[1]

m=2;
s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3 x],{x,0,m+1}], su[m-1]]]
t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]
u[m] = Simplify[Collect[t[m], L]]
v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]
w[m] = Table[a[m, n], {n, 0, m}]
ad[m] = Extract[Solve[v[m], w[m]], 1]
su[m] = Join[su[m - 1], ad[m]]

m=3;
s[m]=Simplify[ReplaceAll[Series[(F1x-Ftx)/Sqrt[3 x],{x,0,m+1}],su[m-1]]]
t[m] = Simplify[Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m+1)]]
u[m] = Simplify[Collect[t[m], L]]
v[m] = Table[Coefficient[u[m] L, L^(n+1)] == 0, {n, 0, m}]
w[m] = Table[a[m, n], {n, 0, m}]
ad[m] = Extract[Solve[v[m], w[m]], 1]
su[m] = Join[su[m - 1], ad[m]]
. . .

and so on. The resulting coefficients are shown in table 12.1.

For some positive integer M , define function F with

F = lim
k→∞

arcsink(FM(z + k)) [SuSinF] (12.7)

The resulting F does not depend on the number M of terms taken into
account in the expansion (12.5). However, the larger, M , the faster

Table 12.1: Table of coefficients a in equation (12.6)
a1,0

3
10

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7

79
700

9
50

27
200

a2,3 a2,4 a2,5 a2,6 a2,7

411
3500

1941
7000

27
125

27
400

a3,4 a3,5 a3,6 a3,7

1606257
10780000

7227
17500

1683
4000

1917
10000

567
16000

a4,5 a4,6 a4,7

140345627
700700000

70079931
107800000

566973
700000

98739
200000

7533
50000

15309
800000

a5,6 a5,7

137678711441
490490000000

7364523
7007000

305491257
196000000

4155111
3500000

796311
1600000

2218347
20000000

168399
16000000

a6,7

25317035192599
62537475000000

8462569406199
4904900000000

32174780481
10780000000

5367503637
1960000000

407711313
280000000

181900809
400000000

1960281
25000000

938223
160000000
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Figure 12.2: u+iv = SuSin(x+iy) by (12.8)

is convergence of the limit in (12.7). This gives efficient algorithm for
evaluation of superfunction F for the transfer function sin.

For superfunction, declared in the beginning of the section, id est, sat-
isfying equation (12.2), define

SuSin(z) = F (z+x1) (12.8)

where x1≈1.4304553465288 is solution of equation

F (1+x1) = 1 (12.9)

Note that the required value at zero is achieved, because SuSin(0) =

arcsin(SuSin(1))=arcsin(1)=π/2.

Function SuSin is shown as explicit plot and as complex map in figures
12.1 and 12.2. Function SuSin has sqrt-type singularity as zero, and it

151

http://mizugadro.mydns.jp/t/index.php/File:Susinmap.jpg


has cut line along the negative part of the real axis. In the rest of the
complex plane, SuSin is holomorphic. At infinity, SuSin slowly decays
to zero, according to its asymptotic (12.3). This asymptotic is shown in
figure 12.1 with thin line.

In this Book, SuSin is first example of superfunction, for which the
transfer function shows growth slower than linear. In this case, for
positive values of the argument (id est, larger than the fixed point), the
superfunction is monotonically decreasing, as it is seen in Figure 12.1.
One could expect the inverse function (Abel sin) to decrease, at least for
some moderate positive values of the argument. This inverse function is
considered in the next section.

2 AuSin y

3

2

1

00 1 π/2 2 x

ht
tp

:/
/m

iz
ug
ad

ro
.m

yd
ns

.j
p/

t/
in

de
x.

ph
p/

Fi
le

:A
us

in
pl

ot
1.

jp
g

Figure 12.3: y=AuSin(x)

Here, the inverse function of super
sin is called AuSin; its explicit plot
is shown in figure (12.3). In this
chapter, I describe evaluation of
this function.

For the sinusoidal transfer func-
tion, for superfunction F , the
Abel function G = F−1 satisfies
the Abel equation

G(sin(x)) = G(z)+1 (12.10)

From the properties of SuSin, the
properties of the inverse function
can be guessed. In particular, for
large values of the argument, the
asymptotic below should hold:

G(z) =
2

z2
+O(ln(z)) [AbelsinGas] (12.11)

Abel sin can be constructed in analogy with super sin. The solution G
of the Abel equation (12.10) with the asymptotic representation (12.11)
can be constructed, inverting function F by (12.7), id est, G = F−1.
Then, the constant x1 should be added,

AuSin(z) = G(z) + x1 (12.12)
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in order to satisfy relation

AuSin(π/2) = 0 [ausinp2] (12.13)

First, construct the approximation of function G; let

GM(z)=
3

z2
+

5

6
ln(z)+

M∑
m=1

cmz
2m (12.14)

Subsitution of g(z) = GM + O(z2M+2) into the Abel equation (12.10)
gives the coefficients c. In particular,

c1 =
79

1050
(12.15)

c2 =
29

2625
(12.16)

c3 =
91543

36382500
(12.17)

c4 =
18222899

28378350000
(12.18)

Then, for some fixed M , function G can be expressed as limit

G(z)= lim
k→∞

GM(sink(z))− k [singlim] (12.19)

and AuSin=SuSin−1 appears as

AuSin(z) = G(z)−G(π/2) [AuSinDe] (12.20)

Term G(π/2)≈2.089622719729524 in equation (12.20) provides condi-
tion (12.13).

Complex map of abelsinus AuSin by (12.20) is shown in fgure 12.4. As
for other real-holomorphic functions, this map is symmetric with respect
to reflection from the real axis, id est, with respect to flipping upside-
down. In addition, the map is symmetric with repeat to reflections from
the axis x=π/2; the first evaluation of function sin in formula (12.19)
provides this symmetry.

For the central part of figure 12.4, the limit (12.19) converges and de-
fines the holomorphic function in a pretty regular way. At lateral parts
of figure 12.4, the lines of level of the real part and those of the imagi-
nary part form the fractal-like structures. There, the AuSin cannot be
considered as inverse function of SuSin. Actually, the range of validity
of the inverse function is even narrower.
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Figure 12.4: u+iv = AuSin(x+ iy) by formula (12.20) [ausinmap]

Range of validity of relation

SuSin
(

AuSin(z)
)

= z [SuSinA] (12.21)

is shown in figure 12.5, this range is shaded with rectangular grid.
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Figure 12.5: u+iv = h(x+iy) and lines =(AuSin(x+iy)=0

Technically, the shading in figure 12.5 is built up as the complex map
of function

h(z) = SuSin
(

AuSin(z)
)

(12.22)

In addition, in figure 12.5, lines of level =(AuSin(x + iy)) are shown;
they are borrowed from figure 12.4. These lines bound the range of
validity of relation h(z) = z.
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The readers are cordially invited to download the generator of the figure
and modify it, to plot the map of the agreement function

A(z) = − lg

(
|h(z)− z|
|h(z)|+ |z|

)
[aausinsu] (12.23)

and to verify, that in the shaded part, relation AuSin = SuSin−1 holds
with at least 14 decimal digits. At the right hans side of the figure 12.5,
relation AuSin = SuSin−1 is not valid; AuSin(x+iy) is symmetric with
respect to line x = π/2; so, it cannot distinguish values for the right
hand side in figure 12.3 from those at the left hand side.

Table 12.2:
n bn

1 2.29163807440958

2 1.96043852439688

3 1.07862851256147

4 0.59622997993395

5 0.28333997139829

6 0.14193261194548

7 0.06423734271234

8 0.03026687705508

9 0.01351721250427

For the efficient (fast and precise) numerical
implementation of AuSin, various expansions
can be used. The Taylor expansion at π/2 can
be written as follows:

AuSin
(π

2
+ t
)

=
∞∑
n=1

bnt
2n (12.24)

Coefficients b in the expansion (12.24) are eval-
uated with the Cauchy integral, using the rep-
resentation of AuSin through function G by
(12.14), (12.19), (12.20). Approximations of
first nine of these coefficients are shown in Ta-
ble 12.2.

Series in the expansion (12.24) converges at |t|<π/2. It is sufficient to
take few terms of this expansion in order to reproduce the most of map
in figure 12.4. Readers are invited to plot this map (or, at least, to look
for it in the Appendix, figure 22.2 at page 300).

Taking into account some tens of coefficients in series (12.24), the numer-
ical approximations of AuSin provides the precision at least not worse,
than the precision of the original representation through the asymptotic
formulas (12.14), (12.19), (12.20). However the original representation is
still necessary to calculate the coefficients of the secondary expansions,
and, in particular, those of the Taylor expansion (12.24). Optimisation
of such representations may have sense before to include them to some
software as built-in functions, while the each microsecond at the evalua-
tion is important for the resulting efficiency at the multiple evaluations.
However, even with the primitive approximations described above, the
functions are evaluated with approximately 14 decimal digits and allow
to plot complex maps in real time. This indicates the good efficiency of
the representations suggested.
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Figure 12.6: y=sinn(x) by (12.25) versus x for various n [sinite]

3 Iterated sin

With functions SuSin and AuSin = SuSin−1, defined above, the iterates
of sin can be expressed as follows:

sinn(z) = SuSin
(
n+ AuSin(z)

)
[sinn] (12.25)

This formula looks pretty similar to representations of iterates of any
other function with determined superfunction and the corresponding
Abel function. In this representation, number n of iterates has no need
to be integer; it can be real and even complex. For real values of number
n of iterates, sinn(x) is plotted versus x in figure 12.6.

For positive number n of iterate, graphics of y = sinn(x) are symmetric
with respect to line x = π/2. The larger is n, the closer the curve
approaches the abscissa axis.

For negative n, the graphic reaches the branch point at y = π/2 and
cannont be continued be continued above, as the iterates get complex
values. A usually, the 0th iterate corresponds to the identity function,
sin0(x) = x, and this relation holds while x < π/2.

Through the iterates (12.25) of sin, the SuSin can be expressed as follows:

SuSin(z) = sinz(π/2) [susinzsin] (12.26)

From the point of view of computation, representation (12.26) does not
have much sense. Anyway, for the evaluation of the right hand side of
(12.26), the approximations of SuSin should be used. However, such a
representation may have sense at the building-in of superfunctions (and
non-integer iterates) into the programming languages.
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4 Application

In this section, I discuss applications of multiple iterates of sin. However,
I assume, that the Readers can freely use SuSin and AuSin, described
above, to plot new graphics. I load the complex double implementations
of these functions as
http://mizugadro.mydns.jp/t/index.php/Susin.cin and
http://mizugadro.mydns.jp/t/index.php/Ausin.cin Perhaps, many
beautiful figures can be plotted playing with SuSin and AuSin.

For the physical applications, the real number of iterate is simpler to
interpret, than the complex iterate. Keeping in mind the application, I
suggest the example of parameterisation of the shape of the sled runner
with high iterate of sin. This example is shown in figure 12.7, that shows

y = sinn(π/2)−sinn(x) (12.27)

plotted over the photo of the sled (with a boy in it) is taken from Wiki-
media Common [9].
The curve, that overlaps wight he sled runner, is the 100th iterate of sin;
the number of iterate n= 100 is the only adjusted parameter used for
the fitting. However, the photo is shifted, scaled and rotated, in order to
have the tip at x = 0 and the last support of the sled runner at x=π/2,
y=0; in this point the sled runner is horizontal, this is provided by the
slight rotation of the photo.

y
0.1
0 0 1 π/2 2 x

http://mizugadro.mydns.jp/t/index.php/File:Boyt100.jpg

Figure 12.7: Boy at the sledge and y=sinn(π/2)−sinn(x) for n=100
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Chapter 13

Nemtsov function

y

4

3

2

1

0

−1

−2

−3

−4

−1 0 1 x
q

=
2

q
=

1

q
=

0.
5

q
=

0

q
=

2

q
=

0

ht
tp

:/
/m

iz
ug

ad
ro

.m
yd

ns
.j

p/
t/

in
de

x.
ph

p/
Fi

le
:N

em
pl

ot
.j

pg

Figure 13.1: y = Nemq(x)

for various q

This chapter represents the last (for this book)
example of exotic iteration, and deal with the
specific polynomial

T (z) = Nemq(z) = z + z3 + qz4 (13.1)

I assume, that q is positive real parameter. For
various values of q, the explicit plot of this func-
tion is shown in figure 13.1. This is simple, but
still non-trivial case of the transfer function T , for which

T (L)=L , T ′(L)=1 , T ′′(L)=0 , T ′′′(L)>0 , T ′′′′(L)>0 (13.2)

Note, that for T = sin, considered in the previous section, L = 0 and
T ′′′′(L) = 0; function sin is antisymmetric T (−z) =−T (z), and in this
sense, simpler, than T =Nemq.
Historically, consideration of the Nemtsov function is one of the last
attempts to write an elementary function, for which I would not be
able construct superfunction, abelfunction and the non-integer iterates.
I found, that I need the special name for function by (13.1). That
happened 2015.01.28, in the same day, as the murder of Boris Nemtsov
had been reported 1; so I pick up the first three letters of his last name
to create the name the function.

In this Book, I do not follow the historical timeline of events, so, I put
chapter about the Nemtsov function here, in order to have the exotic it-
erations in one bunch. For real argument, graphics of the Nemtsov func-
tion for various values of parameter q are shown in figure 13.1. Complex
maps of function Nemq and its inverse function ArqNemq =Nem−1

q are
shown in figure 13.2 for q = 0, q = 1 and q = 2. Function ArqNem is
described in the following section.

1http://mizugadro.mydns.jp/t/index.php/Putin_killed_Nemtsov

159

http://mizugadro.mydns.jp/t/index.php/File:Nemplot.jpg
http://mizugadro.mydns.jp/t/index.php/Putin_killed_Nemtsov


y

1

0

−1

−2−2 −1 0 1 x

u=0

u
=

0

u
=
−

5

u
=
−

1

u
=

0

u
=

1

u
=

2

u
=

5

u
=

0
u=0

u=10
u=5

v=5

v=0

v=
−5

v
=
−

1
v=

0

v=1 u=−5

u=−10

http://mizugadro.mydns.jp/t/index.php/File:Nem0map.jpg http://mizugadro.mydns.jp/t/index.php/File:ArqNem0map.jpg

cut cu
t

y

1
2

0

−1
2

−1−1 −0.5 0 0.5 x

y0

−y0

v
=

0.8

v
=

0.9v=
1v=

1.1

v
=
−1

v
=

0.
7

v
=

0.
6

v
=

0.
5

v=
0.

4

v=0.3

v=0.2

v=0.1

v=0

v=−0.1
v=−0.2

u
=

0.
1

u
=

0.
2

u
=

0.
3

u
=

0.
4

u
=

0.
5

u
=

0.
6

u
=

0.
7

http://mizugadro.mydns.jp/t/index.php/File:Nem1map.jpg
y

1

0

−1

−2−2 −1 0 1 x

v=10 v=−
10

v
=

10

u
=

0

v=0

v
=

0 u
=

0

u
=

1
u

=
2

u
=

5

u=−10

u=
10

v=5

v=−5
u=

10
u=0

u
=
−

1

v=0

v
=

5

v=−
5

v=−
10

v
=
−

10v=10

http://mizugadro.mydns.jp/t/index.php/File:ArqNem1map.jpg

cut cu
t

y

1
2

0

−1
2

−1−1 −0.5 0 0.5 x

y0

−y0

v
=

0.6v=
0.7

v=0.8

v
=

0.
5

v
=

0.
4

v=
0.

3

v=0.2

v=0.1

v=0

v=−0.1u
=

0.
2

u
=

0.
3

u
=

0.
4

u
=

0.
5

u=
0.

6
y

1

0

−1

−2−2 −1 0 1 x

v=10v
=
−

10

v=
−10

v=
10

u
=

0

v=0

v
=

0

u
=

0

u
=

1
u

=
2

u
=

5

u
=

0

u=−10

v=5
v=−5

u=10

u=10
u=0

v=0

v
=

10

v=−
10

http://mizugadro.mydns.jp/t/index.php/File:Nem2map.jpg http://mizugadro.mydns.jp/t/index.php/File:ArqNem2map.jpg

cut cu
t

y

1
2

0

−1
2

−1−1 −0.5 0 0.5 x

y0

−y0

v
=

0.5v=
0.6

v=
−0
.6

v=0.7

v
=

0.
4

v
=

0.
3

v=
0.2

v=0.1

v=0

v=−0.1

u
=

0.
2

u
=

0.
3

u
=

0.
4

u
=

0.
5

u=
0.

6

Figure 13.2: Maps u+iv = Nemq(x+iy) for q = 0, 1, 2, left column, and maps
u+iv = ArqNemq(x+iy), right column, for the same q
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Figure 13.3: y=ArqNemq(x) for q=0, 1, 2 [arqnemplo]

1 ArqNem

For the efficient evaluation of iterates of a function, we need both, its
supedfunction and the abelfunction. For implementations of these func-
tions, we need both the transfer function T = Nemq and its inverse
ArqNemq=T−1. For real values of the argument, plot y = ArqNemq(x)
for q = 0, q = 1, q = 2, q = 4, q = 10 is shown in figure 13.3. Inversion
of the Nemtsov function happens to be not trivial, and its description
deserves the special section.

The Nemtsov function Nemq by (13.1) is the 4th order polynomial; for
q>0, equation

Nemq(x) = z [Nemqxz] (13.3)

at given z has four solutions x. Any of original solutions (suggested, for
example, by Mathematica routine Solve) happen to be ugly at the com-
plex map, and even worse at evaluation of abelfunction for the Nemtsov
function. The reader can plot the complex maps for the four roots
of equation (13.3) and see the root of my discontent with them. But
these solutions can be used to construct the inverse function shown the
right hand column of figure 13.2. I have implemented several combina-
tions of the “primary” solutions, giving special name to each resulting
inverse function: ArcNemq, ArkNemq, ArqNemq. The third of them,
ArqNemq, happened to be satisfactory; so, I use it as Nem−1. The cut
lines of function ArqNemq go from −∞ to zero, and then to each of the
branch points, seen at the maps in the right column of Figure 13.2.

For the positive values of the argument, there is no need to make any
difference between three functions mentioned above; for x>0, relations
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ArcNemq(x) = ArkNemq(x) = ArqNemq(x) hold. Graphics of these
functions are shown in figure 13.3.
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Figure 13.4: Parametric
plot: x+iy = NemBran(q)

For handling of cuts of function ArqNemq, the
branch points should be calculated. These
branch points are shown in figure 13.4. It refers
to function NemBran, that expresses the upper
branch point of function ArqNemq as function
of q. Below I describe, how to evaluate this
function.

Assume, some q is given. We need to find so-
lutions of equation Nem ′

q (z) = 0. This solu-
tion can be expressed in Mathematica language
with code

T[z_]=z+z^3+q z^4
s = Solve[T’[z]==0,z]
ReplaceAll[z,Extract[s,1]]

The output indicates, how to program function
NemBran, shown in figure 13.4:

z_type nembra(DB q){ z_type Q,v,V;
Q=q*q;
v=-1.-8.*Q+4.*sqrt(Q+4.*Q*Q);
V=pow(v,1./3.);
return (.25/q)*(-1.+1./V+V); }

z_type NemBran(DB q){ z_type z,zz=z*z;
z=nembra(q); return z*(1.+zz*(1.+q*z)); }

Here DB denotes <double> and z_type de-
notes complex<double> ; NemBran appears as combination of functions
Nem and nembra.

Assume, some q > 0 is given; let x0 +iy0 = NemBran(q). For function
ArqNemq, I draw the cut lines form −∞ to zero, and from zero to point
(x0, y0) and to point (x0,−y0). As the cut lines are specified, it is easy to
program evaluation of ArqNemq, picking up the corresponding branch
of the solution. The C++ code is shown in Table 13.1. One can extract
the code also from the URL marked in figure 13.4. The readers are
invited to check numerically relations

Nemq

(
ArqNemq(z)

)
= z (13.4)

ArcNemq

(
Nemq(z)

)
= z (13.5)

and investigate the range of validity of each of these equation.
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Table 13.1: C++ implementation of function ArqNemq. Values of q and corre-
sponding x0, y0 should be already calculated and stored in global variables Q, tr, ti

z_type arnemU(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=-I*sqrt(-r);
z_type s=27.*a + 3.*R; z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=I*sqrt(-h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=I*sqrt(-g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arnemD(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=I*sqrt(-r);
z_type s=27.*a + 3.*R; z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=-I*sqrt(-h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=-I*sqrt(-g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arnemR(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=sqrt(r); z_type s=27.*a + 3.*R;
z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=sqrt(h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=sqrt(g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arnemL(z_type z){ DB q=Q; DB q2=q*q; DB q3=q2*q;
z_type a=q-z; z_type b=1.+4.*q*z; z_type r=81.*(a*a)+12.*(b*b*b);
z_type R=-sqrt(r);
z_type s=27.*a + 3.*R; z_type S=pow(s,1./3.);
z_type B=(0.26456684199469993*S)/q - (1.2599210498948732*b)/(q*S);
z_type h=0.25/q2 + B;
z_type H=sqrt(h);
z_type g=0.5/q2 - B + (.25+2.*q2)/(q3*H);
z_type G=sqrt(g);
return - 0.25/q - 0.5*H + 0.5*G ;}

z_type arqnem(z_type z){ DB x,y; x=Re(z);y=Im(z);
if( y>ti || (x<0 && y>=0)) return arnemU(z);
//if(y<0) return conj(arnemU(conj(z)));
if(y<-ti || (x<0 && y<=0)) return arnemD(z);
if(x*ti>fabs(y)*tr) return arnemR(z);
return arnemL(z);}
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Figure 13.5: y=SuNemq(x)

Functions Nemq and ArqNemq = Nem−1
q

are defined, implemented, tested and de-
scribed above; they can be used for construc-
tion of superfunction SuNemq, abelfunction
AuNemq=SuNem−1

q and corresponding non-
integer iterates of the Nemtsov function. I
begin with function SuNemq. It is shown in
figure 13.5 dor vvarious values of q. In this
section, I describe, how is it constructed.

For the Nemtsov function Nemq, the super-
function is solution F of the transfer equation

F (z+1) = Nemq(F (z)) [Feq] (13.6)

In analogy with approach of the previous
chapter, I look for solution F with the certain
asymptotic behaviour,

Fq(z)=
1√
−2z

(
1− q√

−2z
+O

( ln(−z)

z

))
[F] (13.7)

In order to construct the computationally-efficient asymptotic approxi-
mation of superfunction Fq, define set of polynomials

Pm(z) =

IntegerPart[m/2]∑
n=0

am,nz
n [P] (13.8)

where a are constant coefficients. Then, I set

Fq,M(z) = ε

(
1− qε+

M∑
m=2

P (ln(−z))εm

)
[FqM] (13.9)

where

ε =
1√
−2z

[epsilon] (13.10)

I substitute the approximation (13.9) into the transfer equation (13.6).
The asymptotic analysis of the residual (id est, its asymptotic min-
imisation) determines coefficients a. The asymptotic representation
(13.8),(13.9),(13.10) should approximate superfunction F at least for
large negative values of the argument.
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Table 13.2: Computation of coefficients a in equation (13.8) [T2]

T[z_] = z + z^3 + q z^4
P[m_, L_] := Sum[a[m, n] L^n, {n, 0, IntegerPart[m/2]}]
A[1, 0] = -q; A[1, 1] = 0;
a[2, 0] = 0; A[2, 0] = 0;
F[m_,z_]:=1/(-2z)^(1/2)(1-q/(-2z)^(1/2)+
Sum[P[n,Log[-z]]/(-2z)^(n/2),{n,2,m}])

m = 2;
s[m] =Numerator[Normal[Series[

(T[F[m,-1/x^2]]-F[m,-1/x^2+1])2^((m+1)/2)/x^(m+2),{x,0,1}]]]
t[m] = Numerator[Coefficient[Normal[s[m]], x] ]
sub[m] = Extract[Solve[t[m] == 0, a[m, 1]], 1]
SUB[m] = Simplify[sub[m]]
f[m, z_] = ReplaceAll[F[m, z], SUB[m]]

m = 3
s[m] =Simplify[ReplaceAll[Series[
(T[F[m,-1/x^2]]-F[m,-1/x^2+1])2^((m+3)/2)/x^(m+3),{x,0,0}],SUB[m-1]]];
t[m] = ReplaceAll[Normal[s[m]], Log[x] -> L];
u[m] = Table[Coefficient[t[m] L, L^n]==0, {n,1,1+IntegerPart[m/2]}];
tab[m] = Table[a[m, n], {n, 0, IntegerPart[m/2]}];
sub[m] = Extract[Solve[u[m], tab[m]], 1]
SUB[m] = Join[SUB[m-1], sub[m]];

(* and so on for m=4, m=5, etc. *)

The original (and non-trivial) part of this research is guessing of repre-
sentation (13.8),(13.9),(13.10). This representation is a little bit more
complicated, that the similar representation (12.4), (12.5), (12.6) for
function SuSin, described in the precious section.

Once representation (13.8),(13.9),(13.10) is written out, the following
construction is straightforward. This analysis can be performed with
the Mathematica code shown in Table 13.2.

Coefficients a are chosen in such a way, that

Fq,M(z) = Fq(z) +O
(
εM+1

)
(13.11)

Tens of coefficients a in equation (13.8) can be computed in such a way.
The first coefficients are:

a2,0 = 0 , a2,1 = 1
4(3 + 2q2)

a3,0 = q + 3q3 , a3,1 = −(3q)/2− q3

a4,0 = 1
8(5−4q2−44q4), a4,1 = 1

8(−9−12q2−4q4), a4,2 = 3
32(9+12q2+4q4)

a5,0 = 1
12(−39q−104q3−4q5), a5,1 = 7

4(3q+8q3+4q5), a5,2 =−9q
4 −3q3−q5
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Coefficients a happen to be polynomials with respect to parameter q.
For the following numerical implementation of superfunction, they are
expressed through the Horner rule. The C++ implementation is loaded
together with generators of figures of this chapter.

Assume given number M of terms of sum in the asymptotic expansion
(13.9). Then, the superfunction Fq can be defined as limit

Fq(z) = lim
n→∞

Nemn
q

(
Fq,M(z − n)

)
[Flim] (13.12)

I remind, the upper index after the name of the function indicates the
number of its iterate. The limit does not depend on the number M .
However, for large M , the limit converges faster. For q of order of
unity, and argument z of order of unity, with M =30, it is sufficient to
make n= 20 iterates in order to approximate limit in equation (13.12)
with 14 decimal digits. That greatly exceeds the precision, required to
plot the camera-ready copies of all the figures presented. However, the
extra digits help to reveal faults of the representation of function, if any
mistake takes place.

The transfer equation has translational invariance. If some z → F (z)

is the solution, then, for a constant C, function z → F (z+C) is also
solution, id est, also superfiunction of the same transfer function. In
order to make figures more beautiful it is convenient, that at zero, the
superfunction has value unity. For this reason, I define superfunction
SuNemq as superfunction F with displaced argument:

SuNemq(z) = Fq(x1+z) [SuNem] (13.13)

where x1 = x1(q) is real solution of equation

Fq(x1) = 1 (13.14)

This provides condition

SuNemq(0) = 1 (13.15)

This condition is not so important to evaluate iterates of the Nemtsov
function, but it helps to compare different superfunctions. Many super-
functions, described in this Book, have value unity at zero.

Definition (13.13) of function SuNem is used to generate the explicit plot
in figure 13.5 and also the complex maps of SuNemq for q=0, q=1 and
q=2 in figure 13.6. These maps are symmetric with respect to reflection
from the real axis, so, the only upper half of the complex plane is shown.
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Figure 13.6: u+iv = SuNemq(x+iy), for q=0, 1, 2 [suma]
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Maps in figure 13.6 demonstrate the asymptotic behaviour of function
SuNem. In the most of the complex plane, the function slowly decays
to zero. This decay is determined by the leading term of the asymptotic
expansion (13.9). However, this asymptotic expansion is not valid in
vicinity of the origin of coordinate, nor in vicinity of the the positive
part of the real axis. In the half-strips x>2, 1< |y|<2, the maps show
complicated, oscillating behaviour of the function. For positive values
of the argument, function SuNemq shows fast growth. This growth is
seen both, in the explicit plot at the right hand side picture of figure
13.5 and in the complex maps in figure 13.6.

For computation of iterates of the Nemtsov function Nemq, the Abel
function AuNemq = SuNem−1

q is also required. Function AuNemq is
described in the next section.

3 AuNem

In this section, I construct abelfunction for the Nemtsov function Nemq

by (13.1). This abeldunction is inverse of the superfunction, id est,
AuNemq=SuNem−1

q .

First, consider inverse function of the superfunction F by (13.7); let
Gq=G=F−1. It can be expanded as follows:

Gq,M(z) = − 1

2z2
+
q

z
+

1

2

(
2q2+3

)
log(z) +

q2

2
+

1

4

(
2q2+3

)
log(2)

+
M∑
n=1

cnz
n [auneqm] (13.16)

Gq(z) = Gq,M(z) +O(zM+1) [G] (13.17)

This form can be obtained, inverting expansions (13.7), (13.9) for su-
perfunction Fq.

Coefficients c depend on q; these coefficients can be computed either
with asymptotic analysis of equation

Gq,M(Fq,M(x)) = z (13.18)

or from the Abel equation

Gq(Nemq(z)) = Gq(z) + 1 (13.19)

Coefficients c in equation (13.16) can be calculated in Mathematica with
the code shown in Table 13.3.
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Table 13.3: Mathematica code for calculation of coefficients c in equation (13.16)

T[z_] = z + z^3 + q z^4
P[m_,L_]:= Sum[a[m, n] L^n, {n, 0, IntegerPart[m/2]}]
F[m_,z_]:=1/(-2z)^(1/2)(1-q/(-2z)^(1/2)+

Sum[P[n,Log[-z]]/(-2z)^(n/2),{n,2,m}])
G[m_,x_]:=-1/(2x^2)+q/x+q^2/2+1/4(3+2q^2)Log[2]+1/2 (3+2q^2)Log[x]+

Sum[c[n]x^n,{n,1,m}]
Series[ReplaceAll[F[3,h+G[3, z]], a[2,1]-> 1/4 (3+2 q^2)], {z,0,4}]
(*The line above is just test *)
m=1;
sg[m]=Coefficient[Series[G[m+3,T[z]]-G[m+3,z]-1,{z,0,3}], z^(m+2)]
st[m]=Solve[sg[m] == 0, c[m]]
su[m]=Extract[st[m], 1]
SU[m]= su[m];

m= 2;
sf[m]=Series[ ReplaceAll[G[m+3,T[z]]-G[m+3,z]-1,SU[m-1]],{z,0,m+2}]
sg[m]=Simplify[Coefficient[sf[m] 2^m, z^(m+2)]]
st[m]= Solve[sg[m] == 0, c[m]]
SU[m]= Join[SU[m - 1], su[m]]

m = 3;
sf[m]=Series[ ReplaceAll[G[m+3,T[z]]-G[m+3,z]-1,SU[m-1]],{z,0,m+2}]
sg[m]=Simplify[Coefficient[sf[m] 2^m, z^(m+2)]]
st[m]= Solve[sg[m] == 0, c[m]]
su[m]= Extract[st[m], 1]
SU[m]= Join[SU[m-1], su[m]]

(*and so on for m=4, m-5, etc... *)

For an integer M>0, the abelfunction Gq can be evaluated through the
asymptotic approximation Gq,M as the limit

Gq(z) = lim
n→∞

(
Gq,M

(
ArqNem n

q (z)
)

+ n
)

[AuNemLim](13.20)

Then, the function AuNem is expressed through function G with addi-
tion of the constant,

AuNemq(z) = Gq(z)−Gq(1) (13.21)

in such a way, that AuNem(1) = 0. The readers are invited to check
numerically the ranges of validity of relation

SuNemq

(
AuNemq(z)

)
= z (13.22)

AuNemq

(
SuNemq(z)

)
= z (13.23)

and also estimate the residuals at the substitution of the numerical im-
plementations into these relations.
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Complex maps of u+iv = AuNemq(x+iy) for q=0, q=1 and q=2 are
shown in the x, y plane in figure 13.7.

The Readed is invited to compare the cut lines in figure 13.7 with cuts
in maps at the right hand side column of figure suma. The cut lines of
function AuNemq are the same, as those of function ArqNemq; because
it is the first function to evaluate while computing through the asymp-
totic representation Gq,M by equation (13.20). The branch points are
determined by function NemBran(q) shown in figure 13.4.

Lines v= const in maps of figure 13.7 approach the cut lines in pretty
specific way, that corresponds to decrease of u, which represents the
real part of the function. This means, that, if one goes along any line
v = const, increasing u, one approaches to the origin of coordinates,
where the asymptotic representation is accurate, without to cross the
cut lines. This happens due to the specific choice of the inverse function
ArqNemq, with this goal, the cut lines of function ArqNemq are chosen
in the function ArqNem. (The default choice of the inverse function,
provided by the routine “Solve” in Mathematica, does not provide this.)

In such a way, the Abel function AuNem for the Nemtsov function is
constructed and implemented. With functions SuNemq and AuNemq,
the iterates of function Nemq can be calculated. They are shown in
figures 13.8, 13.9 and described in the next section.
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4 Iterates of the Nemtsov function

With functions Nemq and SuNemq from the previous sections, the iter-
ates of the Nemtsov function can be defined,

Nemn
q (z) = SuNemq

(
n+ AuNemq(z)

)
[Nqn] (13.24)

Figure 13.8 shows the explicit plot y = Nemq(x) for q→ 0 in the left
hand side picture and for q=2 in the right hand side picture, for various
values of the number n of iterate. The integer values of n correspond to
the thick lines.

For q=1, complex maps of iterates Nemn
1 are shown in figure 13.9. The

figure shows, how, at the increase of number n of iterate from −1 to
1, function ArqNem1 gradually changes to the identity function (with
rectangular grid as the complex map) and then to the Nemtsov function
Nem1.

Iterates in figure 13.8 look similar to iterates of other quickly growing
holomorphic functions [54, 64, 61, 65, 88]. In particular, at n≈ 0, the
iterate Nemn

q looks similar to identical function; at n = 1, it is just
Nemtsov function Nemq, and at n = −1, it is the inverse function, id
est, ArqNemq.
Iterates of a growing real-holomorphic function are also real-holomorphic;
the complex maps are symmetric with respect to reflection from the real
axis, so, the only upper half of the complex plane is shown shown in
figure 13.9. The left column shows maps for the positive iterates; the
number n varies from 0.6 at the top map with step −0.1 to −0.1 at the
bottom map. In the similar way, the right hand side column represents
maps for n from −0.6 at the top to −0.1 at the bottom. Only case with
q=1 is presented, but one can download the generator of the figure and
plot similar maps for other values of q, and, of course, other values of
number n of iterate; this number can be even complex.

Iterates by 13.24 shown in figures 13.8, 13.9 provide the smooth (holo-
morphis) transition from the Nemtsov function Nemq to the identity
function and then to the inverse function ArqNem. Iterates have the
group property,

Tm+n(z) = Tm(T n(z)) [Tmn] (13.25)

This ratio holds only for certain range of values of parameters, that
includes the positive part of the real axis for z. In order to keep the
Book of reasonable thickness, I skip out this analysis and suggest the
Readers to do it as an excersise.
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5 End of exotic iteration
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B.Nemtsov

The 4th order polynomial of special kind (13.1) is con-
sidered in this section. I call it Nemtsov function after
Boris Nemtsov, see fig. 13.10; the need to denote this
function coincided with the tragic event. This polyno-
mial is treated as transfer function: the inverse function
ArqNem, the superfunction SuNem and the abelfunction
AuNem are constructed.

Construction of function ArqNem happend to be non-trivial; so, its map
is shown in the right hand side column of figure 13.2 for various values
of parameter. Choice of the cut lines of this function is important. The
readers are invited to try to construct abelfunction with other choice of
the cut lines and plot the complex maps of the result. And compare the
resulting complex maps to those in figure 13.7. And the same for the
iterates in figure 13.9.

Function Nem is my last attempt to construct a difficult-to-iterate grow-
ing real-holomomorphic function with real fixed point. The fixed point is
chosen at zero, because the update to the more general case is straight-
forward, it is specified in the las row of table 3.1.

For the real-holomorphic growing transfer function with real fixed point,
the suprfunction can be constructed with regular iteration considered in
chapter 6, if the derivative at fixed point is not unity, or with exotic
iteration, if this derivative is unity. Then, one can guess the heuristic
“solution” with correct asymptotic behaviour of the superfunction, using
analogy with the differential equation, discussed in the previous chapter;
the same analogy works for the Nemtov function too. This leads to
iterates that I call “exotic”. The exotic iterates lead to pretty regular
and real-holomorphic superfunctions, abelfunctions and correspondingly
regular non-integer iterates of the transfer function.

In the next chapter, I consider, in some sense, even more exotic case,
when the transfer function has no real fixed point. The example of
such a function without real fixed point is just natural exponent, T =

exp. Historically, namely this transfer function had been considered and
iterated (it can be iterated any real or even complex number of times)
[54].
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Chapter 14

Natural tetration tet
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Figure 14.1: y=tet(x) , y=exp(x) , and
y=10

(
tet(x)− (x+1)

)
[TetPlot]

Here, I consider the exponen-
tial transfer function, T =exp.
For this transfer function, the
transfer equation can be writ-
ten as follows:

f(z+1) = exp(f(z)) (14.1)

In order to narrow the set of
solutions, the additional con-
dition is assumed:

f(0) = 1 (14.2)

In order to provide the unique-
ness, in addition, I require,
that the solution f(z) is holo-
morphic at the whole complex
plane except z≤−2, and also
limited at least in the strip
<(z) ≤ 1. I refer the solution
f as “tetration” (or “natural
tetration”) and denote it with
symbol tet. In this chapter I
tell, how this function is con-
structed; I use the main formu-
las and pictures from publica-
tions [54, 64].
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Colleagues often ask questions not only about superfunctions and way
of the evaluation, but also about guessing of properties of these func-
tions. In particular, these questions refer to the properties of the natural
tetration: “How did you guess?”

The questions about guessing are important not only for the history, but
also for the colleagues, who want to use the similar way for other transfer
functions, superfunctions and, perhaps, even to some more complicated
objects. So, I consider these questions seriously. Especially, this apply to
the natural exponent and the natural tetration, as the natural tetration
is first non-trivial superfunction, for which the efficient algorithms of
evaluation had been suggested and described [54, 64].

In this chapter, I provide not only the formulas and pictures for the
natural exponental and the natural tetration, but also explanations, why
namely this tetration should be considered and recognised as the most
“true” and the “most natural” among various possible superfunctions;
and why any researcher, following the same idea, should come to the
same tetration.

1 Exponent

Before to deal with solution f of equations (14.1), (14.2), it worth to
remind properties of exponent. For the real argument, graphic of expo-
nent is shown in figure 14.1 with thin line. Complex map of the transfer
function T = exp is shown in figure 14.2.

I hope to be not condemned for drawing so elementary functions as
exponent. (I did not do it in the previous section about sin; but for some
elementary functions I provide the maps. The Book should allow the
understanding, even if it happens to be in hand of a pure experimentalist.
With the detailed descriptions of the elementary things, I hope, that
even Aleksander Kaminskii, or Akira Shirakawa, or Yulya Kuznetsova
can understand at least the main idea of the Book. The Book must
allow the reading even by the least-educated academician [16] 1.

1http://royallib.com/read/Strugatsky_Arkady/Tale_of_the_Troika.html Tale of the
Troika by Arkady and Boris Strugatsky. PROLOG. "..Our slogan is ‘elevators for everyone.’
No matter who. The elevator must be able to withstand the entrance of the least-educated academi-
cian.”
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The exponent can be considered as superfunction of function “multipli-
cation by constant number e”; e = exp(1)≈ 2.71828182846 . In such a
way, exp is superfunction for the transfer function T by

T (z) = e z [Tez] (14.3)

I repeat the formula from the school course of algebra:

f(z+1) = e f(z) [expz1ez] (14.4)

The solution of this equation can be constructed with regular iteration,
in vicinity of the fixed point L=0 of the transfer function T by (14.3).
The Reader is invited to make this exercise and check, that the primary
expansion stops a the first term, giving the exact solution f = exp at
the first iteration.
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For the transfer function z 7→ e z, I write also the Abel equation:

g(e z) = 1 + g(z) [abelog] (14.5)

Equation (14.5) is considered by Henryk Trappmann [86]. The Reader
can guess, that Henryk got the natural logarithm as the solution, id
est, g= ln. Readers are invited to think, what additional requirements
should be associated with equation (14.5), in addition to equation

g(1) = 0 (14.6)

in order to provide the uniqueness of the solution g=ln.

Explicit plot of exp is shown in figure 14.3. (The same dependence is
shown with thin curve in figure 14.1.) It worths to compare the graphic
of the natural exponent to that of the exponent to base b=

√
2, which

crosses the straight line y = x. This line is also shown in figure 14.3.
The graphic of the natural exponent y= exp(x) does not cross the line
y=x. The natural exponent has no real fixed point.

Fixed point L of exponential and logarithm to base b=exp(a) is solution
of equation L = logb(L). This solution can be expressed through the
Tania function, considered in chapter 4:
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L=filog(a)=
Tania(ln(a)−1−πi)

−a
=

WrightOmega(ln(a)−πi)

−a
(14.7)

The second equality in formula (14.7) can be considered as definition of
the new function filog. This function is described also in TORI,
http://mizugadro.mydns.jp/t/index.php/Filog.
Function filog is considered in details below, in chapter 18. Here, we
need this function only for the single value of the argument, namely, L =

filog(1). As function Tania is already described, it should be considered
as special function. In this sense, quantity L should is exact:

L = −Tania(−1−πi)

≈ 0.3181315052047641353 + 1.3372357014306894089 i (14.8)

The rough approximation (with two significant figures) for L by (14.8)
can be found even from figure 5.2, counting isolines with finger.

Function Tania is used in this Book already twice: first, in chapter 2,
as realistic superfunction for the transfer function Doya (that describes
increase of the intensity of light in a laser amplifier with simple model
of continuously pumped of active medium. and, second time, here, as
exact representation for the fixed point of exponent. This is the same
function. Recycling, reusing of the results is base of any science, and
the physical mathematics (see the Introduction) is not exception.

Exponent is real-holomorphic function, exp(z∗) = exp(z)∗; hence L∗≈
0.1−1.3 i is also the fixed point. In principle, each of these fixed points
can be used for the regular iteration, considered in chapter 6. However,
such iteration does not lead to the real-holomorphic superfunction. I
wanted to suggest a way of evaluation of the real-holomorphic tetration,
that could be used as the definition. In order to specify it, I assume, that
there exist some special superfunction of the natural exponent, and this
superfunction is characterised with specific behaviour. As the real part
of the argument goes to −∞, the superfunction approaches L in the
upper part of the complex half plane, and L∗ in the loser part. At the
beginning, this is nothing more, but just guess. In the next section, this
guess is used to construct both, the definition and the way of evaluation.
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2 Heuristic tetration

Since publication of the first article about real-holomorphic tetration,
the colleague ask me similar questions:
“Why did you interested in holomorphic tetration?"
“How did you guess the asymptotic behaviour to tetration at ±i∞?”
“How did you guess the initial approximation fit3?” [87].
In order not to be like Rip van Winkle 2, revealing new and new details,
here I mention the only one of motivations, that is related to physics.

Initially, I wanted to use some fast-growing function in order to represent
the factorial of the number of particles in the Bose-Einstein condensate,
this factorial appears at the attempt to write-out the first approxima-
tion for the normalised multi-particle wave function. The fastly-growing
function is described in the article by Hooshmand [49], but it happened
to be not suitable for the asymptotic analysis, because it is not holo-
morphic. The corresponding extension

f(z) = uxp(z) =


ln
(
uxp(z+1)

)
at <(z) ≤ −1

z + 1 at −1 < <(z) ≤ 0

exp
(
uxp(z−1)

)
at 0 < <(z)

(14.9)

has many cut lines, they divide the complex plane to almost separated
strips. Complex map of function uxp by (14.9) is shown in the upper
picture of figure 14.4 with lines of constant log amplitude u and lines of
constant phase v,

exp(u+iv) = f(x+iy) (14.10)

This representation is different from that, usef for the most of complex
maps in this Book; usually, the lines of constant real part and those
of constant imaginary part are drawn. While I explain, how did I get
the holomorphic tetration, I represent maps in the same form, as they
appear in the original paper [54].

As I already mention above, the vertical cuts of the range of holomor-
phism of function uxp divide the complex plane to almost independent
strips seen in the top map in figure 14.4. These strips raise the question:
Is it possible to suggest a “more holomorphic” (id est, with less cuts) so-
lution of the transfer equation (14.1)? Or no solution f of the equation
(14.1) may have wide range of holomorphism?

2 http://classiclit.about.com/library/bl-etexts/wirving/bl-wirving-rip.htm Rip
Van Winkle by Washington Irving. (1783-1859)
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Figure 14.4: exp(u+iv) = f(x+iy) for the following functions: f = uxp,
(a); f=Fit3, (b); f=Fit6, (c); f=tet, (d) [analuxpmap]
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At the first look into results by Hooshand [49], construction of the real-
holomorphic solution seemed to be impossible. On the other hand, the
initial assumption used there, about monotonous derivative (for the real
argument) of the superfunction of exp, looks doubtful. I tried to con-
struct some alternative proof, that the cuts are unavoidable, without to
use the strange assumption. I begun to investigate the case, assuming
existence to the holomorphic solution. I expected to get some contra-
diction, and to use the contradiction for the proof. The holomorphic
solution had been constructed, and no contradiction had been detected
[54]; so, I had to accept the existence.

Historically, the construction of this solution begun with approxima-
tions. I had considered several real-holomorphic elementary functions,
that have logarithmic singularity at −2 and take the same values, as
tetration, at few integer values of the argument. One of them (that
happened to be better than some others) is

fit2(z)=ln(2+z)

+(1+z)
(

1 + z
2 exp

(
(z−1)s2(z)

)(
e− 2+ln 4

3

)
− ln 2

)
(14.11)

where

s2(z) = exp
(

exp(z − 2.51)
)
− 0.6 + 0.08(z+1) [fit2s] (14.12)

Constants in the expression (14.12) are chosen in order to minimise the
residual at the substitution f = fit2 into the transfer equation (14.1).
This approximation could be improved, comparing (14.12) with the
precise approximation through the Cauchy integral, considered below.
However, at the heuristic search for the rough approximations, the rep-
resentation through the Cauchy Integral had not yet been written; so,
choosing the approximation, I had to use the residual as the criterion.

After construction of function fit2, it happened, that the linear combi-
nation of functions z 7→fit2(z) and z 7→ ln(fit2(z+1)) gives the residual
even smaller; in such a way, the approximation fit3 appeared:

fit3(z)=0.6 fit2(z) + 0.4 ln
(
fit2(z + 1)

)
(14.13)

The range of approximation of tetration can be extended. Let

Fit3(z)=


ln
(
Fit3(z+1)

)
at <(z) ≤ −1

fit3(z) at −1 < <(z) ≤ 0

exp
(
Fit3(z−1)

)
at 0 < <(z)

[Fit3] (14.14)

Logampliture and phase of this function are show in figure 14.4b.
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For comparison, two more maps are shown in figure 14.4, they are
numbered as c and d. There represent the asymptotic approximation,
f = Fit6 and tetration f = tet, described below in section 4; namely
this tetration is goal of this chapter.

The asymptotic approximation

Fit6(z) =

{
L+ exp(k(z+r)) , <(z) < −8

exp
(

fit6(z−1)
)
, <(z) ≥ −8

[Fit6] (14.15)

is good at large values of imaginary part of the argument. For natural
tetration, the increment k=L. This looks as just coincidence. However,
everyone can check it with the asymptotic analysis, substituting the
primary expression of fit6 into the transfer equation (14.1). Value of
constant r≈ 1.075820830781−0.9466419207254 i appears as adjusting
parameter of this approximation. On the other hand, it seems to be
approximation of the important mathematical constant. I would call this
r with name “The Kneser constant”. This is one of constants, required
for the expansion of iterates of exponent discussed in [10] and used for
the approximation of tetration [64].

Function Fit6(z) approximates tetration tet(z) at =(z) > 0.4; function
Fit6(z

∗)∗ approximates tet(z) at =(z) < −0.4; combination of these
functions is shown in map “c” in figure 14.4. In vicinity of the real axis,
roughly, in the strip |=(z)| < 0.4, both these functions Fit6(z) and
Fit6(z

∗)∗ look ugly, and this strip in the map is left white.

Approximations f = Fit3 and f = Fit6 by (14.14) (14.15) are already
sufficient to plot the complex maps and explicit plots of tertration; to-
gether, they provide of order of 3 decimal digits in the range of maps
shown in figure 14.4. The last map "d" in figure 14.4 visually looks as
superposition of the maps "b" and "c" above; this gave the general view
of tetration that had to be constructed.

The approximations above (even Fit3) allow to guess the asymptotic
behaviour of tetration. It should approach the fixed points L or L∗

of logarithm, while the imaginary part of the argument approaches the
plus or minus infinity. These values are indicated in maps “c” and “d” of
figure 14.4.

In such a way, this section explains, how did I guess, which the asymp-
totic behaviour should the tetration have. Postulating this behaviour,
one can construct the algorithm for evaluation of tetration with any re-
quired precision. The postulated properties of tetration are collected in
the next section.
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3 Properties of tetration

Following recommendations by colleagues, friends and relatives, this con-
tent of this Book gradually goes from the simple examples to the more
general formulas. In order to follow this way, here I define only the nat-
ural tetration. This section continues the following article [54] of year
2009. .

Since the two upper maps in figure 14.4 were plotted, the main properties
of this function are clear. I postulate them below.

Solution F of the transfer equation (14.1) with additional condition
F (0) = 0 is called natural tetration, or simply tetration tet, if the fol-
lowing conditions are satisfied:

Т1. Function F (z) is real-holomorphic in the whole complex plane
except the halfline z ≤ −2. Id est, F (z∗)=F (x)∗. At z=−2, function
F (z) has logarithmic singularity, id est, the branch point.

Т2. Function F (z) is bounded in the strip |<(z)| ≤ 1.

T3. Function F (x) asymptotically approaches the fixed point L in the
upper half plane: for any real x, the relation below holds:

lim
y→+∞

f(z + iy) = L [T715] (14.16)

In addition, for positive y, the relation below holds:

lim
x→−∞

f(z + iy) = L [T716] (14.17)

T4. In the strip −1 ≤ <(z) ≤ 2 , the following condition holds:

arg(F (z)) < 2 [argF] (14.18)

Conditions T1-T4 above are a little bit redundant. The following devel-
opment of the formalism of superfunctions is expected to indicate, which
of these properties should be kept as definition of tetration, and which
should appear as theorems, following from the shortened definition.

From postulates (14.16), (14.17) and real holomorphism f(z∗) = f(z)∗,
it follows, that

lim
y→−∞

f(z + iy) = L∗ [T717] (14.19)

and for negative y, the relation below holds

lim
x→−∞

f(z + iy) = L∗ [T718] (14.20)

These conditions are used in the next section for construction and eval-
uation of tetration through the Cauchy integral.
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4 Cauchy integral

For holomorphic function F , the Cauchy formula takes place [103]:

F (z) =
1

2πi

∮
Ω

F (t)

t−z
dt [Cauchy] (14.21)

where contour Ω belongs to the simply connected range of holomor-
phism of function F and only once passes around point z in the counter
clock wise direction. With equation (14.21), the transfer equation (14.1)
leads to the integral equation for the values of superfunction along the
imaginary axis [54]. The description is repeated below.

Engineer, physicist or mathematician, using formula (14.21), has certain
freedom in choice of the contour of integration. The researcher acts in
a way, similar to that of an Engineer, who makes a project of the loop
railroad for the rocky semi-island.
The smart engineer takes into account the locations of ports, cities,
farms, industries, in order to help the people to reach the places of
their destination. Also, the engineer tries to avoid swamps, steep slops,
narrow curvy canyons, to make the railroad fast, cheap and safe.
Vainglorious tyrant, dictator, already famous in sports, war, art, arche-
ology and ornithology, who wants to show himself also as a powerful
all-mighty engineer, may draw a rectangle on the map, and promote it
as a project of the trace of the railway. Such a “ project ” will require a
lot of bridges, ramps, excavations and tunnels, makes him famous also
as vain waster of the state budget and may bring him to the situation
"no money" 3.
Sorry, in the choice of the contour of integration, described in [54], I look
like as a tyrant, rather than as a smart engineer: I choose the contour of
integration in the shape of rectangle. The only excuse is, that the this
contour leads to efficient way of evaluation of tetration.

Let F be real-holomorphic of equation (14.1);
Let A be real positive number, so big, that F (iA)≈L
Let the range of hlomorphizm of function F (z) includes the domain
−1≤<(z)≤1 and, in this range, let | argF (z)| < π.

3 http://weirdrussia.com/2016/05/28/meme-medvedev-says-we-have-no-money-but-you-hang-in-there/

Medvedev Says “We have no money, but you hang in there” (2016).
http://www.bbc.com/news/blogs-trending-36482124 Russian PM: ’No money for pensions,
but have a good day!’ 2016.06.09
http://www.cnbc.com/2016/06/09/there-is-no-money-left-bye-russian-pm-causes-social-media-storm.html

Holly Ellyatt. ’There is no money left, bye!’: Russian PM causes social media storm. .. "no
money left" in Russia’s budget.. "There just isn’t any money now. .."
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These conditions allow to convert the contour integral into the “solvable”
integral equation; of course, at the appropriate choice of the contour of
integration. Let contour Ω consists of the four segments:
A. Segment along line <(t)=1 from t = 1−iA to t = 1+iA.
B. Segment from point t = 1+iA to t = −1+ iA, passing above point z.
C. Segment along line <(t) = −1 from t = −1+ iA to t = −1−iA.
D. Segment from point t = −1−iA to t = 1−iA, passing below point z.
For this contour Ω, the Cauchy integral can be written as follows:

F (z) =
1

2π

∫ A

−A

F (1+ip) dp

1 + ip− z
− 1

2π

∫ A

−A

F (−1+ip) dp

−1 + ip− z
(14.22)

− Fup

2πi

∫ 1−iA

−1−iA

dt

t−z
+
Fdown

2πi

∫ −1−iA

−1−iA

dt

t−z

where Fup и Fdown are some mean values of function F in vicinity of the
segments B and D of the contour Ω.

Taking into account the transfer equation 2.12, and assuming holomor-
phism of function T−1, equation (14.22) can be rewritten as follows:

F (z)=
1

2π

∫ A

−A

exp
(
F (ip)

)
dp

1 + ip− z
− 1

2π

∫ A

−A

ln
(
F (ip)

)
dp

−1 + ip− z
+K(z) (14.23)

where

K(z) = Fup ·
(

1

2
− 1

2πi
ln

1− iA+ z

1− iA− z

)
+ Fdown ·

(
1

2
− 1

2πi
ln

1− iA− z
1− iA+ z

)
[K] (14.24)

This representation implies that the modulus of phase of function F
along the imaginary axis remains less than π, so, the contour of integra-
tion does not cross the cut line of the logarithmic function in (14.24).

Equations (14.23),(14.24) are still exact. However, they become approx-
imations, if we replace e Fup→ L and Fdown→ L∗. This replacement
leads to the closed representation for K. We get the “solvable” inte-
gral equation for the approximation FA(iy) of superfunction F along
the imaginary axis:

FA(iy) =
1

2π

∫ A

−A

exp
(
FA(ip)

)
dp

1 + ip− iy
− 1

2π

∫ A

−A

ln
(
FA(ip)

)
dp

−1 + ip− iy
+KA(iy)

(14.25)
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Figure 14.5: exp(ρ+iϕ)=KA(x+ iy) by (14.26) for A=3, 5, 10

where

KA(z) = L ·
(

1

2
− 1

2πi
ln

1−iA+z

1+iA−z

)
+ L∗ ·

(
1

2
− 1

2πi
ln

1−iA−z
1+iA+z

)
(14.26)

Equations (14.25) и (14.26) include no unknown parameters; neither Fup

not Fdown appear there. In such a way, equations (14.25) and (14.26)
can be used to calculate FA.

Representation of the integral by the uppest and lowest pars of the
contour Ω through function KA by (14.26) is not trivial. The first look
at the expression causes the seduction to rewrite each logatightm as
difference of two logarithms, in order to simplify the expression in the
argument. However, in other to get a robust representation for tetration,
this is not a good idea. On the representation (14.26), the cuts are
directed away from the imaginary axis; they go horizontally, parallel to
the abscissa axis. This helps to avoid approaching of the argument of the
primary approximation of tetration to the boundaries of holomorphism
of function KA. Complex map of function KA is shown in figure 14.5
for A= 3, A= 5 and A= 10 with lines of constant logamplitude ρ and
constant phase φ such that exp(ρ+iϕ)=KA(x+ iy) in the x, y plane.

Solution FA of equation (14.25) can be approximated with the iterates,
described below. At A� 1, solution FA provides the good approxima-
tion for the superfunction F ≈ FA;

F (z) = lim
A→∞

FA(z) [tetF] (14.27)

In order to get tetration tet, the additional consition tet(0)=1. should
be satisfied. So, I define

tet(z) = F (x0 + z) [tet] (14.28)
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where x0 is solution of equation F (x0) = 1. Value x0 depends on the
initial condition at the iterations, and also on the order of update of
the values of the discrete approximation of function FA. For the initial
approximation by (14.15), the resulting x0 happens to be or order of
0.1 ; and it is important, that it remains smaller than unity.

Formula (14.28) can be considered as “constructive definition” of tetra-
tion tet, with all reverences about the existence and the uniqueness of
the limit, at A → ∞ and the limit of inifinite increase of the num-
ber of points for the discrete approximation of the integrals. From the
point of view of the “pure” mathematics, such a “definition" deserves
critics, but I expect, that with time, the “pure mathematicians” present
a more efficient and elegant way of constructive definition of tetration.
For a while, tetration may remain as solution f of the transfer equation
ef(z)=f(z+1) bounded in the strip |<(z)| < 1 with additional condition
f(0)=1.

For the approximation of limit in equation (14.27), some finite value
of A should be chosen. Value of increment k = L≈ 0.318+1.337 i in
approximation (14.15) indicates, that for the complex double implemen-
tation, the reasonable value of constant A should be of order of 20. It
happened, that for A= 24, the residual is a little bit smaller, and this
value is used for the primary numerical implementation 4.

For the numerical implementation of equation (14.25), the integrals are
replaced to their approximations with the Gauss-Legendre quadrature
formula. Then, the resulting equation can be solved with iterations,
updating values of the function one by one.

The attempt of the parallel assignment of the new values (that is easy
to program with the high-level programming languages) leaded to the
diverging algorithm. In order to get the convergence, I update first the
odd nodes, and then the even ones. Then, after some teens of iterates,
the procedure provides the accurate solution with 14 significant figures;
this precision is estimated, evaluating the residual in various tests of the
internal self-consistency. 5

Solution of equation (14.25) approximates values of superfunction F

4Using the numerical implementation of the Cauchy integral for the first time, I did not guess
the simple estimate through the increment k; so I had to increase value of A until the residual at
the substitution of the primary approximation into the transfer equation (14.1) became of order
of the rounding errors of the complex double arithmetics

5following Axiom 4 (see Introduction), I made certain efforts trying to refute, negate the con-
cepts of existence and uniqueness of tetration.
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along the imaginary axis. Then, equation (14.23) extends this approxi-
mation to the strip

−1 < <(z) < 1 [strip1] (14.29)

Accuracy of this primary approximation is poor in vicinity of the edges
of the strip. Therefore, for the numerical implementation of tetration,
the narrower strip is used,

−1

2
≤ <(z) ≤ 1

2
[striphalf] (14.30)

applying formula

F (z) = T n
(
F (z−n)

)
[Tn] (14.31)

for some appropriate integer n, positive or negative, dependently on the
sign of <(z).

At the increasing of value of parameter A in equation (14.22), function
F approaches to the solution of the transfer equation (14.1). This solu-
tion does not yet satisfy the condition F (0) = 1, but, and the required
tetration appears as the appropriate displacement of the argument with
equation (14.28).

In figure 14.5, the strip |x| ≤ 0.5, |y| ≤ 4.5 is shaded; roughy, this is
region, where the function KA is used at the evaluation of superfunction
F at the calculation of map in figure 14.4d. The complex maps verify,
that the phase of reconstructed function does not exceed 2; and there-
fore, does not exceed π. This justifies use of logarithm in formula (14.23).
However, this cannot be considered as a rigorous proof of existence and
the uniqueness of the resulting function. I hope, the rigorous proof will
be reported soon by the “pure” mathematicians. While I present only
the computational evidence of the existence and the uniqueness.

In general case, applying this method to general transfer function T with
complex fixed points, F (z−n) could happen at the point of singularity
of at the cut line of function T or T−1. This would indicate that the
resulting superfunction is also singular. (For tetration, this happens at
the real argument, equal to or smaller than −2.) This may limit the
range of applicability of the method suggested here.

In the first calculus, the approximation fit3 had been used as the initial
probe function for the iterational solution of equation (14.25). Then
it happened, that the iterates with other (more primitive) probe func-
tions lead to the same result, providing the same tetration. With the
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algorithm above, in 2008, the natural tetration had been constricted
[54]. For A = 24, the Gauss-Legendre quadrature formula with 2048
nodes gives the accurate approximation: at the substitution into equa-
tion (2.12), it gives the residual of order of 10−14, while the variables
complex(double) are used. Of order of 14 significant figures of the solu-
tion can be evaluated in real time. This indicates stability of evaluation
of tetration through the Cauchy integral.

The algorithm above had been used to plot first naps and explicit plots
of tetration to base b > exp(1/e) [104, 105]. In particular, this algo-
rithm is used to plot the map at the bottom of figure 14.4. The direct
representation through the Cauchy integral is fast enough to plot the
maps and the explicit plots of tetration in real time. However, it be-
comes slow, if the tetration is used for evaluation of other function, for
example, its superfunction (pentation) considered below in chapter 19.
For the application of tetration, even faster approximations may have
sense. One of them is considered in the next section.

5 Taylor expansion at zero

I wanted the check the claim, that solution f = tet of equations (14.1)
and (14.1), that satisfies properties T1-T4, exists and is unique. As it
is declared above, the numerical test does not substitute the rigorous
proof, in the similar way, as the rigorous proof does not substitute the
numerical tests. For the serious tests, it is important, that the function
is fast to evaluate. In order to boost the evaluation, the approximations
through the elementary functions had been suggested [64]. One of them
refers to the Taylor expansion at zero. It is considered in this section.

Derivatives of tetration can be calculated by differentiation of the pri-
mary representation by (14.25). More accurate values can be obtained
with the Cauchy integral formula with the circular contour of integration
(assuming, that the primary representation is already implemented).
Radius of this circle should be less than 2, and can be slightly larger
than unity; then, the error of the result reduces due to denominator in
the fraction under the integral in the right hand sidle of equation (14.21).
In such a way, the coefficients in the expansion below are evaluated.

naiv(z) =
N−1∑
n=0

cnz
n [vladinaiv] (14.32)

tet(z) = naiv(z) +O(zN) [vladinaiv2] (14.33)
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Table 14.1: Coefficients in expansions (14.32), (14.36) and (14.40)
n cn sn <(tn) =(tn)

0 1.00000000000000 0.30685281944005 0.37090658903229 1.33682167078891

1 1.09176735125832 0.59176735125832 0.01830048268799 0.06961107694975

2 0.27148321290170 0.39648321290170 −0.04222107960160 0.02429633404907

3 0.21245324817626 0.17078658150959 −0.01585164381085 −0.01478953595879

4 0.06954037613999 0.08516537613999 0.00264738081895 −0.00657558130520

5 0.04429195209047 0.03804195209047 0.00182759574799 −0.00025319516391

6 0.01473674209639 0.01734090876306 0.00036562994770 0.00028246515810

7 0.00866878181723 0.00755271038865 0.00002689538943 0.00014180498091

8 0.00279647939839 0.00328476064839 −0.00003139436775 0.00003583704949

9 0.00161063129058 0.00139361740170 −0.00001376358453 −0.00000183512708

10 0.00048992723148 0.00058758348148 −0.00000180290980 −0.00000314787679

11 0.00028818107115 0.00024379186661 0.00000026398870 −0.00000092613311

12 0.00008009461254 0.00010043966462 0.00000024961828 −0.00000013664223

13 0.00005029114179 0.00004090111776 0.00000007899707 0.00000003171468

14 0.00001218379034 0.00001654344436 0.00000000637479 0.00000002270476

15 0.00000866553367 0.00000663102846 −0.00000000341142 0.00000000512289

16 0.00000168778232 0.00000264145664 −0.00000000162203 0.00000000031619

17 0.00000149325325 0.00000104446533 −0.00000000038743 −0.00000000027282

18 0.00000019876076 0.00000041068839 −0.00000000001201 −0.00000000013440

19 0.00000026086736 0.00000016048059 0.00000000002570 −0.00000000002543

20 0.00000001470995 0.00000006239367 0.00000000000935 0.00000000000045

21 0.00000004683450 0.00000002412797 0.00000000000170 0.00000000000186

22 −0.00000000154924 0.00000000928797 −0.00000000000005 0.00000000000071

23 0.00000000874151 0.00000000355850 −0.00000000000016 0.00000000000012

24 −0.00000000112579 0.00000000135774 −0.00000000000005 −0.00000000000001

25 0.00000000170796 0.00000000051587 −0.00000000000001 −0.00000000000001

Evaluations of coefficients c are shown in the first column of table 14.1.

The Taylor expansion tet(z) at z=0 converges for |z|<2. The radius of
convergence is determined by the distance from the point of expansion
(id est, from zero) to the nearest singularity, which is −2.

For the numerical implementation, the number of terms chosen N=50.
Complex map of the resulting naive approximation by (14.32) is shown
in the left hand side of figure 14.6 with lines of constant real part and
content imaginary part, u+iv = naiv(x+iy). The thick lines show levels
u=<(L) and v=±=(L).

In order to verify the precision of the approximation f = naiv, the
central and the right hand side pictures of figure 14.6 show the maps of
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Figure 14.6: u+iv = naiv(x+iy) by (14.32) for N = 50, left; agreements D1 =

Dnaiv1(x+ iy) and D2 =Dnaiv2(x+ iy) by (14.34) and (14.35), central and right hand
side maps. [vladi04]

agreements

Dnaiv1(z) = − lg

(
| ln(naiv(z+1)− naiv(z)|
| ln(naiv(z+1)|+ |naiv(z)|

)
(14.34)

Dnaiv2(z) = − lg

(
| exp(naiv(z−1)− naiv(z)|
| exp(naiv(z−1)|+ |naiv(z)|

)
(14.35)

Functions of agreementD indicate, how many significant figures of tetra-
tion can be expected to appear at evaluation of tetration with approx-
imation “naive” by (14.32). Levels D=1, 2, 4, 6, 8, 10, 12, 14 are shown.
LevelD=1 is shown with thick lines. Symbol “15” indicates the domain,
where the agreement is better than 14. We may expect, at |z|< 1, the
polynomial by (14.32) provides of order of 14 significant figures; this is
close to the maximal precision for variables complex double.

Evaluations with 50 terms is considered for verifiertion of the expansion.
At the evaluation of tetration, for example, at the implementation for
real argument, the number of terms can be significantly reduced without
loss of precision.

The polynomial approximation naiv by (14.32) can be used for the pre-
cise and fast evaluation of tetration, while the modulus of its argument
is smaller or of order of unity. For the efficient implementation, this is
good, but it is not sufficient. In the next section, the advanced expan-
sion is considered, that allows to extend the range of the approximation
of tetration for moderate values of the argument.
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Figure 14.7: u+iv=maclo(x+iy) by (14.36) at N=101, left; agreements
D3 и D4 by (14.38) и (14.39), centre and right

6 Improved approximation

The range of the accurate approximation of tetration can be extended, if
we take into account the logarithmic singularity of tetration. I “switch-
out” the singularity at −2, expanding function tet(z) − log(z+2) in-
stead of tet(z). This expansion gives the approximation below, I call it
“maclo”:

maclo(z) = ln(z+2) +
N−1∑
n=0

snz
n ; [maclo] (14.36)

tet(z) = maclo(z) +O(zN) . [macloN] (14.37)

For n = 101, function maclo is shown in the left map of figure 14.7.

The series, used for approximation (14.36) converges at |z| < 3; the
function reproduces the logarithmic branch point and even part of the
cut at z <−2. Approximate values of first coefficients s are shown in
the second column of table 14.1.

The range of approximation of tetration tet with function maclo is wider,
than that by the Taylor expansion of tetration at zero; compare figure
14.6 and figure 14.7. The central and right hand side maps of figure 14.7
show agreements

D3(z) = − lg


∣∣∣ ln(maclo(z+1)

)
−maclo(z)

∣∣∣∣∣∣ ln(maclo(z+1)
)∣∣∣+

∣∣∣maclo(z)
∣∣∣
 (14.38)

D4(z) = − lg


∣∣∣ exp

(
maclo(z−1)

)
−maclo(z)

∣∣∣∣∣∣ exp
(
maclo(z−1)

)∣∣∣+
∣∣∣maclo(z)

∣∣∣
 (14.39)
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Within the central loop, the residuals at the substitution f →maclo

into equations (14.1) are of order of 10−15.

While |z|< 2, the approximation maclo(z) with a hundred terms pro-
vides of order to 14 significant figures of tetration tet(z).However, while
the module of the argument increases and becomes larger than two, the
accuracy of this approximation quickly drops down. In order to even ex-
tend the range of the fast approximation, the Taylor expansion at some
point at the imaginary axis can be used. In the next section, the Taylor
expansion at point 3 i is described.

7 Expansion of tet(z) at z=3 i

For evaluation of tetration, we should cover some strip of unity width
along the imaginary axis with good (fast and precise) approximations.
The approximation maclo from the previous section does not approxi-
mate tetration at point 3 i. For me, this is sufficient reason (or, may be,
a pretext) to prepare the Taylor expansion of tetration namely in this
point 6. This expansion is described below.

The truncated Taylor expansion of tet(z) at point z=3 i is denoted with
name “tai” (TAylor expansion centered at the Imaginary axis):

tai(z) =
N−1∑
n=0

tn (z−3 i)n [vladitai] (14.40)

Approximations of the coefficients t are calculated with the Cauchy in-
tegral. The real and imaginary parts of the first coefficients are pre-
sented in the last two columns of table 14.1. The series converges at
|z−3i| <

√
22+32 =

√
13 ≈ 3.6 . For the numerical implementation I

choose value N=51; then, at |z−3 i| < 2, approximation tai by (14.40)
provides of order of 14 significant figures. The complex map or this
approximation is shown in the left hand side of figure 14.8.
The right hand side map in figure 14.8 shows the ageement

D5(z) = − lg


∣∣∣ ln(tai(z+1)

)
− tai(z)

∣∣∣∣∣∣ ln(tai(z+1)
)∣∣∣+

∣∣∣tai(z)
∣∣∣
 [vladiD5] (14.41)

6Constant 3 appears as minimal integer number for which (with coefficient i) approximation
maclo by (14.36) fails.
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Figure 14.8: u+iv=tai(x+iy) by (14.40) at N=51 and agreement D5(x+iy)

As in figures 14.6, 14.7, and 14.8, the levels for the agreement are drown
with increment 2, beginning with 2; one additional level D5 =1 is shown
with thick line. Inside the inner loop, the agreement with at least 14
digits takes place.

Approximation tai by (14.40) significantly extends the domain, where
the tetration can be precisely evaluated through elementary functions.
For positive values of =(z), tetration tet(z) can be approximated with

tet(z) ≈ tai(z) (14.42)

For negative =(z), tertian can be approximated with

tet(z) ≈ tai(z∗)∗ (14.43)

These representations are sufficient to plot map in figure 14.4d. I as-
sume, that the transfer equation (14.1) is applied some integer number of
times, in order use tai(z) with the argument from the strip |<(z)|≤1/2.
However, the expansions above do not provide the accurate approxima-
tion of tet(z) at |=(z)|>5.

One could extend the range of approximation, using the truncated Tay-
lor expansions at point 5 i (or even 6 i), this would significantly extend
the range of approximation, and continue such an exercise with new and
new points along the imaginary axis. However, there exist more intel-
ligent and elegant way to deal with cases, when the imaginary part of
the argument is large. This way is described in the next section.
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8 Asymptotic expansion

The approximation of tet at large values of its argument can be build
up using the asymptotic representation

tetA(z) = L+
∑
n,m

Am,n exp (Lnz + αmz) [fimao] (14.44)

L≈0.31813150520476413+1.3372357014306895 i is, as before, the fixed
point of logarithm, L=ln(L), and A are constant coefficients.

Substitution f = tetA into the transfer equation (14.1) gives the chain of
equations for coefficients A. These equations do not determine Am,0; so,
the solution still has the countable set of “free” parameters for natural
m. Difficulty of determination of these parameters had been discussed in
1950 by Helmuth Kneser [10]. However, even a relatively small amount
of terms taken into account in expansion (14.44) can be used for the
precise approximation and evaluation of tetration at large values of the
imaginary part of the argument.

Looking at the general (and a little bit ugly) expansion (14.44), I suggest
the approximate, but more beautiful formula

fima(z) =
N∑
n=0

anε
n + βε exp(2πiz) , [fima] (14.45)

where the small parameter

ε=exp(Lz+Lr) [fimave] (14.46)

Mnemonics of name fima is following: Functional expansion for large
IMAginary part of the argument. Substitution of f(z) = fima(z) +
O(εN+1) into the transfer equation (14.1) gives the coefficients

a0 = L ≈ 0.31813150520 + 1.33723570143 i (14.47)
a1 = 1 (14.48)

a2 =
1/2

L− 1
≈ −0.1513148971− 0.2967488367 i (14.49)

a3 =
a2 + 1/6

L2 − 1
=

2 + L

6(L−1)(L2−1)
≈−0.036976+0.098730 i (14.50)

a4 =
6 + 6L+ 5L2 + L3

24(L−1)3(L+1)(L2+L+1)
≈ 0.02581−0.01738 i (14.51)

a5 =
24+36L+46L2+40L3+24L4+9L5+L6

120(L−1)4(L+1)2(1+L+2L2+L3+L4)

≈ −0.0079444196+0.00057925018 i (14.52)
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Figure 14.9: Top: u+iv=fima(x+iy) by (14.45); bottom: map of Dfifi = Dfifi(x+iy)

by (14.55) [figfima]

It is not difficult to take into account more terms, but N = 5 already
allows to cover the rest of the complex plane (not covered with approx-
imations “maclo” and “tai”) with accurate approximations of natural
tetration.

Coefficients R and β in the right hand sides of formulas (14.45) and
(14.46) remain as “adjusting parameters”. Their values are chosen in
order to approximate tetration, evaluated with a little bit slower Cauchy
integral:

r ≈ 1.0779614375280− 0.94654096394782 i [fimaR] (14.53)
β ≈ 0.12233176− 0.02366108 i [fimaB] (14.54)

These values can be interpreted as approximations of the fundamental
mathematical constants. I suggest to call them “the Kneser constants”,
as the expansion with these coefficients had been suggested in 1950
by H.Kneser [10]. Many digits in approximations of these constants
can be calculated, in a way, similar to that in centuries 19 and 20 the
mathematicians competed in precision of evaluation of number π.

Complex map of function fima is shown in the top picture of figure
14.9; the upper half of the complex plane is shown. This map should
be compared to the map of tetration in figure 14.4 (although the levels
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<(L) and =(L) are not drawn in figure 14.4) and to maps of other
approximations in figures 14.6, 14.7 and 14.8

There is no fundamental limit on the precision of evaluation of tetration
(for example, through the Cauchy integral), so, parameters β and r
in should be considered as fundamental mathematical constants. The
numerical computations, described in this book, have precision of order
of 14 decimal digits (that is close to the best precision achievable with
variable complex double), and parameter r is evaluated with the similar
precision. Precision of evaluation of parameter β is not so high; perhaps,
calculus with variables “long complex double” are necessary to improve
the precision of evaluation of β and add more digits in the right hand
side of equation (14.54).

In order to show the residual at the substitution f = fima into the
transfer equation (14.1), figure (14.9) shows the agreement

Dfifi(z) = − lg

(
|fima(z)− exp(fima(z−1))|
|fima(z)|+ | exp(fima(z−1))|

)
[fifi] (14.55)

This agreement can be considered as an estimate, for how many or-
ders of magnitude the value of the function is larger, than the error
of its evaluation with approximation fima. As in the previous maps of
agreement, the levels are drown with interval two orders of magnitude;
only for level Dfifi = 1, the exception is done; this level is shown with
thick line. Below this level, the approximation fima does not reproduce
even the qualitative behaviour of natural tetration. In the upper region,
above the highest level, contrary, the approximation provides at least
14 significant figures, that is close to the maximal precision, achievable
with variables complex double.

This section suggests the asymptotic approximation denoted with name
“fima” by (14.45). Approximation fima is valid in the most of the upper
part of the complex plane. Its conjugation z 7→ fima(z∗)∗ provides
the approximation for the most of the lower part of the complex plane.
With the transfer equation, these approximations can be extended also
to the larger values of the real part of the argument. Together with
approximations “maclo” and “tai”, the whole complex plane happens
to be covered with overlapping regions, and for each of these region,
the efficient approximation based on the series expansion, is described.
Now it would be methodically correct to analyse, verify the overlappings,
agreement of these approximations. This overlapping is considered in
the next section.
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Figure 14.10: Comparison of approximations tai by (14.40) to fima by (14.45) and
to maclo by (14.36): agreements D=D6(x+iy) and D=D7(x+iy) by (14.56),(14.57)
in the complex z-plane. [figco] [vladi07]

9 Comparison of approximations

On the base of representation of natural tetration through the Cauchy
integral, the coefficients of various expansions of tetration are evaluated
and the approximations with elementary functions are suggested. In
this section, the mutual agreement or these representations is analysed.

The left hand side of figure 14.10 shows the agreement of approximation
tai by (14.40) with approximation fima by (14.45):

D6(z) = − ln

(
|tai(z)− fima(z)|
|tai(z)|+ |fima(z)|

)
[vladiD6] (14.56)

The right hand side of figure 14.10 shows agreement of approximation
tai by (14.40) with approximation maclo by (14.36)"

D7(z) = − ln

(
|tai(z)−maclo(z)|
|tai(z)|+ |maclo(z)|

)
[vladiD7] (14.57)

Figure 14.10 indicates, how to choose the appropriate approximation
of tetration dependently on the imaginary part of the argument z at
moderated values of |<(z)|<1. The boundary between the domains of
the approximations should go through the loops, where D > 14. While
|=(z)| ≤ 1.5, let approximation maclo be used; At 1.5 < =(z) ≤ 4.5,
let the approximation tai be used, and, at even larger values, let the
evaluation be performed with approximation fima.
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Figure 14.11: Agreement D = D8 by (14.59), left; the similar agreement for the
contour integral with base domain shifted for −0.5 . [vladi08]

Looking at figure 14.10, I suggest the following approximation:

fse(z) =



fima(z) , 4.5 < =(z)

tai(z) , 1.5 < =(z) ≤ 4.5

maclo(z) , −1.5 ≤ =(z) ≤ 1.5

tai(z∗)∗ , −4.5 ≤ =(z) <−1.5

fima(z∗)∗ , =(z) <−4.5

[fsexp] (14.58)

This approximation can be compared to previous results. The left hand
picture of figure 14.11 shows the agreement

D8(z) = − lg

(
|fse(z)− F4(z)|
|fse(z)|+ |F4(z)|

)
[DfseF4] (14.59)

of approximation fse with the approximation F4 obtained through the
direct implementation of the contour integral.

Figure 14.11 reveals the defects of each approximation. The jumps at
=(z)=1.5 and at =(z)=2.5 should be attributed to the transition from
function maclo to function tai and from function tai to function fima

in the combination FSE. Jumps at half-integer values of <(z) should
be attributed to the discontinuities of function F4, which extends the
approximation with the contour integral, valid for |<(z)| < 1, from
the interval |<(z)| ≤ 1/2. The rounding errors appear as irregular
dots. Within the strip |<(z)| < 1.5, the irregularities of all three
approximations are of order of 10−14.

The goal is to cover with efficient (fast and accurate) approximations at
least the strip <(z) ≤ 0.5; then, values of natural tetration for the whole
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complex plane can be expressed through the transfer equation (14.1) in
the right hand side of the complex plane, and through the ‘inverted”
equation

ln(tet(z)) = tet(z−1) [rtanexp] (14.60)

in the right hand side. The left map in figure (14.11) indicates, that the
goal is achieved; agreement with approximately 14 decimal digits takes
place in significantly wider part of the complex plane. The approxima-
tions above are used for the fast implementation.

After to see the agreement discussed above, I had declared, that since
now, the natural tetration can be evaluated so fast and so precisely, as
other special functions, known since century 20. Then Henryk Trapp-
mann asked me to make one additional numerical test. He vanted to see,
wether the same tetration can be evaluated, if I misplpace the contour
Ω in the Cauchy integral [103], moving it to the right. I recognised this
as a trap (which would correspond to the last name of Henryk): if we
displace the contour to the right, the derivatives of tetration becomes
larger, and, with the same algorithm, we get lower precision. But I
agreed to displace the contour for 1/2 to the left.

With the displaced contour, the same ab initio evaluation of tetration
had been performed. Tetration tet(−1/2+iy) for real y had been eval-
uated; then, with the Cauchy integral and equations (14.1),(14.60), the
approximation had been extended to the whole complex plane, in the
similar way as with the first algorithm of evaluation of tetration [54].
The result is compared to the approximations with expansions in the
way, similar to that of by (14.59); the new approximation is used in-
stead of F4. The resulting agreement is shown in the right hand side
map in figure (14.11).

Figure 14.11 reveals defects of approximations mentioned above. The
discontinuities in formula (14.58) are seen with horizontal jumps along
lines =(z) = 1.5 and =(z) = 4.5 , that are clearly shown with con-
centrated levels. Discontinuities of the initial, “primary” approximation
appear with the vertical jumps along half-integer values of <(z). The
similar discontinuities are seen also for the evaluation with displaced
contour at integer values of <(z). All these jumps of the compared ap-
proximations are at the level of 10−14, and this confirms the declared
estimate of the precision of the evaluation of the natural tetration.

The agreement in the right hand side of figure 14.11 happened to be
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even better, than that in the left hand side. Henryk had been satisfied
with that test. For the natural tetration, the new contour of integration
happened to be a little bit better, than the initial choice. In such a way,
the analogy with lazy engineer (or with stupid selfish tyrant), mentioned
above, gets the confirmation: the initial contour of integration in the
original publication [54] is not best. However, I still think, that the
simplicity of that contour and the good agreement (figure 14.11) should
be considered as some kind of excuse for the voluntaristic choice of the
contour.

10 Implementation

After the tests, described in the previous section, for the numerical im-
plementation, the following approximation is used: tet(z) ≈ FSE(z),
with

FSE(z) =



FIMA(z) , 4.5 < =(z)

TAI(z) , 1.5 < =(z) ≤ 4.5

MACLO(z) , −1.5 ≤ =(z) ≤ 1.5

TAI(z∗)∗ , −4.5 ≤ =(z) < −1.5

FIMA(z∗)∗ , =(z) < −4.5

[FSE](14.61)

where

FIMA =

{
fima(z) , =(z) > 4+0.2379<(z)

exp(FIMA(z−1)), =(z) ≤ 4+0.2379<(z)
(14.62)

TAI =


tai(z) , |<(z)| ≤ 0.5

log(TAI(z+1)) , <(z) < −0.5

exp(TAI(z−1)) , <(z) > 0.5

[TAI] (14.63)

MACLO =


tai(z) , |<(z)| ≤ 0.5

log(MACLO(z+1)) , <(z) < −0.5

exp(MACLO(z−1)), <(z) > 0.5

(14.64)

This approximation provides of order of 14 correct significant figures
of the holomorphic tetration tet and agrees with the previous results
[54]. Up to my knowledge, up to year 2016, function FSE above is
the most precise and the fastest among ever reported approximations
of the tetrational. Mnemonics of the name FSE is obvious: Fast Su-
per Exponent. The C++ implementation of this algorithm is loaded as
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Figure 14.12: u+iv=tet(x+iy) [tetmap]

http://mizugadro.mydns.jp/t/index.php/Fsexp.cin ; this approx-
imation is used to plot the detailed map of tetration in figure 14.12, used
also for the cover of this Book.

Many terms are kept in the approximations (14.40) and (14.36) in order
to provide the wide range of the overlapping in figures 14.10 and 14.11.
At the final step of the implementation, the number of terms can be
reduced, boosting the algorithm, without loss of the precision. In par-
ticular, this applies to the evaluation of tetration along the real axis: it
is sufficient to approximate tet(z) for |z| ≤ 1/2, using only a quarter
of the radius of the precise approximation with function maclo.

For iterates of the exponent, the inverse function, id est, arctetration,
or abelexponent, is also required. This arctetration is considered in the
next chapter.
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Chapter 15

Natural arctetration
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Figure 15.1: u+iv = ate(x+iy) [vladi02c] [figsexpG]

The inverse function of tetration, id est, arctetration, or abelexponent,
is denoted with name ate; ate = tet−1. Complex map of arctetration is
shown in figure 15.1.

Arctetration satisfies the Abel equation

ate
(

exp(z)
)

= ate(z) + 1 [abelate] (15.1)

and the additional condition

ate(1) = 0 [abelate10] (15.2)

Properties of functions ate and the algorithm for the evaluation are
described in this chapter.
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1 Evaluation of arctetration

Arctetration can be evaluated as inverse function of tetration, using the
Newton method. Function ate(z) appears as limit of sequence gn with
the recurrent relation

gn+1 = gn +
tet(gn)− z

tet′(gn)
[atenewton] (15.3)

The derivative of tetration can be approximated, differentiating the ap-
proximations of tetration with elementry functions described in the pre-
vious section. The representation through the Cauchy integral [54] also
allows the straightforward differentiation. However, in this case, several
iterates by (15.3) are required to evaluate the arctetration.

Evaluation of arctetration through tetration using equation (15.3) is
significantly slower, than evaluation of tetration. In addition, the initial
approximation g0 should be specified. This specification should carry
about the cutlines. In Figure 15.1, these cut lines are drawn parallel
to the real axis. Over-vice, the recurrency by (15.3) returns a value
from any of branches of the corresponding multivalued function, and
the question about the range of holomorphism becomes difficult.

In order to get efficient approximation for the arctetration ate, I deal
with the corresponding Abel equation (15.1), rather than with recur-
rences by (15.3). It worth to approximate arctetration with some func-
tion, which reproduce at least the leading terms of the asymptotic ex-
pansion of ate. This approximation is constructed below.

Arctetration, as solution of the Abel equation (15.1), should have sin-
gularities in the fixed points of logarithm L and L∗. From the precious
chapter, we already know, that the dominant term of the asymptotic
expansion appears as fixed point plus the corresponding exponential.
This indicates, that the corresponding expansion of arctetration should
begin with logarithm. The efficient approximation of arctetration can
be obtained through the expansion of function h by

h(z) = ate(z)− ln(z−L)

L
− ln(z−L∗)

L∗
[atelo] (15.4)

Function h can be expanded to the Taylor series at unity. This expansion
leads to the approximation

fsl(z) =
ln(z−L)

L
+

ln(z−L∗)
L∗

+
N−1∑
n=0

un (z−1)n [fsl] (15.5)

ate(z) = fsl(z) +O(z−1)N (15.6)
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Figure 15.2: u+iv=slo(x+iy) by (15.5), left, and the agreements by DA =DA(x+iy),
DB =DB(x+iy), by formulas (15.7), (15.8)

Approximations of the first 30 coefficients of this expansion are shown
in table 15.1. Complex map of function fsl by (15.5) at N=70 is shown
in the left hand side picture of figure 15.2 in the same notations, as
in figure 15.1. The central part of left map in figure 15.2 looks as a
fragment from figure 15.1.

Table 15.1: Coefficients un in expansion (15.5).
n un n un n un

0 1.41922521550451 10 0.00000003111805 20 0.00000000002293

1 −0.02606629029752 11 0.00000002940887 21 −0.00000000002462

2 0.00173304781808 12 −0.00000001896929 22 0.00000000000666

3 −0.00001952130725 13 0.00000000351784 23 0.00000000000322

4 −0.00006307006450 14 0.00000000204270 24 −0.00000000000354

5 0.00002567895998 15 −0.00000000171995 25 0.00000000000096

6 −0.00000559010027 16 0.00000000039882 26 0.00000000000051

7 −0.00000007279712 17 0.00000000019328 27 −0.00000000000055

8 0.00000065148872 18 −0.00000000019113 28 0.00000000000014

9 −0.00000027698138 19 0.00000000004947 29 0.00000000000009

Range of validity of approximation 15.5 is limited. In order to show
this range, the central and right hand side maps in figure 15.2 show the
agreements

DA(z) = − lg

(
|fsl(exp(z))−1− fsl(z)|
|fsl(exp(z))−1|+ |fsl(z)|

)
[sloE] (15.7)

DB(z) = − lg

(
|fsl(ln(z))+1− fsl(z)|
|fsl(ln(z))+1|+ |fsl(z)|

)
[sloL] (15.8)

Inside the inner loops in the central and right hand side pictures of fig-
ure 15.2, the agreement is better than 14. These domains are marked
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with symbol “15”. Figure 15.2 indicates, that at |z−1|<1.4, the approx-
imation fsl(z) provides of order of 14 significant figures. The precision
of this approximation is a little bit worse in vicinity of fixed points L
and L∗. This could be expected: First, there, the small variation of
argument leads to the significant variation of value of function. Second,
these points are at the edge of the range of convergence of expansion in
equation (15.5).

For implementation of natural arctetration, it is sufficient to prepare the
efficient primary approximation for the domain sickle, defined with

sickle = {z ∈ C : <(z) ≥ L, |z| < L} [sicle] (15.9)

then, for other values of the argument, function can be expressed through
the Abel equation (15.1). The region sickle is shaded in maps of figures
15.1, 15.2. This leads to implementation, denoted with FSL. I would
like to check the self-consistency of implementation FSL with implemen-
tation FSE by (14.61). The numerical test of the relations below had
been performed:

ate(tet(z)) = z [atetet] (15.10)
tet(ate(z)) = z [tetate] (15.11)

These relations are tested for the complex double implementations tet≈
FSE and ate≈FSL. Figure 15.3 shows the maps of the agreements

Dat(z) = − ln

(
|FSL(FSE(z))− z|
|FSL(FSE(z))|+ |z|

)
[Dat] (15.12)

Dta(z) = − ln

(
|FSE(FSL(z))− z|
|FSE(FSL(z))|+ |z|

)
[Dta] (15.13)

In figure 15.3, the left hand side map shows D = Dat(x+iy) and the
right hand side map shows D = Dta(x+iy) in the x, y planes. The levels
D = const are drawn with interval 2; as in other maps of agreement,
the additional level D = 1 is shown with thick line. This line indicates
the boundary of the range of validity of relation (15.10).

As for many other inverse functions, the range of validity to relation
(15.10) is limited. Width of the strip, where the relation (15.10) takes
place, is determined by the asymptotic periodicity of tetration in the
upper and the lower parts of the complex plane. In vicinity of the real
axis, the strip becomes wider, showing some kind of along the real axis
to infinity. Thickness of this “beak” reduces quickly at the growth of the
real part of the argument.
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Figure 15.3: D=Dat(x+iy), left, and D=Dta(x+iy), right, by (15.12)
and (15.13) [vladi11]

The numerical tests confirm, that the approximations of tetration and
arctetration are self-consistent. The complex double implementations
provide of order of 14 significant figures.

2 About names

The numerical implementations of algorithm FSE and FSL described
above are loaded to TORI as
http://mizugadro.mydns.jp/t/index.php/Fsexp.cin and
http://mizugadro.mydns.jp/t/index.php/Fslog.cin
The names of these routines are discussed in this section.

Names of function FSEXP and FSLOG are historic. They may mean
“Fast Super EXPonential” and “Fast Super LOGarithm. Hernryk Trapp-
mann even wanted to add my last name to the identifier of each of these
two functions. He had believed, that “my tetration” is not unique, and
not so principal, as I claim, using names “tet” and “ate”. Henryk wanted
to use names “tet” and “ate” for the “true” tetration and arctetration,
“more natural”, more “true”, than the functions I had constricted.
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After the long discussion and the heavy deduction, Henryk had to agree,
that the functions I have constructed are unique [73], and, in this sense,
true and the only true tetration and arctetration. The routines FSEXP
and FSLOG were already implemented that time, and I decided not
to change the notations: the poor sistem of notation is still better and
causes less confusions, than two “good” systems of notations.

I need to mention, that name FSLOG (Fast Super LOGarithm) is even
more idiotic, than FSEXP. Name FSLOG makes impression, that it is
superfunction of logarithm, while it is not really so. Superfunction of
natural logarithm van be written as

z 7→ tet(−z) (15.14)

I think, this function does not deserve to have a special name assigned.

I am far from eugenic ideas to refine the human rase, nor the system
of notations. The best system of notations should vin the competition
with other notations. All this should be considered as my excuse to keep
names FSEXP and FSLOG for the approximations and the numerical
implementations of tetration tet and arctetration ate.

Many superfunctions of natural exponent can be constructed with trans-
formation (2.17), just misplacing the argument of tetration with some
periodic real-holomorphic function. The range of holomorphism of these
transforms is narrower, than the range of holomorphism of tetration.
Now, I see no need to give them special names.

I expect, in future, even more efficient implementations for tetration will
be suggested. Then, they may be called with the same names, as the
name of the functions tet and ate, in the same way, as in the algorithmic
languages the implementation of sin is denoted with the same name as
the function.

After to eliminate the potential confusion with names, the tetration and
arctetration can be used for the iterates of the exponent. These iterates
are described in the next section.

3 Iterates of exponent

Tetration tet and arctetration ate, as superfunction and abelfunction of
exponent, specify, determine the non-integer iterates:

expn(z) = tet(n+ ate(z)) [expn] (15.15)
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Figure 15.4: y=expn(x) by (15.15) for varuous n [expiteplot]

Here, number n of iterates, has no need to be integer (although, of
course, can be integer too). For real values of argument, iterates of
exponent by equation (15.15) are shown in figure 15.4, y = expn(x).
Lines, that correspond to integer n (except n = 0), are thick. These
lines correspond to y= exp(exp(exp(x))), y= exp(exp(x)), y= exp(x),
y=ln(x), y=ln(ln(x)), y=ln(ln(ln(x))). Higher integer iterate happen
to be out of range of the figure.

Complex maps of iterates of the exponent are collected in figure 15.5.
Twelve maps are shown for

u+iv = expn(x+iy) [uxexpxy] (15.16)

with lines u= const and lines v = const in the x, y plane for various
values of the number n of iterate; this n is printed with big font in the
upper left corner of each map. The maps are symmetric with respect
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Figure 15.5: Maps of iterates of natural exponent by (15.16)

211

http://mizugadro.mydns.jp/t/index.php/File:Expitemap.jpg


to reflection from the abscise axis (the only, the imaginary part of the
function changes its sign). So, the only upper part of the complex plane
is presented in each map.

Maps at the top of figure 15.5 correspond to n=1 and n=−1; these are
complex maps of exponent and of logarithm. First of them reproduces
part of figure 14.2. The exponent is holomorphic in the whole complex
plane, but the logarithm has branch point at zero and the cut along the
negative part of the real axis.

The second and following rows of the figure represent the non-integer
iterates. These iterates have two additional cuts along the lines y =
±=(L); here L ≈ 0.3181315+1.3372357 i is fixed point of logarithm,
id est, solution of equation L= ln(L). By default, all the cut lines are
directed parallel to the real axis (axis x in the figure, abascissa) toward
the negative direction of the real axis. In such a way, for negative non-
integer n, the map has 3 cut lines (and that in the lower half-plane is
not seen, as it is out of field of view of the map).

The thick lines in figure 15.5 corresponds to the integer values of u or v.
The thin lines are drawn with interval 0.2; the additional lines u=<(L)
and v==(L) are also drawn. These lines always cross each other at the
fixed point L.

Figure 15.5 shows the gradual transition of the map for the exponential
(top of the left column) the map for the logarithm (top of the right hand
side column). As the number n of iterate reduces from unity to zero,
the web of the lines u=const and lines v=const rotate around the fixed
point L, and become uniform rectangular grid at n= 0. At this value,
the horizontal cuts along lines ±=(L) disappear, but they appear again,
as n becomes negative non-integer. At n<0, the additional branch point
comes from −∞ at the real axis and moves toward zero, as n becomes
minus unity. With integer n, the branch points L and L∗ disappear.

Maps of non-integer iterates can be plotted also for other transfer func-
tions, considered in this Book. The readers are invited to download the
implementations of the superfunctions and the abelfunctions, and plot
the corresponding complex maps of the iterates.

4 Lessons of natural tetration and arctetration

On the base of representation of tetration through the Cauchy integral,
through the solution of the integral equation (14.22), one can express
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also derivatives of this function; differentiation of the integrands in the
right hand side of (14.22) is straightforward. Namely in this way, the
derivatives of tetration for real and for pure imaginary values of the
argument had been evaluated for the tables 1 and 2 in publication [54].
In this section, I suggest some philosophic speculations about tetration
and arctetration.

Complex map of tetration tet is shown in figure 14.12, and its behaviour
along the real axis is shown in figure 14.1. Properties (14.16)-(14.20) first
were observed with various approximations of tetration with elementaty
functions, and then postulated. The approximations reproduce values
of tetration in vicinity of integer values of the argument,

tet(−2 + ε) = log(ε) + const +O(ε) (15.17)
tet(−1) = 0 (15.18)

tet(0) = 1 (15.19)
tet(1) = e (15.20)
tet(2) = e2 (15.21)

Then, the agreement at the substitution of the fitting function into the
transfer equation (14.1) had been minimised for complex values of the
argument.

The behaviour similar to properties (14.16)-(14.20) had been detected
with various fitting functions. Then these properties were formulated
as definition of tetration, id est, just postulated. First, I did not expect
this set of postulates to be self-consistent. Contrary, I tried to find
some contradiction; I expected to use such a contradiction as a proof of
non-existence of holomorphic tetration. Such a non-existence would be
an upgrade of the proof by M.Hooshmand [49], that uses the doubtful
assumption about monotonous behaviour of the derivative of tetration;
I tried to find a proof, that does not use this assumption. Expression
of tetration through the Cauchy integral [54] allows to make the precise
approximations [64], and no internal contradictions in the assumptions
(14.16)-(14.20) had been detected. This leads to the conjecture about
existence and uniqueness of tetration, that later had been confirmed
with the careful analysis [73]. I show the first primitive approximations
in figure 14.4, as they answer the frequent question by colleagues: “How
did you guess?”. I think this heuristic approach can be used also for
analysis of other (and more complicated) functional equations.

Tetration and arctetration significantly extend the arsenal of functions,
available for the description of physical phenomena. In particular, the
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non-integer iterates of exponent can be useful in description of processes,
that grow faster than any polynomial, but slower than any exponent.

Following the TORI axioms, I formulate mainly the practical problems.
From the point of view of applications, not the proof by itself is im-
portant, but the strong indication, that the system of postulates is not
self-contradictory. The multiple (failed) attempts to reject the conjec-
ture of existence and uniqueness can be considered as such indication.

Some “pure mathematicians” believe, that the only rigorous proof has
a scientific value. In order to show, that actually it is not so, I suggest
the example with the Euclid axioms of planimetry. Those axioms can
be deduced from the properties of the coordinate plane. It is not so
difficult, although first, one had to provide the accurate definitions of sin
and cos as solution of the corresponding system of differential equations,
check that their properties lead to the Pythagoras theorem and other
properties, known as the Euclid Axioms. In the elementary school,
however, till now, the teachers begin with the postulating the Euclid
axioms. I believe, the superfunctions should become a pretty elementary
tool, and their properties (including those of tetration) could be just
postulated - in the similar way, as the Euclid axioms. If someone wants
to reduce the amount of axioms, one may begin wight he Euclud axioms,
having no need to deal with tetration and other superfunctions. I hope,
one day, the beautiful, short, simple and rigorous proof of the existence
and uniqueness will be formulated.

Form my side, I make all possible efforts in order to simplify refutation
of my concept (for the case, f one day someone will be able to refute
them). I load the figures from this book to my site as
http://mizugadro.mydns.jp/t/index.php/Category:BookPlot
http://mizugadro.mydns.jp/t/index.php/Category:BookMap
and I supply them with generators in C++ and Latex. Everybody can
reproduce the figures, and plot the new figures, trying to find a hint to
any internal contradictions in the concepts suggested. Of course, any
other alternative hypothesis can be considered too, as it is shown in
figure 15.6.

After to see, how the natural tetration comes from the Cauchy integral
in a pretty natural way, I had constructed similar maps for other values
of base b, namely, for b=10, b=2 and b=1.5, but I did not revealed any
new property, that could be difficult to expect, looking at the natural
tetration. The most of curves in figure 17.1, considered later, can be
plotted with the Cauchy integral by very similar algorithms. I was sure,
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Figure 15.6: Two mathematicians go to the First International Congress
on superfunctions, and discuss the color of the ship they see from the
train: Your assumption, dear colleague, seems to be not obvious, it is
not supported with observations. Yet, all what we can conclude, that
there is at least one ship in this country, and at least the right hand side
of this ship is black. [ship]

that my mission about tetration is finished. Then, Henryk Trappmann
wanted still to reduce b; he asked me, wether I can evaluate in the
similar way tetration to base b =

√
2. I had to confess, that I cannot.

But I told, that I can do it by another way [61]. That “another way”
happened to be even simpler, than application of the Cauchi integral; so,
I described it in the previous chapters as “regular iteration”. However,
namely tetration to base b=

√
2 is not described above; this tetration is

matter of the next chapter.
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Chapter 16

Tetration to base b=
√
2

2

1
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y=tet√2(x)

y=−
x
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Figure 16.1: y = tet√2(x) [sqrt27a]

In chapter 13 above, the natural tetration is constructed and evaluated.
I mean, tetration to base b=e≈2.71 . For other bases, the definition of
tetration should be generalised. This generalisation is suggested in this
chapter. I try to follow the principles “from simple to complicated” and
“from specific to general”. First, I consider the specific base b=

√
2. For

this base, the graphic of tetration is shown in figure 16.1. Namely for
this base, the graphic looks especially symmetric. Below I show, that
this is just visual impression, and the apparent symmetry x ↔ −y is
only approximation.
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1 Definition

Tetration to the real base b > 1 is real-holomorhpic function f = tetb,
that satisfies the transfer equation

f(z+1) = bf(z) [sqrt2transfer] (16.1)

at least for <(z) > −2, and is bounded at least in the range |=(z)| ≤ 1,
and, in addition, the specific (the same for all b) value at zero is assumed:

f(0) = 1 [sqrt2f01] (16.2)

Here, function T = expb appears as the transfer function, and tetration
f as its superfunction.

The Reader is invited to check, that the natural tetration tet = tete,
considered in chapter 14, also falls into into this definition. Below, the
tetration to various bases is considered. In particular, this chapter deals
with the special case b =

√
2. Exponential to this base is shown in

figures 9.1 and 9.2. Namely for this case, in section 9, the growing super
exponential SuExp√2,5, is constructed; graphic y= SuExp√2,5 is shown
in figure 9.4.

Here, for the same base b=
√

2, id est, for the same transfer function,
I describe another superexponent, namely, tetration. Its explicit plot
is shown in figure 16.1 and it is pretty different from the plot of the
growing superexponent F =SuExp√2,5 shown in figure 9.4.

2 Again regular iteration

In this section, again I use the regular iteration, as in chapter 9, in other
to construct another superfunction, namely, tetration, for the exponen-
tial to base

√
2 as the transfer function. This construction appears as

an example to evaluation of tetration tetb для 1<b<exp(1/e).

In such a way, here I consider the case b =
√

2. Explicit plot of this
tetration is shown in figure 16.1. The construction below is quite anal-
ogous to the construction of the growing super exponent to the same
base, presented in chapter 9. Some formulas in this section are taken
from publication [61].

The fixed points of exponent to base b=
√

2 are considered in chapter
9, see figure 9.1. These fixed points are 2 and 4. In that chapter,
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the superexponent F5 = SuExp√2,5 is built at the fixed point L = 4.
Along the real axis, that superexponential grows monotonously from
4 to infinity. For that super exponent, the equation F5(z) = 1 has
no real solution; that superexponent is not tetration. In order to get
tetration, we should use the fixed point L= 2. This case is considered
in this chapter. The corresponding superfunction Φ can be expanded as
follows:

f(z) = 2 + ε+
M−1∑
m=2

vmε
m [sqrt2fas] (16.3)

Φ(z) = f(z) +O(εn) [sqrt2Phi] (16.4)

where

ε = exp(kz) [sqrt2ve] (16.5)

while increment k and coefficients v are constants. Substitution of the
asymptotic expansion F =Φ in to the transfer equaiton

F (z+1) = exp
(

ln
(√

2
)
F (z)

)
[sqrt2transfereq] (16.6)

determines the increment

k = ln(ln(2)) ≈ −0.3665129205816643 [sqrt2k] (16.7)

and leads to the chain of equations for coefficients v. I set v1 =1; then,

v2 = ln(2)/4
ln(2)−1 ≈ −0.56472283831773236365

v3 = ln(2)2(2+ln(2))/24
(ln(2)−1)(ln(2)2−1) ≈ 0.33817758685118329988

[sqrt2v2] (16.8)

Approximate values of coefficients v are collected in table 16.1.

At fixed number M of terms in the right hand side of equation (16.3),
function f and be considered as approximation of superfunction with
certain asymptotics, namely, that grows at infinity, approaching the
fixed point 2. This superfunction appears as limit

Φ(z) = lim
n→∞

T−n(f(z+n)) = lim
n→∞

log nb (f(z+n)) [sqrt2F] (16.9)

does not depend on the number M of terms in the right hand side of
equation (16.3). However, at large M , the limit in the right hand side
of (16.9) converges faster.
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Table 16.1: Approximations of coefficients v and V in expansios (16.3), (16.16)

n vn Vn

1 1.0000000000000000 1.0000000000000000
2 −0.5647228383177324 0.5647228383177324
3 0.3381775868511833 0.2996461813840881
4 −0.2103313021386278 0.1559323904892543
5 0.1344548790521098 0.0803518797481544
6 −0.0877843886012191 0.0411584960662439
7 0.0582880930830947 0.0209985209544120
8 −0.0392407117837278 0.0106825803202636
9 0.0267232860342981 0.0054228810223159
10 −0.0183765205976376 0.0027482526618683
11 0.0127420898467766 0.0013909151872678
12 −0.0088986329515697 0.0007031815862125
13 0.0062531995639749 0.0003551700677648
14 −0.0044181328624397 0.0001792537427482
15 0.0031365295362696 0.0000904088765718
16 −0.0022361213774487 0.0000455725430285
17 0.0016001999145218 0.0000229602263218
18 −0.0011489818761273 0.0000115627707503
19 0.0008274921384317 0.0000058201696570
20 −0.0005975832172069 0.0000029289688393

Tertation to base b =
√

2 that satisfies condition (16.2), appears as
function Φ with displaced argument,

tet√2(z) = Φ(x1+z) [sqrt2tetF] (16.10)

where x1 ≈ 1.25155147882219 is solution of equation Φ(x1) = 1. The
readers are invited to verify, that this tetration satisfies the conditions,
formulated in the section 1 of this chapter. For real values of the argu-
ment, graphic of this function is shown in figure 16.1. The complex map
of tetration to base b=

√
2 is shown in figure 16.2.

Tetration by (16.10), is periodic; the period P is pure imaginary,

P = P (tet√2) = − 2πi

ln2(2)
= − 2πi

ln(ln(2))
≈ 17.14314817935485 i (16.11)

I remind, the double logarithm ln2(2) = ln(ln(2)), but does not mean
ln(2)2, according to notations declared at the beginning of this Book.
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Figure 16.2: u+iv = tet√2(x+iy) [sqrt2tetmap]

As it is claimed above, tetration tet√2(z) is holomorphic in the strip
|<(z)| ≤ 1. The range of holomorphism is much wider than this strip.
Tetration to base

√
2 is holomorphic in the whole complex plane, except

the countable set of branch points and the corresponding cut lines

{z ∈ C : <(z) ≤ 2, =(z)=n=(P ) , n ∈ N} [sqrt2tetCuts](16.12)

Outside these cuts, tetration approaches the fixed points of the corre-
sponding logarithm, to 2 or to 4, at the increase or decrease of the real
part of the argument, respectively. For any real y,

lim
x→+∞

tet√2(x+iy) = 2 [sqrt2tetLim1] (16.13)

and for y 6= =(T )n, n ∈ N,

lim
x→−∞

tet√2(x+iy) = 4 [sqrt2tetLim2] (16.14)
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Figure 16.3: u+iv = ate√2(x+iy) [sqrt2atemap]

For real x, function tet√2(x) is defined at x > −2. In point −2, the
function has logarithmic singularity, as tetrations to other values of base.
The function grows from −∞ at −2, passes through points (−1, 0) и
(0, 1), and continue to grow, approaching its limit value 2 at +∞.

There are several reasons, why tetration to base b =
√

2 is especially
interesting. Namely for this base b=

√
2, both real fixed points of logb

have integer values. In addition, namely for this base, the graphic of
function in figure 16.1 seems to be symmetric with respect to reflection
x ↔ −y. In order to stress this illusion, the additional line y =−x is
drawn in figure 16.1. For analysis of the illusion mentioned, the inverse
function should be constructed; I mean, arctetration ate√2 =tet −1√

2
. The

complex map of this arctetration is shown in figure 16.3. This function
is described in the next section.
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3 Arctetration to base b=
√
2

For the inverse function of tetration, I use name arctetration, in analogy
with arcsin, arccos and arcBessel; ateb = tet−1

b . Arctetration is abel-
function of exponent and satisfies the corresponding Abel equation. For
base b=

√
2, this equation can be written as follows:

G
((√

2
)z)

= G(z) + 1 [sqrt2abeleq] (16.15)

One of solutions of equation (16.15) is arctetration G=ate√2. Complex
map of arctetration is shown in figure 16.3.

As other abelfunctions, arctetration to base
√

2 can be evaluated through
its asymptotic expansion, using the Abel equation (16.3) to bring the
argument into the range, where the fruncated expansion provides the
required precision. The asymptotic expansion for the arctetration can
be obtained with the asymptotic expansion of tetration. Also, the same
expansion can be obtained directly from the Abel equation (16.3); we
should add the constant to the solution in order to satisfy condition
ate√2(1)=0.

Each of the two methods mentioned above lead to the same expansion

g(z) =
1

k
ln

(
M∑
n=1

Vn · (z−2)n

)
[sqrt2ateG] (16.16)

where V are constant coefficients. Constant k = ln2(2) is the same, as
in the expansion (16.3)-(16.5), see equation (16.7). Then, asymptotic
solution G of the Abel equation can be written as follows:

G(z) = g(z) +O(z−2)M+1 [sqrt2GO] (16.17)

Substitution of this expansion into the Abel equation (16.15) leads to
the chain of equations for coefficients V ; in particular,

V1 = 1 (16.18)
V2 = −v2 = 1

4
ln(2)

1−ln(2) ≈ 0.56472283831773236365 (16.19)

V3 = ln(2)2

24
1+2 ln(2)

(1−ln(2))2(1+ln(2)) ≈ 0.29964618138408807683 (16.20)

Approximatioms of coefficients V are collected in the second (and last)
column of table 16.1.

With asymptotic expansion (16.16), the solution G of the Abel equation
(16.15) can be written as limit

G(z) = lim
n→∞

g
(

exp n√
2
(z)
)
− n [sqrt2Glim] (16.21)
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Here, in the argument of function g, function exp√2 is iterated n times.

In order to make arctetration ate√2, not only the asymptotic properties
should be taken into account, but also the value at unity. So, I define
tetration as

ate√2(z) = G(z)−G(1) ≈ G(z)−1.25155147882219 [q2G1] (16.22)

that leads to the correct value ate√2(1) = 0. In previous publication
[61], This arctetration is denoted with symbol F2,1

−1; constant 2 in the
subscript indicates the fixed point of the transfer function, at which the
regular iteration is constructed, and content 1 in the subscript indicates
its value at zero. As usually, the upper index indicates the number of
iterate.

In figure 16.3, at the complex map of arctetration, its periodicty is seen.
This periodicity follows from the representation of arctetration through
limit in equation 16.3. The period P is determined by the period of the
exponent to base

√
2;

P =P (ate√2)=
4πi

ln(2)
≈ 18.129440567308775239 i [sqrt2ateP](16.23)

Imaginary part of this period is slightly greater, than that for tetration
to the same base, see equation (16.11).

In figure 16.3, the isolines are reproduced at the translations along the
ordinate axis for =(P ). In addition, due to the real-holomorphism,
the maps of tetration and arctetration are symmetric with respect to
reflection from the real axis, id est, with respect to the up side down
flip.

In wide range of values of z, the identity

tet√2(ate√2(z)) = z [sqrt2tetatez] (16.24)

is valid. This range is shaded in figure 16.4. Technically, the shading is
realised as complex map of the left hand side of equation (16.24), treated
as function of z and plotted in coordinates x=<(z) and y==(z). While
the equation (16.24) holds, the levels of the constant real part and levels
of the imaginary part are parallel to the coordinate axes and form the
uniform rectangular grid, that at the poor resolution looks as shading.
However, the relation (16.24) cannot hold in a strip wider than the
period of function ate√2; so, the upper part and the lower part of the
domain of the map are not shaded in this way. In addition, the range of

223



y

8

6

4

2

0

−2

−4

−6

−8

−8 −6 −4 −2 0 2 4 6 8 x

v=0 cut

u
=

0

http://mizugadro.mydns.jp/t/index.php/File:Sqrt2tetatemap.jpg

Figure 16.4: u+iv = tet√2(ate√2(x+iy)) [sqrt2tetate]

validity of equation (16.24) is limited at the right hand side with levels

=
(

expn√
2
(x+iy)

)
= ±|P |

2
= ± 2 π

ln(2)
[sqrt2en] (16.25)

drawn above the map in figure 16.4 for integer n = 0, 1, 2, 3, 4. In the
mentioned right hand side of the figure, relation (16.24) also is not valid.

Figure 16.4 can be considered as verification, validation, test of imple-
mentation of arctetration to base

√
2. These properties and the imple-

mentations of tetration and arctetration allow to analyse approximate
the symmetry y=−x of graphic y = tet√2(x) shown in figure 16.1.

The apparent symmetry of the plot in figure 16.1 had been declared in
the preamble of this chapter. The consideration had been postponed
until tetration and arctetration to base

√
2 are described. The approxi-
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mate symmetry mentioned means, that for x > −2,

tet√2(x) ≈ −ate√2(−x) [sqrt2approx] (16.26)

Properties of tetration and arctetration to base
√

2 indicate, that the
exact equality un (16.26) can take only at the set of measure zero, due to
very simple and pretty fundamental reason: tetration in the left hand
side and atctetration in the right hand side of (16.26) have different
(incompatible) periods.

Period of function in the left hand side of equation (16.26), see equation
(16.11), is P ≈ 17.143 i, while period in the right hand side of equa-
tion (16.26), see equation (16.23), is P ≈18.129 i. The different periods
indicates, that these are different functions. If two holomorphic func-
tions coincide at the segment of finite length, they should coinside in
the whole range of holomorphism. Hence, there is no exact equality in
(16.26), for the most of z, nor for the exact symmetry in figure 16.1.

Deviation from the exact symmetry can be characterised with function

devia(x) = tet√2(x) + ate√2(−x) [sqrt2simdevi] (16.27)

It is shown in figure 16.5 with dashed line. Where the symmetry be
exact, the dashed curve should follow the abscise axis.

y

y = tet√2(x) + ate√2(−x)

y = tet√2(−ate√2(x)) + x

0.01

−0.01

−0.02

−0.03

−2 −1 1 2 3 4 5 6 7 x

http://mizugadro.mydns.jp/t/index.php/File:Sqrt27u.png

Figure 16.5: Precision of “symmetry” of figure 16.1: y=devia(x) by (16.27), dashed,
and y=devib(x) by (16.28), solid [sqrt27b]

Also, the deviation is characterized with function

devib(x) = tet√2(−tet√2(x)) + x [q2tetatem] (16.28)
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This dependence is shown in figure 16.5 with solid line. Expression
−tet√2(x) approximate function ate√2(−x). Again, at the exact sym-
metry, the solid line would be just abscise axis. In such a way, figure 16.5
indicates the range of validity of the statement about the symmetry: it
reproduce of order of 2 significant figures of tetration or arctetration
to base

√
2; however, at the segment from −1 to 0 in figure 16.5, the

“symmetry” holds with 4 signifivant figures; this is pretty sufficient to
cause the illusion of symmetry in figure 16.1.

Similarity of dependences y = tet√2(x) and y =−ate√2(−x) for real x
may look occasional. However, on the other hand, it is unavoidable for
the following reasons. Every tetration to base b>1 has logarithmic sin-
gularity at point −2; the graphics approach vertical line x=−2. Graph-
ics of all these tetrations pass through points (−1, 0) и (0,−1), which
correspond to the symmetry discussed. In addition, for b < exp(1/e),
all the graphics have the horizontal asymptotic for large values of the
augment, they approach some positive quantity (which is fixed point
of logarithm). For some value of base, this quantity is 2, that corre-
sponds to the apparent symmetry. This value of base is just b=

√
2, this

base is chosen as an example in this chapter as illustration behaviour of
tetration and arctetration to base b at 1<b<exp(1/e).

In years 2009-2010, the apparent symmetry of graphic in figure 16.1
caused hard discussion. The opponents had claimed, that the symmetry
is obvious and does not require any verification. (Before, I had observed
so strong believe in the wrong and absurd statements only in the USSR;
Soviet veterans had insisted on concepts of sovetism, being unable to see
internal contradictions of it.) To convince the opponents, Henryk and I
had elaborated two independent demonstrations, that the exact symme-
try cannot take place, without using of properties of these functions in
the complex plane. Both these proofs are presented in publication [61].

Readers are invited to invent some real-holomorphic function with graphic
that passes through points (−1, 0) and (−0, 1), and exponentially ap-
proach to the vertical line x=−2 and horizontal line y= 2. I suspect,
such a function will be pretty similar to tetration to base

√
2.

With the suggestion above, I finish the description of arctetration to
base

√
2. At lest in some vicinity of the half-line z<2, relation (16.24)

is valid, and the pair (tetration,arctetration) can be used to iterate the
exponent. These iterates are considered in the next section.
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4 Again iterate exponent to base
√
2

The real-holomorphic Iterates of exponent to base
√

2 are considered
above, in Chapter 9, for large values of positive part of the argument,
with functions SuExp√2,5 and AuExp√2,5. Those iterates are presented
first (and shown in figure 9.8), because they look similar to iterates
of other growing functions, considered in the first half of this Book.
However, tetration and arctetration, constructed in this chapter, also
can used to iterate the exponent to base

√
2. In this section, I show,

that these iterates look similar in vicinity of the interval (2, 4); but far
from this interval, the deviation becomes strong.

The “regular iteration” described above, allows to iterate the function,
and iterates are regular in vicinity of the fixed point of the transfer
function, used to construct the superfunction and the abelfunction. Bot
these iterates may be not regular (have singularity, branch point) at the
other fixed points of the same transfer function. Below, the illustration
of this statement is presented.

Iterates of exponent to base
√

2 constructed with the infinitely growing
superfunction SuExp√2,4 by (9.11),(9.12),(9.13) are shown in figure 9.8.
Similar iterates can be constructed also with tetration, described in this
chapter,

exp n√
2,d

(z) = tet√2

(
n+ ate√2(z)

)
[sqrt2exptet] (16.29)

Here, symbol “,d” in the subscript indicates, that the lower, “down”
fixed point of the transfer function is used for the asymptotic of the
superfunction.

For real values of argument, iterates exp n√
2,d

by (16.29) are shown in
figure 16.6 for various real values of n. This figure is analogy of figure 9.8,
that represents the similar iterates built up with the infinitely growing
superexponent SuExp√2,5 and corresponding abelexponent AuExp√2,5.

Graphics in figures 16.6 and 9.8 look similar. The thick curves, for the
integer iterates are, indeed, the same. However, for the non-initeger
n, the iterates also look similar, the curves in figure 16.6 seem to be
just extension, continuation of those in figure 9.8. In the intermediate
range, 2 < x < 4, visually, the iterates exp√2,d(x), evaluated through
the tetration tet√2 and arctetration ate√2, seems to be the same, as
iterates exp√2,u(x), evaluated through the superexponent SuExp√2 and
abelexponent AuExp√2. Then I saw this coincidence first time, it looked
strange, counter-intuitive and therefore interesting. The matter is, that
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Figure 16.6: y=exp n√
2,u

(x) for various n [sqrt2eitet]

two different holomorphic functions cannot coincide at the interval of
finite length. If they are identical at the part of the real axis from 2 to 4,
then they must coincide in the whole connected range of holomorphism.

As an example, I consider the case n = 1/2; id est, the iterates of
exponent number half. The iterate constructed with growing exponent,
id est, exp

1/2√
2,u

had been shown earlier in figure 9.9. The iterate exp
1/2√
2,d

,
constructed with tetration and arctetration, is shown in figure 16.7.
These two maps are not the same. The second of them is periodic (with
period 4πi/ ln(2) ≈ 18.12944 i), while the first one is not. These two
maps look similar only in vicinity of the interval (2,4) at the real axis.

I felt myself confused about the identical behaviours of the half iterates
along the interval (2, 4) of functions, that have different behaviour in
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Figure 16.7: u+iv=exp
1/2√
2,d

(x+iy) [sqrt2q2map]

the complex plane. I thought, that I made an error implementing these
functions. I even considered the absolutely phantasmic hypothesis that
I see the traces of the Mizugadro number 1, that reveals the internal
contraction in the system of postulates of arithmetics (that is used in
mathematical analysis and, in particular, in the theory of holomorphic
functions). I had prepared the explicit plot the half iterates of the
exponent to base

√
2, evaluated through the tetration and that evaluated

through the super exponential SuEx√2; this plot is shown in figure 16.8,
and looked at the zoom-in of the central part; then at the zoom-in of that
zoom-in, and so on, but I could not see deviation of curve y = exp√2,u(x)

from curve y = exp√2,d(x) .

Searching for the error, as a working hypothesis, I assumed, that the
precision of variables complex double (which is of order of 15 decimal

1 http://mizugadro.mydns.jp/t/index.php/Mizugadro_number
http://budclub.ru/k/kuznecow_d_j/mizugade.shtml Mizugadro’s number (2010-2011)
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Figure 16.8: Comparison of the half iterations to base
√

2, constructed at fixed
point 2 (dashed) and at fixed point 2 (solid curve). In the interval between these
two points, the difference (16.30) is shown, scaled with factor 1024. [sqrt2srav]

digits) is not sufficient to see the difference between exp
1/2√
2,d

by formula

(16.29) and exp
1/2√
2,u

by formula (9.24). I begun to compute the iterate
with a hundred decimal digits; the exact formulas and abilities of Maple
and Mathematica allow this. The deviation happened to be in 25th
digit. This deviation can be characterised with difference

D(x) = exp
1/2√
2,u

(x)− exp
1/2√
2,d

(x) [sqrt2D] (16.30)

This difference is shown at the bottom of figure 16.8. In order to see
it, I had to scale it with factor 1024, as it is marked in the figure. For
|z−3|<2, function D(z) can be approximated with the 7 parameter fit

D̃(z)=2.48·10−25(z−2)(4−z)
(

1 + 0.120(z−3) + 0.006(z−3)2
)
×

sin
(
.747−.068(z−3)+0.007(z−3)2+p4 ln(4−z)+p2 ln(z−2)

)
(16.31)

where p4 = 2π/ln(2 ln(2))≈19.23614904204285

and p2 =−2π/ ln2(2) ≈ 17.14314817935485

correspond to periods of the two superfunctions of exp√2, built up on the
fixed points 4 and 3, see equations (9.6), (9.7) (16.11). Тhis fit provides
of order of two significant figures; at figure 16.8, the curves for D and
for D̃ almost coincide.
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After to plot the bottom curve in figure (16.8), I realised, that it is first
case in my life, when the double precision, id est, 15 significant digits,
happened to be not sufficient to see the difference between two functions,
which have no small parameters. This example gives a good lesson: the
numeral calculus with high precision serious evidence to refute, reject
(or to verify) a conjecture. Whenever the rigorous proof is available of
not, the numerical testing should be applied. The TORI axioms provide
a good hint for the revision.

It should be noted, that my attempts to use the Maple-10 software for
visualisation of difference D by (16.30) failed. I could not find way to
pot graphics with precision better than just “float” 2. In order to plot
the beautiful figure (16.30), I had to save values of function D as a table,
and then export this table to the C++ program. I hope, now there exist
more straightforward ways to do the same; in particular, use of the fit
provides the “quick and dirty” realisation. I expect, using the precise
numerical solution, fit 4 can be significantly improved; the readers are
invited to do this as an exercise.

Iterate of a function, regular at some of fixed points, often is singular
in another fixed point. Some exceptions, when the superfunction is
expressed with elementary function, are mentioned in Chapter 4.

In such a way, for a given transfer function, there may exist many su-
perfunctions, and some of them may be arguably declared as a “true”
or “principal” superfunction. For the case of transfer function T =

exp√2, the four real-holomorphic superfunctions with various exponen-
tial asymptotics are considered in the next section.

5 Four superexponents to base
√
2

On the base of consideration of previous chapters, one can built-up the
four different real-holomorphic superfunctions for the transfer function

2The poor precision of the graphic procedures in Maple-10 is described in the poem http:
//en.wikisource.org/wiki/Maple_and_Tea Maple and tea. This is one few my texts, that are
not yet removed from wikisource with pretext of protection of my author rights. This is common
practice at wikisource and other sites of Wikimedia projects: the Soviet veterans promote sovietism
and remove texts of anti-Soviet authors with any absurd pretext; often, the claim for the violation
of the author rights is used, even if cases, when the author gave permission to publish the files
providing the free ("copyleft") licence. The permission to use the author’s file is usually removed
together the file. While the soviet veterans act as trolls and vandals in wiki-projects, I loaded the
copy also to http://budclub.ru/k/kuznecow_d_j/maple.shtml
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Figure 16.9: Four superexponents to base
√

2 [sqrt2sufuplot]

T = exp√2. These superexponentials are shown in figure 16.9 and dis-
cussed below.

Here I comрare the four functions; in publication [61], they are are called
F2,1, F2,3, F4,3 and F4,2. Each of them is real-holomrphic solution of the
transfer equation

F (z+1) =
(√

2
)F (z)

(16.32)

The first number in the superscript indicates the limiting value, that the
function approaches exponentially; it is any of the two fixed points of
the exp√2, id est, either 2 or 4. The second number in the superscript
indicates value of this function at zero.

Function F2,1 = tet√2 is tetration to base
√

2; the curve for F2,1 is bor-
rowed from the figure 16.1. Properties of this function are considered
above in this chanter. It is superfunction of exponent to base

√
2, built

up with the regular iteration at fixed point 2. As tetration to any other
base, it takes value unity at zero.

Function F4,5 = SuExp√2,5 refers to formula (9.13). This function, to-
gether with its inverse function F−1

4,5 = AuExp√2,5 is used to built-up
iterates of exponent to base

√
2; and these iterates grow up infinitely
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along the real axis. Fixed point 4 is used as the asymptotic value at
minus infinity. With the appropriate translation along the real axis, the
condition F4,5(0) = 5 is achieved.

Function F2.3 is tetration with displaced argument,

F2,3(z) = tet√2(z+z2,3) (16.33)

z2,3 = ate√2(3+io) ≈ −3.3834692659172254 + 8.5715740896774228 i

However, F2,3 has the same periodicity, as tetration F2,1.

Function F2,3 is growing superexponent with displaced argument

F4,3(z) = SuExp√2,5(z+z4,3) (16.34)

z4,3 = AuExp√2,5(3+io) ≈ 3.015784890490347+9.618074521021425 i

Along the real axis, functions F2,3 and F4,3 decrease from 4 at minus
infinity to 2 at plus infinity. In figure 16.9, curve y=F2,3 overlaps well
with curve y=F4,3. The deviation is smaller than the thickenss of lines,
and it is small compared to size of atoms, of which this book (or the
screen where it is watched) is built. In otter to show the deviation,
denote it with

d42(z) = F4,3(z)− F2,3(z) [d42] (16.35)

Tn figure 16.9, the thin line shows y=1024d42(x) ; I scale values of this
difference for 24 orders of magnitude, to make it visible. This similarity
takes place only in vicinity of the real axis. The functions have different
periods, and one go them has singularities; so, they must be pretty
different somewhere.

Similarity of functions F4,3 and F2,3 determines the similarities of corre-
sponding iterates of exponential to base

√
2. These iterates are shown

in figures 9.8, 9.9, 16.6 and 16.7. For real values of the argument, the
half iterates are compared also in figure 16.8. I expect, for application
in physics (where the precision usually does not exceed 20 decimal dig-
its), any of the two iterates is declared as the “true iterate”. However,
for some applications (for example, if the model refers to the complex
numbers), the difference may be important, and the fixed point should
be specified.
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Figure 16.10: u+iv = exp i√
2,d

(x+iy) by (16.36) [sqrt2itemap1]

6 Complex iterates

When the draft of the Russian version of this Book had been completed,
I found, that the book had no maps of the complex iterates. I had
declared that I can calculate any real or even complex iterate, but all
the examples refer to real iterate. I fill this gap in this section. Here I
describe two iterates number i. As this i appear with Roman font; one
may guess, that it is not variable, but a constant, square root of −1.

Figures 16.10 and 16.11 show the complex maps of iterates

exp i√
2,d

(z) = tet√2

(
i + ate√2(z)

)
[sqrt2dii] (16.36)

and

exp i√
2,u

(z) = SuExp√2,5

(
i + AuExp√2,5(z)

)
[sqrt2uii](16.37)
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Figure 16.11: u+iv = exp i√
2,u

(x+iy) по формуле (16.37) [sqrt2itemap2]

Function exp i√
2,d

by (16.36) is built up from the tetration and arctetra-
tion to base

√
2, considered in this chapter. Function exp i√

2,u
by (16.37)

is built up from the growing super exponent to base
√

2 and the cor-
responding abelexponent; these functions are considered in chapter 9.
These pairs of functions look similar in vicinity of the interval (2, 4), but
they are pretty different beeng evaluated far from this interval. As one
could expect, the i th iterates, shown in figures 16.10 and 16.11, are also
similar in vicinity of the interval mentioned, but far from this interval,
they deviate strongly.

As in the case of real iterates, each of considered here complex iterates
can be arguably qualified as “true”. In this sense, the are “equal”. In
the similar sense, "all animals are equal" in the novel “Animal’s Farm”
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by George Orwell 3 In the movel, soon it happens that “All animals
are equal, but some of them are more equal than others”. In the similar
sense, one of iterates, either 16.10 or 16.11, may be “more equal”, if some
additional criterion arises from some physical reasons, specifying, for
example, the asymptotic behaviour of the iterate at infinity. If only one
of iterates reproduces the required behaviour, this iterate immediately
becomes “more equal” than another.

The example of this section once again confirms the general observation
about non-integer iterates of a function, that have more than one fixed
point: the regular iterate, holomorphic in vicinity of some fixed point,
has no meed to be holomorphic at another fixed point. The choice to
the fixed point (and choice of the iterate) should involve the additional
requirement, that may arise from the applications. This general rule
hold also for complex values of the number of iterate.

I expect, the integer iterates may appear more often that real; and the
real iterate may appear more often than compex. On the other hand,
the mathematical formalism should cover an area, which is wider, than
that required for the today’s applications. For this reason I consider
the case with complex number of iterate as an important example, that
shows the power of the formalism of superfunctions.

Following the lessons I remember since the Soviet school, I wanted to say
that “the formalism of superfunctions is omni-potnent, because it is true”
4. On the other hand, the First TORI axiom prohibits consideration of
omnipotent and almighty concepts in a scientific analysis; such doctrines
and concepts are qualified as religious [68].

Various iterates are available for q transfer function with several fixed
points. As soon, as the non-integer iterate of a holomorphic function
with several fixed point is required, the additional conditions should be
added to the formalism in order to decide, which of the iterates is “more
equal than others”.

3 http://msxnet.org/orwell/print/animal_farm.pdf George Orwell. Animal Farm. 1945.
.. “All animals are equal, but some of them are more equal than others”..

4http://www.marxists.org/archive/lenin/works/1913/mar/x01.htm V.I.Lenin. The
Three Sources and Three Component Parts of Marxism. Lenins Collected Works, Progress Pub-
lishers, 1977, Moscow, Vol.19, p.21-28. .. The Marxist doctrine is omnipotent because it is true.
..
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7 Not all is done

In this Book, I describe methods, that can be used to build-up (and eval-
uate) superfunctions, and the iterates that can be expressed through the
superfunctions and the abelfunctions. The properties of superfunctons
and those of the iterates appear as illustrations of the methods. I ex-
pect the Reader to use these methods not only for the transfer functions,
considered in this book. In particular, this chapter indicates the inter-
esting (from my point of view) branch for the future research, namely,
comparison of superfunctions and the corresponding iterates, that are
regular in various fixed points, and look for some general criteria: in
which cases, the iterates, built up at different real fixed points of some
real-holomorphic transfer function, behave in the similar way in the in-
terval between these fixed points. They happened to be very similar
in the case of exponent to base

√
2. How about other growing transfer

functions with two real fixed points?

The Readers are invited to repeat the calculus, described in this Book
(and in this Chapter) for other transfer functions. As an example, I
would suggest to experiment with polynomial transfer function.

One example of the polynomial transfer function is shown in raw 5 of
table 3.1, T (z)=zb. The readers may confirm, that the primary approx-
imation with the regular iteration at the fixed point z=1 gives the series
of expansion of the superfunction, that is just expansion of the “outer”
exponent in superfunction exp(bz). Up to my knowledge, this is the only
case, where the primary series by the regular iteration converges. The
appropriate choice of the 0th approximation should cut the series at the
first term. I expect, many of transfer functions can be treated in such
a way, and the corresponding superfunctions and abelfunctions can be
built-up. The goal of this Book not to describe all the examples, but to
teach the Readers to to it by themselves. So, it is rather collection of
tools, than collection of specific properties of the specific functions.

Consideration of tetration to base b =
√

2, presented in this chapter,
can be generalised to other values of base; in particular, for real values
1<b<exp(1/e). This generalisation is described in the next chapter.
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Chapter 17

Tetration to base b>1

The previous chapters describe various methods of construction of su-
perfunctions for the transfer functions that have real or complex fixed
points. In particular, the examples of the exponential transfer function
are considered, z 7→ bz for the cases b=

√
2≈ 1.44, b= exp(1/e)≈ 1.46

and b=e≈2.71 .
In this chapter, I combine methods, described in the previous chapters,
and describe tetration to the real base b>1. For the real values of base,
the interpretation of the superfunction, abelfunction and iterates of the
exponent is especially explicit.

1 Approximation of tetration near zero

For the base b from the interval 1<b< exp(1/e), tetration tetb can be
evaluated with regular iteration at the lowest (smallest) positive fixed
point of the exponent to this base. For b=exp(1/e), it can be evaluated
with the exotic iteration by equation 10.44. For b > 1/ exp(1/e), the
representation through the Cauchy integral can be used. In such a way,
all the domain b>1 is covered with the efficient algorithms for evaluation
of tetb.

For real values of the argument, graphic y = tetb(x) is shown in figure
17.1 versus x for various values of base b>1. Similar plot for arctetration
is shown in figure 17.2.

Figure 17.1 for tetration and figure 17.2 for arctetration are generated,
using the special approximation of tetration for b< 3, by function fit1,
defined with

d=ln(b)
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Figure 17.1: y = tetb(x) for various b [tet10bx]

q=
√
d

c0 =−1.0018 + 0.1512848482(1.+33.0471529885q−3.51771875598d)q
1+3.2255053261256337q +

ln(2)− 1
2

d

c1 =1.1− 2.608785958462561(1− 0.6663562294911147q)q − ln(2)− 5
8

d

c2 =−0.96 + 3.0912038297987596 (1+0.60213980487853d)q
1+4.24046755648d +

ln(2)− 2
3

d

c3 =1.2−10.44604984418533 (1+0.213756892843q+0.369327525447d)q
1+4.9571563666q+7.702332166d − ln(2)− 131

192

d

fit1b(z)=(1+c0z+c1z
2+c2z

3+c3z
4)(z+1) + ln(z+2)− ln(2)

d
(1+z)

(17.1)
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Figure 17.2: y=ateb(x) for various b [ate10bx]

In order to get approximation (17.1), I expanded the expression
tetb(z)− ln(z+2) + ln(2)/ ln(b)

1+z
(17.2)

into the Taylor series with powers of z for various values of (new) pa-
rameter d = ln(b). Coefficients of this expansion are approximated as
functions of parameter d. Then, tetration is expressed through this ex-
pansion. The series is truncated; only few terms are taken into account.
For |z| ≤ 1/2, the resulting approximation provides few correct decimal
digits of tetb(z). This approximation is used for |<(z)| ≤ 1/2; for other
values of z, value of tetration is represented through its values at the
appropriate argument, usng either

tetb(z) = btetb(z−1) [tetbminus] (17.3)

or

tetb(z) = logb
(
tetb(z+1)

)
[tetbplus] (17.4)

240

http://mizugadro.mydns.jp/t/index.php/File:Ater01.png


dependently on signum of <(z). In such a way, tetration can be evalu-
ated with few decimal digits for moderate values of |=(z)| and |=(b)|.
Yet, I have no similar approximation for larger values of |=(b)|, although,
the Cauchy integral can be generalised for various, even complex values
of b; the example is considered below in chapter 18. The range of validity
of approximation fit1b is wide; In particular, at b<5, the approximation
provides of order of four significant figures. This is sufficient precision
for plotting of the camera-ready pictures, the defects of this approxima-
tion are not seen in figure 17.1. However, at b=10, the approximation is
a little bit worse; for this value, the primary representation through the
Cauchy integral is used. This refers to only single curve in the picture.

Figure 17.1 shows behaviour of tetration of real argument at various
values of base b>1:

In the interval −2≤ x≤−1, tetration y = tetb(x) has negative values
and grows while b increases.

In th interval −1≤ x≤ 0, tetration y = tetb(x) has positive value and
grows with increase of b.

At x>0, tetration y=tetb(x) has positive values and grows with increase
of b.

In the limiting case b→1, the curve y=tetb(x) approaches the asymp-
totics x=−1 and y=1.

In the limiting case b→∞, curve y = tetb(x) approaches asymptotics
x=−2 and x=0, and also −2<x<0 at the abscise axis.

At all b>1, tetration tetb(x) is monotonic function, and curve y=tetb(x)
passes though points (−1, 0), (0, 1) and (1, b).

At b= exp(1/e), the line y = filog(1/e) = e becomes asymptotics. this
line is added to the rectangular grid at integer values ob abscissas and
ordinates.

At 1<b≤exp(1/e), with grow of x the curve y=tetb(x) approaches the
horizontal asymptotics y = filog

(
ln(b)

)
.

Function filog expresses fixed points of logarithm as function of loga-
rithm of its base. This function is considered in the next chapter. It is
essential for evaluation of tetration of complex base. While, suggest to
compare the results of the previous chapters for the real base. This is
matter of the next section.
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2 Various bases of exponent and the iterates

In this section, the iterates of exponent are compared. These iterates
are considered in the previous sections. Below, I overview the results.

Iterates of exponent to bases b=e, b=exp(1/e) and b=
√

2 are shown in
figure 17.3 as functions of the real argument for various values of number
n of iterate. The curves are drawn for n=−2, −1, −0.9, −0.5, −0.1,
0, 0.1, 0.5, 0.9, 1, 2.

The upper picture in figure 17.3 represents the case b=e; iterates of the
natural exponents are shown. These iterates are calculated through the
natural tetration tet and natural arctetration ate, I repeat this formula
once again:

y = expn(x) = tet
(
n+ ate(x)

)
(17.5)

Similar pictures can be plotted also for other values of base b> exp(1/e).
For these values of base, the real iterates are real-holomorphic functions
at least in some vicinity of the real axis. In this area, the iterates of the
exponent are so smooth, as the exponent itself.

As the base b, the width of the strip along the real axis (where the
iterates are holomorphic) decrease; at base b = exp(1/e) all the curves
for various iterates pass through the fixed point e. This case is shown
in the central picture of figure 17.3. Then, the non-integer iterates of
exponents at argument, larger than e, are not anymore holomorphic
extensions of those for argument, smaller than e. In order to stress this,
the curves, plotted through tetration and arctetration, are shown with
dashed lines

y = exp n
b,d(x) = tetb

(
n+ ateb(x)

)
(17.6)

while the solid lines correspond to the iterates, expressed through the
growing superexpponent SuExp,

y = exp n
b,u(x) = SuExpb,3

(
n+ AuExpb,3(x)

)
(17.7)

Tetration tetb to base b=η= exp(1/e) is determined with (10.44), and
the arctetration to this base can be evaluated through (10.49). In the
similar way, the growing superexpenent is determined by (10.45) with
SuExpb,5 = F3, and the corresponding abelexponent can be evaluated
with (10.50) at AuExpb,3 =G3.

For the real base b, at 1<b<exp(1/e), The exponent has two real fixed
points (See figures 9.1, 10.1). Each to these fixed points can be used for
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the regular iteration. However, the non-integer iterate, regular at one
fixed point, is singular at another one. At the bottom picture of figure
17.3, value b=

√
2 is chosen.

Dashed lines corresponds to

y = exp n
b,d(x) = tetb

(
n+ ateb(x)

)
(17.8)

while the solid curves refer to

y = exp n
b,u(x) = SuExpb,5

(
n+ AuExpb,5(x)

)
(17.9)

For non-integer number n of iterate, the fixed point 2 or 4 limits the
range of holomorphism of each iterate. In the interval from 2 to 4, each
of the two iterates is holomorphic, and the difference between these
iterate is very small, of order of 10−24, see figure 16.8. Due to this
smallness, the dashed lines at the bottom picture of figure 17.3 seem to
coincide with the corresponding solid lines.

Similar illusion takes place for the central part of figure 17.3; the dashed
lines seem to be continuations of the corresponding solid lines. The
example with exponent show, that, in order to specify the non-integer
iterate, one should choose, establish the asymptotic behaviour of the
superfunction in the complex plane. Over-vice, there may exist vari-
ous solutions, and each of them arguably can be declared as the “true”
one. In order to specify the superfunctions, they are considered for the
complex argument.

3 Dependence of tetration on its base

Graphics of tetration of real argument, shown in figure (17.1), allow to
guess, that the dependence of tetration on the base (at fixed argument)
is continuous (and, perhaps, even holomorphic) function. In order to
show, that this refers not only to the real values of the argument, figure
17.4 shows the complex maps of tetration for b = 1.5 at left, for b =
exp(1/e)≈1.44 at center, and for b=

√
2≈1.41 at right.

All the 3 maps in figure 17.4 look similar, although different algorithms
are used for evaluation of tetration. In principle, tetration to base b=
exp(1/e), for moderate values of the imaginary part of the argument,
could be evaluated also through tetration with a little bit smaller or a
little bit larger values of the base b, as limit b → exp(1/e), using the
corresponding representation through the integral Cauchy (for bigger
values) or with regular iteration (for smaller values). The Readers are
invited to calculate tetration to base b ≈ exp(1/e) and estimate, how
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Figure 17.4: u+iv=tetb(x+iy) for b=1.5, b=exp(1/e) and b=
√

2 [e1e09]

many significant figures can one achieved in such a way, assuming, that
the arithmetics with finite precision is used.

At b→exp(1/e), the efficiency of evaluation of tetration (both through
the Cauchy integral and through the regular iteration) reduces. For
this reason, Henryk Trappmann had expected, that the tetration is not
continuous function of b at point b = η = exp(1/e). For this reason,
Henryk wanted the asymptotic expansion namely for η=exp(1/e), and
it had been done 1. I had suggested the expansion (10.36) and plotted
pics for b= exp(1/e), and Henryk had arranged a lot of mathematical
deduction around it [79].

I hope, the Reader already understands, how to guess the expansion for
the exotic iterates, and can write the similar expansion of superfunc-
tion for any other transfer function, as soon as such an superfunction
will be requested for any application. The inversion of the series gives
the expansions (and the precise approximations) for the corresponding
abelfunctions.

I hope, with the tools above, the colleague can evaluate any iterate of
any holomorphic transfer function, not only real, but also complex. The
examples with iterates number i are hown in figures 16.10 and 16.11 for
the transfer function T = exp√2.

After publications of the results presented above, the colleagues at the
Henryk’s forum had agreed, that the complex iterates, and in particular,
those of the exponent to various real base b> 1, can be evaluated in a
pretty regular way. However, There were some doubts about iterates of
the exponent to the complex base. This case is considered in the next
chapter.

1 This was soon after the article about four real-holomorphic superexponentials to base
√

2 had
been submitted to Mathematics of computation [61]; as usually, the appetite comes while eating.
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Chapter 18

Tetration to complex base

Here, tetration to complex base is considered. Id est, superfunction for
the transfer function T (z) = bz, where base b is not real. In order to
hande this case, I need an additional special function "flog"; it is also
described in this chapter.

In principle, the superfunction of the exponent to complex base can be
constructed with regular iteration, in the similar way, as the tetration to
base

√
2 is constructed in Chapter 16. However, the important question

is, at which of the fixed points, the superfunction should be regular, and
which of possible superfunction should be qualified as tetration.

In addition, at some values of the base, the exponential asymptotic
solution has real part of the increment zero or close to zero; this makes
the application of regular iteration difficult, if at al. One of such cases is
considered below in more details, as an example. The representation of
tetration through the Cauchi integral is not sensitive to the real parti of
the asymptotic increment of the solution; so, such a representation gives
the efficient way of evaluation of tetration to complex base. However,
the asymptotic behaviour of tetration in the upper and in the lower
complex plane should be specified.

The main idea of this chapter is to make superfunction that approaches
one of the fixed points of the exponent at the upper half of the complex
plane, and to another fixed point at the lower part of the complex half
plane, using the assumption, that, for the complex base, the imaginary
part of the asymptotic increment is not zero.

Question about the fixed points is important (as in the case of any
other superfunction), and it should be considered. This consideration is
presented in the following section.
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Figure 18.1: u+iv=filog(x+iy) , as solution L=filog(B) of (18.1)

1 Fixed points of logarithm

This section is dedicated to relation between the base b of the exponen-
tial and its fixed point L. Let L = filog(B) be solution of equation

ln(L) = BL [LL] (18.1)

Complex map of function filog is shown in figure 18.1. The zoom-in of
the central part of this map is shown in figure 18.2. Let

B = ln(b) [Bb] (18.2)

Then filog(B) determines the fixed point L1 of logarithm to base b;
another fixed point L2 is determined with the complex conjugation:

L1 = fllog(B) [L1filog] (18.3)
L2 = filog(B∗)∗ [L2filog] (18.4)
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Function filog can be expressed through the special function Tania by
(5.3) as follows:

filog(z) =
Tania

(
ln(z)− 1− πi

)
−z

(18.5)

Note, that here, namely Tania is used, but not WrightOmega, which
looks similar to Tania in vicinity of the real axis. The Readers are
invited to try to reproduce figure 18.1, using WrightOmega instead of
Tania, and look, what does it give instead of the beautiful map.

Function filog determines the fixed points of logarithm (which are also
fixed point of the exponent) to base b:

L1 = filog
(

ln(b)
)

[L1filob] (18.6)
L2 = filog

(
ln(b∗)

)∗
[L2filob] (18.7)

At ±i∞, tetration should approach these fixed points. This assumption
to use the Cauchy integral for the definition (and evaluation)

2 Tetration to the Sheldon base

This section describes the tetration to the Sheldon base,

b = 1.52598338517 + 0.0178411853321 i [sheldonS] (18.8)

This number is named after Sheldon Levenstein. In 2015, Sheldon had
expected, that the namely this base causes difficulties at evaluation of
tetration. It was the only request from colleagues to evaluate tetration
to the specific complex base; and this request had been fulfilled.

Complex map of tetration to the Sheldon base is shown in the top picture
of figure 18.3. Explicit plot of this function is shown in the central
picture of that figure. The bottom picture shows the explicit plot of
tetation to Sheldon base along the imaginary part. This tetration has
complex values; so, the graphics are drawn for the real and for the
imaginary parts.

In this section I assume, that value of b is determined with equation
(18.8). I consider this as an example; tetration to other values can be
calculated in the similar way.

It is convenient to define B = ln(b). Then, the fixed points of logarithm
to base b, id est, solutions L of equation lnb(L) =L, can be expressed
through function filog, described in the previous section:

L1 = filog(B) ≈ 2.0565398441043761+1.1445267140098765 i (18.9)
L2 =filog(B∗)∗≈ 2.2284359658711805−1.3507994961102865 i (18.10)
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where constant B is evaluated as follows:

B = ln(b) ≈ 0.4227073870410604 + 0.0116910660021443i (18.11)

Solution F of the transfer equation bF (z) = F (z+1) with asymptotics

F (z) = L1+exp(k1z+φ1) +O(exp(2k1z)) при =(z)→∞ (18.12)
F (z) = L2+exp(k2z+φ2) +O(exp(2k2z)) при =(z)→−∞ (18.13)

can be considered in the similar way, as for tetration to real base, larger
than the Henryk base η = exp(1/e). Even the same contour of inte-
gration can be used. Subslitution of the asymptotic solutions (18.12),
(18.13) into the transfer equation determines the increments

k1 = ln(L1b) ≈−0.0047589243931785+0.5354935770338939 i (18.14)
k2 = ln(L2b) ≈ 0.0970758595007548−0.517289596155984 i (18.15)

The solution has quasiperiod

P1 =
2πi

k1
≈ 11.7325200133916496−0.1042667514229599 i (18.16)

in the upper part of the complex plane, and quasiperiod

P2 =
2πi

k2
≈ 11.7331504449085493−2.2018723603861230 i (18.17)

in the lower part of the complex plane,
The properties above are sufficient to express the solution F (z) of the
transfer equation

F (z+1) = exp
(
B F (z)

)
[sheldonTra] (18.18)

through the Cauchy integral. This construction is quite analogous to
that for the tetration to base e, described in chapter 14; therefore I do
not repeat here the description of the contour of integration nor the
iterational procedure, that provides the approximations of the solution.
The tetration is expressed through the solution F in the following form:

tetb(z) = F (z1 + z) [sheldonTetDef] (18.19)

where z1 is solution of equation F (z1) = 1. Using equation (18.18), the
solution can be extended at least to the right hand side of the complex
plane. As for the left hand side, in the Second quadrant of the complex
plane, the branch points and the cutlines appear. These cutlines appear
at the use of the logarithmic function to extend the solution to the
direction of negative values of the real part of the argument.
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Unfortunately, the most of cut lines do not fit the frame of map in figure
18.3, althogh I make it in the whole width of the page. The asymptotic
(18.12) indicates, that these cuts are unavoidable, while the imaginary
part of quasi period P1 is negative. Each time, when the tetration takes
value zero, there is branch point at value of the argument, for unity
smaller. These cuts are unavoidable also for other tetrations, while
formula

F (z) = logb
m(F (z+m)) (18.20)

is used for some integer m such that value z+m belongs to the strip
{z ∈ C : |<(z)| ≤ 1/2}. In this sense, the tetration to the Sheldon base
is similar to tetration to the real base.

3 Shell-Thron region

For moderate values of argument z, tetration tetb(z) looks as a smooth
function of base b. At large values of <(z), dependently on the base,
tetration either has complicated, quasi-chaotic behaviour, or approaches
some of the fixed point of the corresponding logarithm. At the site “Ere-
trande”, the range of values of base b, for which the tetration approaches
its limiting value, is called Shell-Thron region 1. Such a name seems to
be commonly accepted, and I even suggest the Russian literal transla-
tion “Область Тронной Ракушки” for the Russian version of this Book.
However, yet, it is difficult to predict, how convenient and stable are
these names.

In this Book, I am interested mainly the tools for evaluation of super-
functions, and resolving the paradoxes, that are discussed among col-
leagues. Consideration of many examples, that cause no doubts, fall out
of scope of this Book.

In principle, at the iterates of exponent to complex base, we have to
deal with the 6-dimensional space. Coordinates of this space are the
real and imaginary parts of base b (or real and imaginary parts of its
logarithm, B=ln(b)), the real and imaginary parts of the argument,and
the real and imaginary parts of the number of iterate. There may be
many interesting effects hidden in the 6-dimensional space. The detailed
description of these effects may require a special book, dedicated namely

1 Shell-Thron region:
http://math.eretrandre.org/hyperops_wiki/index.php?title=Shell-Thron_region.
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to tetration to complex base. Since year 2010, Henryk Trappmann tries
to compose such a book [66] (I had promised to provide all the algorithms
and pictures he needs for this, and all the pictures requested up to date
are already plotted an included there). I hope, one day Henryk gets good
grant for this activity and will be able to polish the text to the state
he considers as satisfactory. While I still see no principal problem, that
cause serious difficulty at the evaluation of the corresponding iterates;
so, I do not include parts of [66] to this Book. For this reason, analysis
of the Shell-Thron region is presented here in a declarative form.

I hope, the Readers can plot all the pictures that are necessary for
illustration of tetration to the complex base, using the tools described
above. However, if any difficulties of paradoxes appear in the analysis, I
shall try to consider and to resolve them. This point of view is described
by the Russian writers Arkadi & Boris Strugatski in the novel “Monday
begins on saturday” [14]: .. It’s nonsense to look for a solution if it
already exists. We are talking about how to deal with a problem that has
no solution. ..

I hope, the Readers can evaluate tetration to other bases by themselves,
using the tools any examples above. Following the idea mentioned, I
continue to deal with cases that are believed to have “no solution”. One
of the such cases refer to the superfunction of tetration; let it be called
“pentation”. In order to bring is to the textbook case, as it is shorn in
figure 18.4, this function, among other ackermanns, is considered in the
next chapter.

Figure 18.4: Textbook case
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Chapter 19

Ackermanns
W.Ackermann
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Figure 19.1:

— Do you know, owr man asks hoggible questions!
— Who is that man?
— He is called Asker-man!

Here I retell some results for holomorphic ackermanns, tetration and
pentation [89]. For base b>1, tetration f=tetb is solution of equations

f(z+1) = bf(z) , f(0) = 1 [tetb] (19.1)

holomorphic at least in range

z ∈ C : <(z) > −2 [htetb1] (19.2)

that is limited in range

z ∈ C : |<(z)| ≤ 1 [htetb12] (19.3)

Equation (19.1) appears as special case of the Ackermann equations

A1(z) = b+ z , z ∈ C [Acker1] (19.4)
An(1) = b , n ∈ N, n≥1 [Acker2] (19.5)

An(z+1) = An−1

(
An(z)

)
, n ∈ N, n > 1 [Acker3] (19.6)

I call functions A “ackermanns” in order to avoid confusion with math-
ematician Wilhelm Ackermann, shown in figure 19.1. His last name, to
make difference from the name of the function, is written with Capital
letter [7]. Ackermanns A are subject of this chapter. However, for the
highest ackernanns, the range of holomorphism has no need to be the
same as condition (19.2) for tetration. This range, as well as the asymp-
totic behaviour of highest ackermanns should be specified. I cannot yet
provide the general specification; below, I suggest only the first approach
to the problem.
For base b=2, the explicit plots of the first four ackermanna are shown
in figure 19.2 with thick lines, solid, solid, dotted and dashed. The thin
lines refers to another (and more conventional) system of notations,
described in the next section.
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Figure 19.2: Comparison of definitions for binary ackermanns [acker2t]
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1 Binary ackermanns

In century 20, the ackermanns are considered mainly (or even exclu-
sively) for the base b= 2, and mainly (or even exclusively) for integer
values of the argument. I call ackermanns to base b = 2 as “binary”
ackermanns.

For the binary ackermanns, the special notations are used. The number
of ackermann is written as additional, first argument, and the base b is
not indicated at all; there is no need to indicate it, as it remains to be
two. Relation of the classical (and usual for today) notations for the
ackermanns by (19.4) (19.5) (19.6) can be expressed with the simple
formula

A(m, z) = A2,m(z + 3)− 3 [asa3] (19.7)

In particular,

A2,1(x) = 2 + x = A(1, x+3)− 3 = A(1, x) (19.8)
A2,2(x) = 2 x = A(2, x+3)− 3 (19.9)
A2,3(x) = exp2(x)= A(3, x+3)− 3 = 2x (19.10)
A2,4(x) = tet2(x) = A(3, x+3)− 3 (19.11)

Figure 19.2 shows relation between the single-argument function A with
subscripts and conventional A without subscript, but with two argu-
ments. Four ackermanns are plotted as functions of real argument;
y=A2,m(x) for m = 1, 2, 3, 4 are shown with thick lines (solid, solid,
dotted and dashed); dependences y =A(m,x) for m = 1, 2, 3, 4 are
shown with thin lines (solid, solid, dotted and dashed);

Due to relation (19.7), the thick lines in Fig.19.2 can be obtained from
thick lines by translation for 3 units along x axis and for the same along
the ordinate axis; the only straight line for the First ackermann stays at
its place at such a transform.

Especially for the binary ackermanns, the system of equations (19.4),
(19.5), (19.6) can be a little but extended, in order to include the “ze-
roth" ackermann. Equations for A can be written as follows:

A(0, z) = z + 1 (19.12)
A(m+1, 0) = A(m, 1) (19.13)

A(m+1, z+1) = A
(
m,A(m+1, z)

)
[ackerbi] (19.14)

Displacemenr of both, argument and the function, by formula (19.7) can
be qualified as conjugation. The transfer equation (19.14) for the binary
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ackermann in the “classcal” notations has the same form, as the transfer
equation (19.6).

One of applications of the ackermanns is to denote the huge numbers
(for real moderate values of the argument). Due to the displacement
of the argument, the canonical ackermanns can make illusion of a lit-
tle bit more fast growth, than the ackermanns by (19.4), (19.5), (19.6).
However, for the applications, this “acceleration” is not important. I
think, the notations in formulas (19.4),(19.5),(19.6) are better than the
canonical notations. In notations (19.4), (19.5),(19.6), the third acker-
mann happens to be just exponent, the fourth - just tetration, and so
on. In addition, I consider ackrmanns as superfunctions, holomorphic
with respect to the last argument; so, it is good, to keep this argument
single, The base b and the number of the ackermann appear as parame-
ters; they can be specified in the subscript. I hope, the Reader will meet
no problems using relation (19.7) for the conversion from one system of
notations to another one.

2 Names and notations

As I had mentioned above, in century 20, the functions of Ackermanns
are considered for base b=2 and only for integer values of the argument
z. While, I see no fundamental limits, that would prohibit existence
and evaluation of these functions for various, including complex, val-
ues of b and z; however, the appropriate requirement on the range of
holomorphism should be formulated.
I hope, for all ackermanns, we may require the real holomorphism at least
in some vicinity of at least some part to the real axis. In general, the
solution of the transfer equation is not unique; so, we should indicate
also the way of construction of each ackermann, or to guess (invent,
postulate) its behaviour in the complex plane, following the idea, used
to construct natural tetration described in chapter 14.

Several ackermanns already have special names:
Ab,1 = z 7→ b+z, addition of constant b,
Ab,2 = z 7→ bz, multiplication by constant b,
Ab,3 = expb = z 7→pow(b, z) = z 7→bz, exponent to base b,
Ab,4 = tetb = z 7→ tetb(z), tetration to base b,
Ab,5 = penb = z 7→ penb(z), pentation to base b.

The following functions can be denoted with sumbols hexb, hepb, octb,..
and be called, accordingly, with terms “hexation”, “heptation”, “octation”

257



and so on. These notations appear at the truncation of latin names of
numbers to three characters.

Initially, the formalism of sulerfunctions had been developed for tetra-
tion, id est, for superfunction of the exponent, for the Fourth ackermann.
However, this formalism can be applied also for other functions, and, in
particular, for various ackermanns. As an example, in the next section
I consider the 5th ackermann, the pentation.

3 Pentation

If you give to some true Mathematician the teapot, the gas stove, the
matches and water tap, and ask to prepare tea, the Mathematician puts
water into the teapot, ignites the gas and put the teapot on the fire. If
the Mathmatician finds the tea powder, then, perhaps, he or she even
drop it into the hot water after to see the boiling and switch off the gas.
But if, after that, the Mathematic again is asked to prepare the tea,
while the water is already in the tea pot, and the gas fire at the stove is
ready.. Ooh.. You may guess, that the true Mathematician shuts down
the gas, drops the water from the teapot and spells the magic sentence:
“The problem is reduced to the previous one!” .

I hope, with methods, described above, and especially, keeping in mind
the previous paragraph, the Reader already can calculate the superfunc-
tions, just following the general algorithms from this Book. On the other
hand, I am more physicists, than mathematician. (The mathematician
colleagues have no doubt in this, although some physicists express the
opposite opinion.) Theredore, instead of to spell the magic sentence
“The problem is reduced to the previous one!” , in this chapter,
I suggest one more example of evaluation of ackermann. This example
refers to the natural pentation, id est, pen = pene = Ae,5.

At the construction of a superfunction, the key question is about the
fixed points of the transfer function. For pentation, the transfer function
is tetration, considered in chapter 14. The real fixed points of tetration
are shown in figure 19.3. This is modification of figure 17.1: some lines
are removed, and the new curve for tetration to base b= τ ≈1.63532 is
added. Here, τ is specific values of base, at which the curve y=tetτ(x)
touches the line y=x. The point of touching has coordinates (Lτ,1, Lτ,1),
and Lτ,1 ≈ 3.087. For this value, the additional grid lines are added in
figure 19.3.

At base b > τ , tetration tetb has the only one real fixed point. In
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Figure 19.3: y=tetb(x), fragment of figure 17.1; line y=x and y=tetτ (x) are added

particular, this refers to the case of natural tetration tet = tete. For
natural tetration, this point is L=Le,0≈−1.85035452902718, and for
this value, also the additional grid lines are shown in figure 19.3. Namely
this point is chosen to built-up the natural pentation pen, id est, for the
fifth ackermann to base e = exp(1)≈ 2.71 . As the Reader can see, not
so many options we have in this case.

The growing real-holomorphic superfunction of natural tetration, that is
constructed with regular iteration at the fixed point Le,0 and approches
this fixed point at −∞, I call the fifth ackermann, or pentation. Graphic
of pentation is shown in figure 19.4. I describe the construction below.
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Figure 19.4: y = pen(x) by (19.24), its asymptotic (19.25), and deviation of the
linear approximation by (19.27)
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For superfunction F of transfer function tet, the transfer equation is

F (z+1) = tet
(
F (z)

)
(19.15)

I construct the growing along the real axis solution F by the regular
iteration at the fixed point of tetration L=Le,5,0≈−1.85035452902718;
I mention the key point of the construction below.

For some natural number M > 1, I search the solution F of equation
(19.15) in the following form:

F (z) = f(z) +O(εM) [penF] (19.16)

where

f(z) = Le,4,0 +
M−1∑
m=1

amε
m [penf] (19.17)

ε = exp(kz) [penepsilon] (19.18)

Here, the positive constant k has sense of the increment of the growth
of superfunction at large negative values of the argument, and a are real
coefficients. For simplicity, I set a1 =1. Substitution of representations
(19.16), (19.17) to the transfer equation (19.15) and the asymptototic
analysis with small parameter ε give

k = ln
(
tet′(L)

)
≈ 1.865733 (19.19)

and the coefficients a; in particular,

a2 =
tet′′(L)/2(

tet′(L)−1
)

tet′(L)
≈ −0.6263241 (19.20)

a3 =
tet′′(L)a2 + tet′′′(L)(
tet′(L)2−1

)
tet′(L)

≈ 0.4827 (19.21)

For the numerical implementation, in (19.17), I choose M = 4; this is
sufficient to evaluate pentation with 14 significant figures and to plot
all the figures of this article in real time. This approximation is good
for large negative values of the real part of argument of supertetration.
Then, for integer n, I define

Fn(z) = tetn(f(z − n)) [pentalim] (19.22)

The exact superfunction F appears as limit

F (z) = lim
n→∞

Fn(z) [flim] (19.23)
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Figure 19.5: u+iv = pen(x+iy) по формуле (19.24) [penmap]

The limit does not depend on the chosen number M of terms in the
asymptotic expansion. However, the larger is M , the faster the limit in
(19.23) does converge.

The pentation appears as superfunction F with displaced argument:

pen(z) = Ae,4(z) = F (x5+z) [pendef] (19.24)

where x5≈ 2.24817 is solution of equation F (x5) = 1. Complex map of
this pentation is shown in figure 19.5.

The real-real plot of pentation by (19.24) is shown in figure 19.4 with
thick curve. The additional horizontal grid line y = Le,4,0 shows the
asymptotic at large negative values of the argument. The thin curve
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shows the more advanced asymptotic

y=Le,4,0 + exp(k(x+x5)) [pen01e] (19.25)

Pentation is holomorphic at least for |<(z)| < |P |/2 ≈ 1.6838, where
P = 2πi/k is period; pentation, as exponential, is periodic function. A
little bit more than two periods are covered by the range of the map at
figure 19.5. Pentation has the countable set of cut lines, parallel to the
real axis. In figure 19.5, these cuts are marked with dashed lines.

In vicinity of the segment of length 2 at the negative part of the real
axis, pentation can be approximated with the linear function,

pen(x) ≈ 1 + x [penlin] (19.26)

At −2.1< x < 0.1, approximation (19.26) provides two significant fig-
ures. Deviation of this approximation from pentation pen can be ex-
pressed with function

δ(x) = pen(x)− (1+x) (19.27)

This deviation is shown in figure 19.4 with thin line; it is scaled with
factor 10; curve y = 10 δ(x) is drawn.

The linear function in the right hand side of equation (19.26) approxi-
mates also the previous ackermann, id est, tetration; its graphic is show
in figure 14.1. For tetration, the function in the right hand side of
formula (19.26) also gives of order of two significant figures; however,
the range of this approximation for pentation is twice wider, than for
tetration.

Complex map of pentation by (19.24) in figure 19.5 demonstrates, that
pen(z) is holomorphic at least for <(z) < −2.5 . As the real part of the
argument approaches minus infinity, pentation exponentially approaches
the limiting case L = Le,4,0 ≈ −1.850354529, shown in figure 19.3. In
order to show this explicitly, the light strip in figure 19.5 indicates the
additional level u=Le,4,0.

Pentation is periodic; its period P is determined by the increment k, id
est, by the derivative of tetration at its fixed point Le,4,0:

P =
2 π i

k
≈ 3.36767615657879 i [penP] (19.28)
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Figure 19.6: u+iv = pen(x+iy) by (19.24), zoom-in from figure 19.5 [penzoo]

The period is pure imaginary; the complex map of pentation reproduces
itself at translations for integer factor of the period. The cuts of the
range of holomorphism are also reproduced.

Along the real axis, pentation shows very fast growth, faster, than that
of natural tetration. As maps of many other fastly growing functions, the
map of pentation has complicated structure in vicinity of the real axis.
Pentation varies with huge derivatives, that correspond to enormous
density of the levels at the complex map. The plotter could not draw
the huge amount of lines, and so, the narrow region in vicinity of the real
axis in figure 19.5 is left empty. The same applies to the translations for
integer factor of period P . In order to shown behaviour of pentation in
vicinity of the real axis and in vicinity of the cut line, figure 19.6 shows
the zoom-in from the figure 19.5.

General methods of construction of superfunctions can be used to build-
up the ackermanns. If the growth of tetration happens to be not suf-
ficiently fast, the pentation described above, can be used. The highest
ackermanns can be constructed in the similar way. In particular, the
fixed points of pentation indicate the way to build-up its superfunction,
id est, the next ackermann. Fixed points of tetration are considered in
the next section.
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4 Fixed poins of pentation and future work

In this section I suggest some hint, how can one built-up the next acker-
mann, pentation, using the fixed points of tetration. Actually, here I do
not construct pentation (because, anyway, I have to stop somewhere); I
only mention the way to do it.

As usually, one should begin with the fixed points, id est, solutions L of

pen(L) = L [penLeq] (19.29)

Some of the solutions are shown in figure 19.6, these solutions are marked
with character L. They correspond to

L = Le,5,0 ≈ −2.260 + 1.384 i (19.30)

L = Le,5,1 ≈ 1.057 + 1.546 i [penL1] (19.31)

There are also solutions in vicinity of the real axis

L = Le,5,2 ≈ 3.43 + 0.07 i (19.32)

L = Le,5,3 ≈ 4.39 + 0.11 i [penL3] (19.33)

but they do not fit the frame of the map on figure 19.6. The readers
are invited to solve numerically equation (19.29) and to adjust values of
Le,5,0 Le,5,1. I expect, one can find the real-holomorphic solution F to
equation

F (z+1) = pen
(
F (z)

)
(19.34)

with additional conditions

F (0)=1 , F (i∞)=Le,5,0 , (19.35)

The readers are invited to find this solution and interpret it as hexation,
id est, the 6th ackermann.

At this point, I stop constructing new ackermanns. I want to compare
the first 5 ackermanns. It is mater of the next section.
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5 Comparison of natural ackermanns

In this section I compare the first 5 sclermanns for the natural base
b=e. In such a way, I overview results for ackermanns. For real values
of argument, these functions are plotted in figure 19.7.
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Figure 19.7: y=Ae,n(x) for n=1, 2, 3, 4, 5 [ackerplo]
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Functions plotted in figure 19.7 are:
Ae,1(z) = e+z, addition of constant e,
Ae,2(z) = e z, multiplication to constant e,
Ae,3(z) = exp(z) = ez, natural exponent ,
Ae,4(z) = tet(z), tetration to base e,
Ae,5(z) = pen(z), pentation to base e.
These notations are used to mark curves y=Ae,n(x) at figure 19.7. As
usually, if the base is not specified at the subscript, it is assumed to be
e, base of natural exponent and that of natural logarithm.

Tetration and pentation at the segment [−1, 1] look similar. However,
at the printing with good resolution, the deviation is seen, it exceeds
the width of the lines in figure 19.7.

I expect, the tetration already has the growth fast enough to describe
the fastest function that may appear in the applications. However, the
main property of the scientific revolution is that they are unexpected. If
for some case, the growth of tetration is not fast enough, the pentation
or even higher sckermanns can be implemented, using the tools from
this Book.

When I plotted the pentation, I ask myself: "Why not to do in the
similar way the next ackermann?" The answer is simple: I already know,
how to do it. And the Reader, if reached here, also knows. Anyway, the
Book should be finished at some moment, see figure 19.8.

Instead of to add more examples for the tools described above, I think,
it is more important to consider at least one example, when the tools
above do not work. This example correspond to the transfer function,
that has no fixed points at all - neither real, nor even complex. Such
an example is considered in the next chapter, and, while typing this, I
believe, that will be the last example in this Book.

No rafting! Sit and finish your divine
Book “Superfunctions”

http://mizugadro.mydns.jp/t/index.php/File:Veslo.png

Figure 19.8: Wash yourself and finish your divine opera Khovanshina! [15]
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Chapter 20

Without fixed points

In this chapter I describe the last (for this book) example of the trans-
fer function, I consider function without fixed points. I suggest, that
the Reader tries to invent, to guess, to write-out some entire function
without fixed points, before to look at the formula below.

For the transfer function without fixed points, neither method of regular
iteration, nor the representation through the Cauchy integral can be
applied as is for the primary evaluation of superfunction. For this reason,
this example is interesting and deserves the special chapter. Here, I retell
results published recently [88].

1 Trappmann function
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Figure 20.1: y=tra(x) and y=exp(x)

I give name ‘Trappmann func-
tion” to the elementary function

tra(z) = exp(z) + z (20.1)

Function tra has no fixed point;
equation tra(L) =L has no solu-
tion. Function tra is compared to
exponent in figure 20.1.

Function tra had been expected
to be a trap, trump, to catch me
on my claim, that I can build-up
a superfunction for any holomor-
phic transfer function. Henryk
Trappmann had suggested this
function; so, I use first three car-
acters of his family name to de-
note it.
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Figure 20.2: u+iv = tra(x+iy) по формуле (20.1) [tramap]

Word “trap” can be interpreted also as gate, a way to the future successes
in solving of various transfer equations and iterates of tricky functions.
We see, function tra deserves the special name.

Complex map of function tra by (20.1) is shown in figure 20.2. In the
right hand side of the figure, the map looks similar to that go exponent:
at the background of the exponential growth, the linear addition in the
right hand side of equation (20.1) does not look impressive. In the left
hand side of the map, contrary, the exponent becomes negligible, and
the lines of constant real part and those of constant imaginary part of
the function form almost uniform grid of lines, parallel to the coordinate
axes.

Similar property, at least in some part of the complex plane, is shown by
the inverse function, id est, ArcTra = tra−1. Complex map of ArcTra
is shown in figure 20.3. I consider its evaluation in the next section.
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Figure 20.3: u+iv=ArcTra(x+iy) [arctranmap]

2 ArcTra, inverse of trappmann

In order to iterate a function, I mean non-integer iterates, first, we need
to learn to evaluate the integer iterates. For positive integer number of
iterate, we may apply the function to the argument so many times as
necessary. As for the negative iterates, we need the efficient algorithm
for the inverse function. Let this inverse function be called ArcTra, in
analogy tithe ArcSin, ArcTan and ArcBessel; in some wide range to
values of the argument (that includes the real axis), the ArcTra should
satisfy equation

tra
(

ArcTra(z)
)

= z [traArcTra] (20.2)

Complex map of function ArcTra is shown in figure 20.3.

270

http://mizugadro.mydns.jp/t/index.php/File:ArcTraMapT.jpg


Figure 20.4: Linear versus nonlinear

Perhaps, I should explain, why I de-
scribe in this Book so elementary
thing, as building-up of inverse func-
tion. In century 20, I used to deal
with students interested in nonlinear
optics and quantum optics. Some of
them were smart [28], but some stu-
dents had problem even with linear
optics. It costed to me certain efforts,
to explain them that there is a lot of
pretty “linear” science behind every so-
called “nonlinear” phenomenon, as it
is shown in figure 20.4. In the similar
way, it is vain to discuss non-integer it-
erate, while even the negative integer iterates are not yet implemented.
I describe the implementation of function ArcTra in this section.

During the USSR, there was some science there. The famous institutes
of the so-called "Soviet School" were Fizfak (Физфак, Physics depart-
ment of the Moscow State University) and Fiztech (Физтех, Moscow
Phisics-Technical Institute). As one can guess, Fizfak used to deal with
fundamental science, and Fiztech did with the applied one. In order
to compare a specialist graduated from Fizfak to that graduated from
Fiztech, in the USSR, the following example is popular. One, graduated
from Fiztech, can calculate or ensemble everything. But he/she under-
stands close to nothing. As for one graduated from Fizfak - Oooh.. he
or she understands everything, although can calculate close to nothing.
I remind that story for the analogy with figures of this section. Read-
ers, who are interested in the beautiful pictures, may look at the coplex
maps presented in this section. Then, these Readers can be qualified
with specification “understand everything”. As those graduated from
Fizfak.

For the implementation of the Abel function for the transfer function tra,
the inverse function ArcTra = tra−1 is used. Unfortunately, as in the
case of ArcSin and ArcFactorial, I could not find any complex double im-
plementation of ArcTra, and I had to make it by myself. This is general
rule: for the efficient implementation of the non-integer iterates of some

271



transfer function 1 , the inverse function also should be implemented. In
order to show the underwater stones, that may appear at calculation of
superfunctions, in this section, the efficient implementation of function
ArcTra is described.

It is not difficult to calculate the derivative of function tra:

tra(z) = z + exp(z) , tra′(z) = 1 + exp(z) [traagain](20.3)

The Newton method gives a good precision evaluating solution f of
equation

tra(f)=z [traf] (20.4)

fn+1 = fn +
z − tra(fn)

tra′(fn)
[arctranewton] (20.5)

f = lim
n→∞

fn [arctralim] (20.6)

under a simple condition: the initial approximation f0 indicates the cor-
rect branch of the resulting inverse function. It is general rule, that
any non-trivial holomorphic function (and, especially, entire function)
has some points, where its derivative is zero; and these points provide
branches of the inverse function. For this reason, for the robust im-
plementation, the correct choice of the initial approximation is essen-
tial: over-vice, the resulting function may return values from different
branches in some almost random, almost unpredictable way. In order
to indicate the correct branch, the expansions below are used.

Expansions of tra in vicinity of the saddle points ±πi can be inverted,
giving the expansions of ArcTra in vicinity of −1± iπ. These expansions
determine the positions of the branch points, and the direction of the
cut lines, seen in figure 20.3.

Consideration of the exponential in (20.3) as a small parameter and
as a big parameter gives two more asymptotic expansions. Together
with the Taylor expansion at unity and the expansions at the branch

1In principle, any holomorphic function can be declared as “transfer function”. I still specify
that tra is “transfer function”, in order to indicate my intention to iterate it and to distinguish it
from its superfunction and its Abel function.
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points, these expansions cover all the complex plane with the appropriate
primary approximations, providing several correct decimal digits of the
primary estimate f0 of value of function ArcTra. Then, few iterations
by (20.5) already reach the maximal precision (15 digits), available for
the complex double variables. This algorithm is used in the numerical
implementations of ArcTra and AuTra. 2

The easiest expansion is at the negative part of the real axis:

ArcTra(z) ≈ app4(z) = z − ez + e2z − 1

2
e3z (20.7)

The Readers are invited to plot the map of the agreement function

A4(z) = − lg

(
|tra(app4(z))− z|
|tra(app4(z))|+ |z|

)
(20.8)

The logarithmic growth of function ArcTra can be caught with the
asymptotic expansion This expansion provides the approximation

ArcTra(z) ≈ app3(z) = ln(z)

(
1 +

1

z

M∑
m=0

Pm(ln(z))

zm

)
(20.9)

where Pm is polynomial of mth order. In particular,

P0(`) = −1 (20.10)

P1(`) = 1− `/2 (20.11)

P2(`) = −1 + 3`/2− `2/3 (20.12)

P3(`) = 1− 3L+ 11`2/6− `3/4 (20.13)

P4(`) = −1 + 5`− 35`2/6 + 25`3/12− `4/5 (20.14)

The Taylor expansion of function tra at unity gives the approximation

ArcTra(z) ≈ app1(z) =
M∑
n=1

cn(z − 1)n [arctrap1] (20.15)

Some tens of coefficients c of this expansion can be calculated, invert-
ing the Taulor expansion of function tea at zero; the beginning of the
expansion can be written as follows:

2 Details of the algorithm and the maps of the primary approximations for ArcTra are loaded
to the special page http://mizugadro.mydns.jp/t/index.php/ArcTra .
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ArcTra(1+z)= z
2−

z2

16 + z3

192 + z4

3072 −
13z5

61440 + 47z6

1474560 + 73z7

41287680 −
2447z8

1321205760+..

AtM=21, for |z|<1, this approximation provides at least 12 significant
figures.

Expansion of ArcTra at point −1− iπ can be written as follows:

ArcTra(z) ≈ app2(z) =
M∑
m=1

c ∗m (z+1+iπ)m/2

= −iπ + i
√

2
√
z+iπ+1 +

1

3
(z+iπ+1)

− i(z+iπ+1)3/2

9
√

2
− 2

135
(z+iπ+1)2 + .. (20.16)

In more compact (and more efficient for the numerical implementation)
form, this expansion can be re-written as follows:

ArcTra
(
− 1−iπ+2t2

)
= −iπ + 2it+

2t2

3
− 2it3

9
− 8t4

135

+
it5

135
− 32t6

8505
+

139it7

42525
+ .. (20.17)

with obvious modification for the “conjugated” region

ArcTra
(
− 1 + iπ + 2t2

)
= iπ − 2it+

2t2

3
+

2it3

9
− 8t4

135

− it5

135
− 32t6

8505
− 139it7

42525
+ .. (20.18)

where t has sense of algebraic function of argument z of the arctrapp-
mann,

t =

√
z + 1− iπ

2
[arctrait] (20.19)

The cut of the square root function in (20.19) automatically determines
the cut lines of function ArcTra, seen in figure 20.3. I invite the Reader
to plot the maps of the agreement functions

Am(z) = − lg

(
|tra(appm(z))− z|
|tra(appm(z))|+ |z|

)
(20.20)

in the complex plane z = x+iy for m = 1, 2, 3, 4, id est, for the four
primary approximations suggested in this section.

When the approximations above are implementd and called with names
arctra1, arctra2, arctra3, arctra4, the numeral implementation of func-
tion ArcTra can follow the algorithm below:
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z_type arctran(z_type z) { DB x=Re(z), y=Im(z);
if( x>2.) return arctra3(z);
DB Y=fabs(y);
if(Y<M_PI){ if(x<-1.5) return arctra4(z);

if(Y<2.) return arctra1(z); }
if( Y>5. || x<-4. ) return arctra3(z);
if( y>0. ) return arctra2(z);
return conj( arctra2(conj(z)) );
}

Alternatively, function ArcTra can be expressed through the Tania func-
tion (5.3):

ArcTra(z) = z − Tania(z−1) [ArcTraTania] (20.21)

In such a way, in this Book, function Tania is used already 3 times
in three pretty different ways: First, in the simple model of the laser
amplifier, then, in the representation of function flog, and, en fin, now,
as an alternative implementation of ArcTra.

At least on vicinity of the real axis, function Tania can be expressed also
through other special functions namely, LambertW and WrightOmega,
see (5.2). In principle, one could use those representations instead of the
implementation described above. However, at large z, Tania shows the
growth similar to the proportional; so, the numerical implementation of
ArcTra through Tania may cause loss of precision due to the rounding
errors. However, the special implementation of ArcTra specifid above,
had been used for the testing of the numerical implementation of func-
tion Tania.

While both tra and ArcTra are described and implemented, function
tra can be iterated, using the representation through the superfunction
and the abelfunction. I call these functions SuTra and AuTra; then, a
usually

tran(z) = SuTra
(
n+ AuTra(z)

)
[tranz] (20.22)

In such a way I announce the future consideration: Function SuTra is
described in the next section, and function AuTra is treated soon after
that section.
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Figure 20.5: y=SuTra(x) and y=− ln(−x)

As it is mentioned above,
the Trappmann function tra
has no fixed points. For
this reason, the methods
described in the previous
chapters of this Book, can-
not be applied “as is”. Hen-
ryk Trappmann had ex-
pected, that it will be dif-
ficult, to construct super-
function for the function
tra, if at all.

However, the simple and ef-
ficient way to construct and
evaluate SuTra, which is su-
perfunction for the Trapp-
mann function, exist. Plot
of function SuTra is shown in figure 20.5 and compared to the graphic
of its asymptotic. Below I describe the construction of this function.

Many colleagues, instead of to trace the deduction, ask first “How did you
guess?” Following such an interest, first, I describe the hint, that leads to
the efficient representation of function SuTra. For the transfer function
tra, and its superfunction F , the transfer equation can be written as
follows:

F (z+1) = tra(F (z)) = F (z) + exp(F (z)) [trantrap] (20.23)

and re-written in the following form:

F (z+1)− F (z) = exp(F (z)) [trantrap1] (20.24)

In the left hand side of equation (20.24), I see something, that looks
similar to derivative of function F . This similarity can be expressed
with approximate equation

dF

dz
≈ 1

exp(−F )
(20.25)

that gives ∫
exp(−F )dF ≈

∫
dz (20.26)
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exp(−F ) ≈ −z (20.27)

This relation indicates, that expansion of superfunction F may begin
with the logarithmic term, namely the term, shown in figure 20.5.
However, the “heuristic solution” above is not a solution at all; in the
best case, it is only the asymptotic approximation. Substitution of the
approximation of function F into the transfer equation (20.23) gives, of
course, some residual. This residual indicates the form of the next term
of the expansion; and so on. In such a way, I guess the form of the
asymptotic solution F :

F (z) = FM(z) +O

(
ln(−z)

z

)M+1

[sutraFMO] (20.28)

where M is natural number, and

FM(z) = − ln(−z) +
M∑
m=1

Pm

(
ln(−z)

)
z−m [sutraFM](20.29)

where

Pm(z) =
m∑
n=1

am,nz
n [sutraP] (20.30)

Substituting this expansion into the transfer equation (20.23), I collect
terms with equal powers of z and equal powers of ln(−z). This gives
both, verification of the form of the asymptotic expansion (20.29),(20.30)
and values of coefficients a. Several coefficients a, calculated in this way,
are shown in Table 20.1.

Table 20.1: Coefficients a in the expansion (20.28),(20.29)

0 −1
2

a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8

1
6

−1
4

1
8

a2,3 a2,4 a2,5 a2,6 a2,7 a2,8

7
48

− 7
24

3
16

− 1
24

a3,4 a3,5 a3,6 a3,7 a3,8

647
4320

−35
96

5
16

−11
96

1
64

a4,5 a4,6 a4,7 a4,8

1427
8640

−4163
8640

25
48

−17
64

25
384

− 1
160

a5,6 a5,7 a5,8

1380863
7257600

−1883
2880

5963
6912

− 653
1152

305
1536

− 137
3840

1
384

a6,7 a6,8

3278773
14515200

−2171723
2419200

97603
69120

−3961
3456

537
1024

− 263
1920

49
2560

− 1
896

a7,8

251790467
914457600

−35981749
29030400

1049251
460800

−920881
414720

69953
55296

−13381
30720

4123
46080

− 363
35840

1
2048

Using Mathematica, coefficients a can be found with the following code:
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T[z_] = z + Exp[z];
Clear [n, m, M];
P[m_, L_] := Sum[a[m, n] L^n, {n, 0, m}]; P[m, L];
F[z_]=-Log[-z]+a[1,1] Log[-z]/z+Sum[P[m,Log[-z]]/z^m,{m,2,M}]
M = 12;
F1x = F[-1/x + 1];
Ftx = T[F[-1/x]];
s[1] = Series[F1x - Ftx, {x, 0, 2}];
t[1] = Extract[Solve [Coefficient[s[1], x^2] == 0, {a[1, 1]}], 1]
A[1, 1] = ReplaceAll[a[1, 1], t[1]];
su[1] = t[1]

m = 2; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];
t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];
u[m] = Collect[t[m], L];
v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];
w[m] = Table[a[m, n], {n, 0, m}];
ad[m] = Extract[Solve[v[m], w[m]], 1];
su[m + 1] = Join[su[m], ad[m]];
ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]

m = 3; s[m] = ReplaceAll[Series[F1x - Ftx, {x, 0, m + 1}], su[m]];
t[m] = Coefficient[ReplaceAll[s[m], Log[x] -> L], x^(m + 1)];
u[m] = Collect[t[m], L];
v[m] = Table[Coefficient[u[m] L, L^(n + 1)] == 0, {n, 0, m}];
w[m] = Table[a[m, n], {n, 0, m}];
ad[m] = Extract[Solve[v[m], w[m]], 1];
su[m + 1] = Join[su[m], ad[m]];
ReplaceAll[ReplaceAll[F[x], su[m + 1]], Log[-x] -> L]

and so on m= 4, m= 5, etc. I do not arrange here the loop “For” with
respect to m, in order to keep the code explicit and simplify the tracing
step by step.

Expression (20.29) can be considered as primary approximation of su-
perfunction of the Trappmann function (20.1). Then, the exact solution
F of the transfer equation appears as limit

F (z) = lim
k→∞

trak
(
FM(z−k)

)
[exa] (20.31)

In order to get superfunction SuTra, that satisfies also the additional
condition

SuTra(0) = 0 [SuTra0] (20.32)

I set

SuTra(z) = F (z + x0) [SuTraDef] (20.33)
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Figure 20.6: u+iv = SuTra(x+iy) по формуле (20.33) [sutramap]

where x0≈−1.1259817765745026 is real solution of equation

F (x0) = 0 [x00] (20.34)

Figure 20.5 shows y = SuTra(x) versus x. For comparison, the thin
curve shows the leafing term of the asymptotic representation of SuTra,
id est, y = − ln(−x). In the left hand side of the figure, graphic of
SuTra approaches its asymptotic.

Complex map of function SuTra is shown in figure 20.6. Being far from
the positive part of the real axis, function SuTra looks similar to function
z → − ln(−z), as it is suggested by the leading term of its asymptotic
representation. Lines of the constant real part look similar to circles,
while lines of constant imaginary part look similar to the straight lines;
this make the map to look similar to the map of logarithm.

279

http://mizugadro.mydns.jp/t/index.php/File:SuTraMapT.jpg


y

8

6

4

2

0

−2

−4

−6

−8

−8 −6 −4 −2 0 2 4 6 8 x

u
=
−2
.2

u
=
−2

u
=
−1
.8

v
=

2

v
=

1

v=0.2

v=0

v=−0.2

v
=
−1 v

=
−

2

y

8

6

4

2

0

−2

−4

−6

−8

−8 −6 −4 −2 0 2 4 6 8 x

u
=
−2
.2

u
=
−2

u
=
−1
.8

v
=

2

v
=

1

v=0.2

v=0

v=−0.2

v
=
−1 v

=
−

2

http://mizugadro.mydns.jp/t/index.php/File:Sutralomap.jpg

Figure 20.7: Complex maps of functions f2 by (20.35) and f4 (20.36),
overlapped with map of function f∞ by (20.37)

I would like to show, how the logarithmic function z → − ln(−z) can
be approximated with the entire function. Figure 20.7 shows complex
maps of the entire functions

f2(z) = SuTra(2z) + ln(2) (20.35)

f4(z) = SuTra(4z) + ln(4) (20.36)

for comparison, each of these maps is overlapped with the map of

f∞(z) = − ln(−z) (20.37)

In the right hand side picture of figure (20.7), the levels of different
functions are so close, that it is difficult to see, which of functions does
each level correspond to. For all z, except zero and positive part of the
real axis, sequence

Φn(z) = −
(

SuTra(−nz) + ln(n)
)

[phin] (20.38)

at big n approximates ln(z). Up to my knowledge, expression (20.38)
provides the range of approximation of logarithm with entire functions,
that is wider than that of all approximations ever suggested before pub-
lication [88].

I have no idea, what for the approximation of logarithm with entire
function can be used. This approximation appears here as a by-product
at construction of function SuTra. But is someone needs such an ap-
proximation, it is done and it is here, formula (20.38).
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4 Implementation of SuTra and the testing

The key parameters of any approximation are the range of applicabil-
ity, the precision and the number of elementary operations that should
be performed for each evaluation. If the range of applicability is wide
(for example, cover the range of holomorphism of the approximated
function), the precision is close to the that allowed at the computer rep-
resentation of numbers, and the complex maps can be plotted in real
time, then I qualify the solution as “exact”. This implies, that, if, for
some reason, the precision needs to be improved, the implementation of
the high precision code is straightforward, id est, can be realised with
the same formulas.

If some function is supplied with definition, the properties are described,
and the efficient precise algorithm for the evaluation is presented, I treat
such a function as a “special function”. Then, if the solution of some
problem is explicitly expressed in terms of the special functions, I call it
“exact solution”. I place this explanation for my old coauthor, who until
now believes, that π is approximate number. However, the fundamen-
tal mathematical constants are, contrary, exact numbers, in the sense
mentioned above; neither π, nor values of superfunctions constrcted in
this Book are exceptions: they are exact and can be evaluated with any
required precision.

Following the ideology of the preamble of this section, I consider here the
range of values of the argument z, at which the approximation FM(z+x0)

by (20.29) can be considered as good approximation of SuTra(z). Then
I describe the algorithm, based on this analysis.

For the practical reasons (in order to get the complex double implemen-
tation, that can be easily reproduced and verified), I took 12 terms in
the expansion, id est, M=12. For the dozen terms, the ageement

A(z) = − lg

(
|FM(z+x0)− SuTra(z)|
|FM(z+x0)|+ |SuTra(z)|

)
[sutraA](20.39)

had been analysed. Levels of this function are shown in figure 20.8.

For the precision complex double, values outside the “thick” contour in
figure 20.8 can be used “as is”. For other values, formula
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Figure 20.8: Map of A = A(x+iy) by (20.39)

SuTra(z) = trak(SuTra(z−k)) [SuTrak] (20.40)

is used with appropriate k, in such a way, that the inner argument is
outside the “thick” contour in figure 20.8. This thick contour is not part
of the map; it is formed with the segment along the line x=−11, arc
with centre at point (5, 0) of radius 18, and the half-line along y=6.
Outside the thick contour in figure 20.8, the precision of evaluation of
function SuTra is limited mainly by the rounding errors. Values outside
the “thick contour” are used for the numerical implementation directly.
For other values, formula 20.40 is used with appropriate value of k. This
algorithm is used for the numerical implementation of function SuTra,
http://mizugadro.mydns.jp/t/index.php/Sutran.cin

At the evaluation of function SuTra, function tra should be evaluated of
order of ten times. (However, this depend on the initial value). Function
tra is fast, because tra(z)=z+exp(z). In such a way, the evaluation of
SuTra is only for an order of magnitude slower, than evaluation of other
special functions like exp, erfc or BesselJ. This is one of reasons why I
qualify SuTra as special function.

For iterates of the Trappmann function, I need also the inverse function,
AuTra = SuTra − 1. This function is shown in figure 20.9 and described
in the next section.
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Figure 20.9: y=AuTra(x) by (20.47) and two its asymptotics by (20.44)

5 AuTra, abelfunction of trappmann

This section describes evaluation of the inverse function of SuTra, id est,
the Abel function for the Trappmann function tra. I call this abelfunc-
tion AuTra. Its explicit plot is shown in figure 20.9; for comparison, in
the same picture, the two asymptotics of function AuTra are shown.

Complex map of function AuTra is shown in figure 20.11.

For the transfer function tra, the abeldunction G satisfies the Abel equa-
tion

G(tra(z)) = G(z) + 1 [abeltraeq] (20.41)

In order to see the asymptotic expansion of the solution G, I rewrite
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this equation as

G(z + ez)−G(z) = 1 [abeltraeq1] (20.42)

and expand the left hand side, using ez as small parameter:

G′(z)ez +G′′(z)e2z/2 + .. ≈ 1 [abeltraeq3] (20.43)

This expansion allows to guess the asymptotic solution:

G(z) ≈ z

2
− e−z − ez

6
+

e2z

16
− 19e3z

540
+

e4z

48
− 41e5z

4200
+O(e6z) (20.44)

The coefficients of the expansion above are calculated and evaluated
with the Mathematica code below:

tra[z_]=z+Exp[z];
g0[z_] = z/2 - Exp[-z] + Sum[c[n] Exp[n z], {n, 1, 20}]
n = 1; s[n] = Series[g0[Log[t]] + 1 - g0[tra[Log[t]]], {t,0,n+1}]
u[n] = Extract[Solve[Coefficient[s[n], t^(n+1)] == 0, c[n]], 1]
g[n, z_] = ReplaceAll[g0[z], u[n]]
For[n = 1, n < 20, n++;

s[n] = Series[ g[n-1,Log[t]]+1-g[n-1,tra[Log[t]]],{t,0,n+1}];
u[n] = Extract[Solve[Coefficient[s[n], t^(n+1)] == 0, c[n]],1];
g[n,z_] = ReplaceAll[g[n-1, z], u[n]]; ]

g[n, z]
Table[Coefficient[g[n, z], Exp[n z]], {n, 1, 20}]
N[Table[Coefficient[g[n, z], Exp[n z]], {n, 1, 20}], 18]

The same coefficients can be obtained also by the inversion of the asymp-
totic expansion of function SuTra. Note, that the asymptotic expansion
of AuTra is simpler, than that of SuTra.

For some fixed integer M , define the primary approximation as trunca-
tion of the series above:

GM(z) =
z

2
− e−z +

M∑
m=1

cmemz [autraGM] (20.45)

Define function G as limit

G(z) = lim
n→∞

(GM(ArcTran(z)) + n) [autraG] (20.46)

AuTra can be expressed through G with

AuTra(z) = G(z)−G(0) ≈ G(z) + 1.1259817765745026 (20.47)

The constant G(0) can be interpreted also as negative of coefficient x0

in equation (20.34), id est, x0 =−G(0).
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Figure 20.10: Map of agreement A = A(x+iy) by (20.50); range (20.49)
is shaded A = A(x+iy) по формуле (20.50) [autraAgreMap]

For the numerical implementation, we need to choose the appropriate
numberM in and to determine the number n of iterations approximating
limit in equation (20.46). The reasonable choice is M = 9. Then, the
primary approximation

SuTra(x+ iy) ≈ g9(x+ iy) (20.48)

is used for the region defined with condition

|y|<3 and |y|/3+x<3.5 (20.49)

This region is shaded in the figure 20.10 Also, at the same figure, the
map of agreement A is shown,
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A(z)=− lg

(
|SuTra(gM(z))−z|
|SuTra(gM(z))|+|z|

)
(20.50)

Map in figure (20.10) can be considered also as the numerical verification
of relation

SuTra(AuTra(z)) = z [SuTraAu] (20.51)

In the shaded range, for the numerical implementation, the relation
(20.51) holds with at least 15 decimal digits; as it is supposed to be
while AuTra is abelfunction, corresponding to superfunction SuTra for
the transfer function tra.

Region, where the primary approximation is used, can be optimised,
approaching to the level A=15 and improving the algorithm. I suggest,
the Reader can do the as an exercise; I hope, the reader will not forget
to test the improved algorithm.

The primary approximation (20.48) can be used only in the narrow range
of values of the argument shaded in figure autraAgreMap. If the initial
argument z = x+ iy happens to be outside the shaded region, then,
the function ArcTra = Tra−1 is applied n times with such n, that the
argument comes to the shaded range. Then, approximation

AuTra(z) ≈ g9(ArcTran(z)) + n [AuTrag9] (20.52)

is used to evaluate the function.

The cuts of the range of holomorphism of function ArcTra determine
also the cuts the range of holomorphism of function AuTra. These cuts
are seen in figures 20.3 and 20.11. At large |z|, function AuTra(z)
shows the slow growth, except the half-strip <(z) < 0, |=(z)| < π. In
this half-strip, at large negative values of <(z), function |AuTra(z)|
increases exponentially. In particular, this refers to the real values of
the argument. This behaviour agrees with that of SuTra shown in figure
20.5.

Readers are invited to download the generators of the figures of this
chapter, together with implementations of SuTra and AuTra, and inves-
tigate numerically the ranges of applicability of identities

AuTra(SuTra(z)) = z , SuTra(AuTra(z)) = z (20.53)

With functions SuTra and AuTra, described in this chapter, one can
evaluate the non-integer iterates of function tra. These iterates are de-
scribed in the next section.
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Figure 20.11: u+iv = AuTra(x+ iy) [autraMap]

6 Iterates of trappmann

With functions SuTra and AuTra, the iterate of the Trappmann function
can be expressed as follows:

tran(z) = SuTra
(
n+ AuTra(z)

)
[traite] (20.54)

As usually, the number n of iterate has no need to be integer. For real
value of the argument and some real values of the number n, the iterates
of the Trappmann function are shown in figure 20.12.

Iterates of function tra(z) = z+ez look similar to those of other growng
transfer functions. These iterates provide the smooth transfer from the
function tra to its inverse function ArcTra = tra−1, and zeroth iterate
is the identity function.
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Figure 20.12: y=tran(x) versus x for various n by (20.54)

7 Relation to other functions

Function SuTra can be expressed through function SuZex

SuTra(z) = SuZex(ln(z)) [SuTraSuZex] (20.55)

and function AuTra can be expressed through function AuZex

AuTra(z) = exp(AuZex) [AuTraAuZex] (20.56)

One can look at expansions of SuZex and AuZex from chapter 12 and
see, that expansions for functions SuTra and AuTra can be obtained
with relations (20.55) and (20.56). However, these representations may
loss some precision, especially in the regions where the logarithm has low
derivative, and the exponential has high derivative. So, for the numerical
tests, I use the special representations from the previous sections.
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In order to make the deep test of relations, suggested in this Book, the
robust representations are required for all the functions involved. For
these reasons, the special representations and implementations for func-
tions ArcTra, SuTra and AuTra are described above. The readers are
invited to make the asymptotical analysis for the relations above. Also,
the numerical verification can be used. For moderate values of the argu-
ment, the representation of SuTra through SuZex loss only few decimal
digits in the precision. I load the descriptions of functions mentioned in
this section,
http://mizugadro.mydns.jp/t/index.php/ArcZex
http://mizugadro.mydns.jp/t/index.php/AuZex
http://mizugadro.mydns.jp/t/index.php/SuZex
http://mizugadro.mydns.jp/t/index.php/ArcTra
http://mizugadro.mydns.jp/t/index.php/SuTra
http://mizugadro.mydns.jp/t/index.php/AuTra,
together with their complex double numerical implementations.

On this I finish the consideration of the Trappmann function and its
iterates. And at this point I finish consideration of examples of transfer
functions, superfunctions, abelfunctions and the non-integer iterates.
Perhas, I should explain, why I had spent so many efforts on this. I
think, the best explanation is to remind the old folkloric story below.

Оne-legged friend of one Taylor asked him to sew the special pants with
one leg. He payed well for the custom pants, but he needed also the pants
for his dog, who, as himself, had lost one leg long time ago.Taylor sewed
the pants for that 3-leg dogs. The pants were beautiful, and friend of
friend asked him the same for his normal, 4-leg dog.. The story is long,
the starfishеs and octopuses are mentioned there. En fin, the Taylor had
elaborated tools to sew pantaloons for creatures with arbitrary number
n of legs. And if tomorrow some extraterrestrials with n legs come, the
Taylor already has pantaloons for them.

I typed the story above in order to explain better, what is scientific re-
search and what do the researchers. You may consider this as a kind of
joke, but if someone needs to approximate, for example, the logarithmic
function with entire functions, - then, like the Taylor mentioned, I al-
ready have such an approximation; it can be expressed through SuTra
by formula (20.38). This may be considered as a small specific addition
to various motivations suggested in the Preface.

On this point I stop the main body of the Book and go to overview the
results presented above. This makes the content of the next chapter.
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Chapter 21

Conclusion

Figure 21.1:

This chapter discusses the same, as the Intro-
duction. The main difference of this chapter
from the introduction is, that I assume, that
the reader already has browsed at least some
of the previous chapters, as it is shown in figure
21.1, and understands sense of some notations
used. In order to show the need of conclusion, I remind the old leyend.

One emperor wanted to study history. He ordered the Ministry of Sci-
ence to develop a full course of the world-wide history. The greatest
scientists were working on this tutorial during many years. Finally, the
heavy truck arrived with thousands volumes of "Complete Course of
the World History". The Emperor realised that all his life will not be
sufficient to read this course. The Emperor asker the President of the
Ministry of Science to shorten the course. The historians worked on the
second edition during few years, and then, in a big pack, "Trilogy of the
World History" had been deliverer to the Emperor. But the Emperor
already had weak eyes, and he could not read that Trilogy. Again, the
historians had to shorten the course. A year later, the Top Historician
came to the Emperor and gave him the pamphlet "A Brief History of
the Imperial Family." The Emperor was old and ill, and could not even
read that brochure. He asked Historian whether the brochure can be
reduced. The Historian answered: “No new edition is necessary. I’ll tell
you right now: People were born, suffered and died.”

Several colleagues had told me, that this Book is too thick, and asked,
if it can be shorter. As the historian in the story above, I follow the
requests and describe the topic of superfunctions briefly. Below, the
main results of the Book are collected in a single section.
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1 Basic results

Holomorphic functions can be iterated. The iterates can be expressed
through the superfunction and the abelfunction; then, the number of
iterate has no need to be integer.

In order to iterate some holomorphic function T , first, I declare it as
“transfer function”. Then, I construct for the superfunction F , that is
solution of the transfer equation

F (z+1) = T
(
F (z)

)
I need also the inverse function, G= F−1. I call it “Abel function” or
“abelfunction”. It satisfies the Abel equation

G
(
T (z)

)
= G(z) + 1

When superfunction F and the Abel function G are established, the
iterates of function T can be expressed as

T n(z) = F
(
n+G(z)

)
where the number n of iterate has no need to be integer; the transfer
function can be iterated some non-integer, rational or even complex
number of times. However, for the integer n, the conventional expression
of iterates holds:

T n(z) = T
(
T
(
..T (z)..

))︸ ︷︷ ︸
n evaluations of function T

Solution of the transfer equation is not unique. If some solution F is
found, then, one additional solution f can be constructed with modifi-
cation of the argument,

f(z) = F
(
z + θ(z)

)
where θ is periodic holomorphic function with period unity. Accordingly,
the new abelfunction g can be established. Then, the new superfunction
and the corresponding abelfunction will provide new, different iterates
of the transfer function.

Variety of superfunctions can be narrowed, if we establish, postulate the
asymptotic behaviour of the superfunction in the complex plane. The

291



superfunction with simple asymptotic behaviour I treated as principal.
Other superfunctions can be expressed with modification of argument
of the principal superfunction. Holomorphic periodic function grows
at least exponentialy (as sin and cosine to in the direction of imaginary
axis); even a small periodic modification is easy to reveal in the complex
plane. For this reason, for uniqueness, it is important to build-up the
superfunctions for the complex argument, even if they are supposed to
be used for the real argument. The criterion of holomorphism indicates,
which of superfunctions is expected to have the physical sense and should
be considered as “true” one.

Some superfunctions and abelfunctions have special names. These func-
tions are collected in Table 3.1. Some of them are widely known; one
may use them without to know, that they are superfunctions.

In principle, for any holomorphic function F , one can built-up the in-
verse function G = F−1 and define T (z) = F

(
1 + G(z)

)
. Then, such

function T can be treated as transfer function with known superfunction
F , abelfunction G and non-integer iterates T n(z) = F

(
n+G(z)

)
.

The inverse problem, id est, construction of superfunction F for some
given transfer function T , is considered in this Book. For this construc-
tion, the key question is about the fixed points of the transfer function,
id est, about solutions L of the equation

L = T (L)

As physicist, I am interested mainly in the real-holomorphic functions,
for which T (z∗) = T (z)∗. In order to reduce variety of solutions of the
transfer equation, I postulate, that the superfunction approaches the
fixed point L at the infinity.

Methods of asymptotic expansions of the superfunctions are suggested
in the Book. At infinity, the superfunction is postulated to approach
the fixed point of the transfer function. In many cases, this approach
is exponential; and, in many cases, the exact superfunction appears
as the limit at the multiple application of the transfer function to the
asymptotic solution with displaced argument.

It may happen, that all the fixed points L of the transfer function T are
complex, not real. In particular, this is case of the natural exponent.
Then, the superfunction can be expressd through the Cauchy integral
and solution of the corresponding integral equation. Historically, the
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first complex map of superfunction of exponent, had been constructed
with this representation. Complex map of tetration is shown in figure
14.12 and at the First page of the cover of this Book. Tetration tet
appears as solution of the transfer equaiotn

tetb(z+1) = etetb(z) , tetb(0) = 1

tetb(z) is supposed to be bounded in the strip |<(z)|≤1. For real b>1

and real x, dependence y = tetb(x) is shown in figure 17.1. Tetration
can be constructed also for the complex base; the example with b =

1.52598338517+0.0178411853321 i is shown in figure 18.3.

It may happen, that the transfer function T has no fixed point at all.
One example of such a function is the Trappmann function

T (z) = tra(z) = z + exp(z)

However, even for this function, the superfunction can be constructed.
It is called SuTra; its map is shoe in figure 20.6. This is entire function
with logarithmic asymptotic; up to my knowledge, before publication
[88], no one such function had been suggested.

Since 2010, I claim, that I can construct the superfunction F , abel-
function G and non-integer iterates for any growing real-holomorphic
transfer function T . This Book describes the sequence of attempts to
negate, refute this claim. All these attempts failed: I could not find the
transfer function, for which I cannot construct the superfunction. In
support of my claim, the Book presents examples of transfer function
with real fixed point(s), examples with complex fixed points, and the
example of the transfer function without any fixed point. While all the
tests are successful, the ability of construction of superfunctions can be
interpreted as a scientific fact.

I just have mentioned, what is done. But, as usually, a lot of can be
done about superfunctions. The next section is dedicated to this.

2 Future work

I tried to collect that I know about superfunctions and iterates, in this
Book. However, always some phantasies remain, what else would be
interesting to do. Some of hese phantasies are collected below.
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The more efficient, more simple and more rigorous proofs of the existence
and uniqueness of superfunction may require the future work, and also
the additional conditions, that should be applied in order to provide the
uniqueness of superfunction.

Application of superfunctions into the laser science may be subject for
the future analysis. Especially, this refers to the laser science, where the
physical sense of superfunctions and the non-integer iterates is especially
explicit.

The future work may be related to the specific case of superfunctions,
namely, ackermanns. Figure 19.7 shows the graphics for the first five
ackermanns: addition of constant, multiplication to constant, exponent,
tetration and pentation. I think, similar graphics can be constructed
also for higher ackermanns.

The important suggestion for the future work is related with the au-
tomatisation of construction of superfunctions. I mean the automatic
algorithm, that begins with the transfer function, searches for the ap-
propriate fixed points of this function (if the transfer function has fixed
points), chooses the appropriate asymptotic for the superfunction, use
it to build-up the superfunction, build-up the corresponding abelfunc-
tion and calculates the non-initeger iterates. The software Mathematica
already has name for such a procedure; it is called Nest. Up to date of
preparation of this Book, the routine Nest can deal only with very spe-
cial case, namely, when the number of iterate is expressed with positive
integer constant; in other cases, the call is interpreted as error. The up-
grade of that routine for the real and complex number of iterate would
be intersting.

Phantasies and curiosity should be motivations for any serious scientific
research. I collect the tools that can be used in this work. Many of them
are described in this Book.

3 Notations

I try to use the same notations through the whole Book. In order to
approach this, the notations are different from those used in the original
publications. Some notations are collected in tables 21.1, 21.2. I collect
the most important notations, and those, that often cause confusions.
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Table 21.1: Notations, Latin alphabet

A(m, z) = A
(
m−1,A(m, z−1)

)
canonical ackermann (19.14)

Ab,n ackermann to base b of order n, (19.7)
an Coefficinets in various asymptotic expansions
AuExpb = SuExp−1

b growing abelexponent to base b
AuTra Abel function for the Trappmann function
AuSin abelsine
Arc prefix indicating the inverse function
b base of ackermanns, (19.1)
cn coefficients in expansions, for ex., (10.47) or (20.15)
Cn coefficients in expansions, for ex., (7.12)
e = exp(1) ≈ 2.7 base of natural logarithms
exp exponent to base e

expb exponent to base b
F Name, used to denote superfunctions
Factorial(z) = z! holomorphic solution of equations z! = z (z−1)!

f name used for various functions
G = F−1 name used to denote abelfundtions
h=Elu0.5

s half iterate of logistic operator
i =
√
−1 imaginary unit i2 = −1

i variable, usually it takes integer values
K plug for the contour integral rfK, or ek

k increment in the asymptotic representation of superfunction (6.3)
L fixed point of transfer function T , id est, solution of T (L)=L

ln logatirhm to base e

logb Logarithm to base b

M number of terms in truncated series
O some function that grows-up not faster than its argument
P period or asymptotic period; also is used as inverse of function Q
Q is used as inverse function of P in table 3.1
Super prefix to name of function, indicating its sperfunction
s parameter of the logistic operator (7.1)
T transfer function
tet natural tetration (14.28), [54]
tetb solution f of equaitons f(z+1)=bf(z), f(0)=1, see fig. 17.1
u real part of function in the complex map
v imaginary part of function in the complex map
x used as dummy parameter, that takes real values
y used as dummy parameter, that takes real values
z used as dummy parameter, that takes complex values; often z=x+iy
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Table 21.2: Notations, Greek alphabet

α , β , γ used as parameters in the expansions
η=exp(1/e)≈1.444667861 Henryk base
ε = exp(kz) small parameter in the expansion of superfunctions
θ holomorphic periodic function with period unity

ζ ζ(z)=
∞∑
n=1

1

nz
, Riemann function (8.9), [13, 18]

Ω contour of integration in the Cauchy formula (14.21)

4 Afterwards

The first (Russian) version of this Book happened thicker, than I had
expected. and could be much thicker; because all the time, there is the
evil illusion, that some additonal small formula should greatly simplify the
understanding. In addition, with each formula from the book, several
additional picture can be plotted. However, I think, for the Reader, it
will be much better, to plot some picture, than to see the gallery of
similar figures in the Book.

I tried to make this Book shorter, than its first Russian version. Actually,
the Book happened to be longer, thicker, because I include here the
chapter about the Nemtsov function Nemq(x) = x+x3 + qx4; this is
important example of the exotic iteration of transfer function with the
specific expansion at the fixed point.

Some things are still dropped out from the Book. I did not include
the holomorphic extension of tetration beyond the cut lines. I did not
include figures to iterates of the exponent to complex base. And I did not
include many other figures, assuming, that the Readers can download
the generators of the figures and plot all modifications they need.

The Readers are invited to download algorithms, figures and their gen-
erators from http://mizugadro.mydns.jp/t/index.php/Category:
Book; with these tools, the colleague may continue from that points
of research, where I am now. I beleve, this is correct style of making
science, where all the results are available for researchers. This is sup-
posed to simplify the verification and refutation (if anything is seriously
wrong), as well as revealing and correction of mistakes in formulas and
bugs in the algorithms. I invite the colleagues to expose their results in
a similar way.
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Figure 21.2: Near relatives, whose existence is essential for writing of this Book

5 Acknowledgement

I am grateful to relatives (Figure 21.2) for the tolerance with respect to
this Book, it took much more time and efforts, than expected.

Figure 21.3: Bookorm [117]

I am grateful to colleagues, who helped
me to collect the literature on super-
functions (Figure 21.3) and arrange the
server, database and mediawiki: with-
out these instruments, I would get lost
among a thousand files used for genera-
tion of this Book.
The goal was to get possibility to answer
the questions on superfunctions with ei-
ther Nobody knows this! or Das ist in
meinem Buch! (see figure 21.4). Per-
haps, this goal is not reachable; the new algorithms are expected to be
reported [93]. Tanks to colleagues who keep doing superfunctions.

Figure 21.4: Das ist in meinem Buch! [ainu]
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Chapter 22

Supplement

1 About the cover

At the front cover of this book, the map is shown, from http://mizugadro.
mydns.jp/t/index.php/File:Tetma.jpg

This is one of versions of figure 14.12; Some details and labels are re-
moved in order to simplify the aesthetic view.

The cover of the Russian version is loaded as http://mizugadro.mydns.
jp/t/index.php/File:Covervi.jpg
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Figure 22.1: The reader should have Maple-10 installed, in order to reproduce the
plots above with the codes supplied at the top of each picture

2 Maple and tea

Here is the company C of computers; they master:
Per each two years, their PCs run twice faster.
Here is company S of the soft; they work hard as plowers,
So, each new release runs 0.7 times slower;
The soft is to run at the user’s PC,
Which is made, of course, by the company C.
Here is user U, buys from C and from S,
the newest model and the latest release.
U presses some key, say, key number K;
The soft S responds, with some delay,
during some time, say, during time t,
to let user U to have some tea.
How many releases per year does sell S to U
to let him have tea, while he has nothing to do,
just waiting response by the soft to key K,
keeping the same time t of delay,
neutralizing the efforts of company C
to run faster U’s task at his modern PC?
This problem above is not correct, because
The tea-concern, together with C, of course,
support the efforts of the company S
to make even bigger the newest release,
To force U buy more tea and a newest PC,
to boost business of C and the concern of tea.
(2007)

299



y

1

0

−1

0 1 π/2 2 3 x

v=0

u
=

2

u
=

1

u=
0

u=−1

v=0

u
=
−

2
u=−

1

u=−0.5

v
=

3
v

=
2

v
=

1

v
=

0.
2

v
=

0
v

=
−

0.
2

ht
tp

:/
/m

iz
ug

ad
ro

.m
yd

ns
.j

p/
t/

in
de

x.
ph

p/
Fi

le
:A

us
in

ta
y4

0t
50

.j
pg

Figure 22.2: Map of the Taylor expansion f of AuSin with 40 terms in the standard
notations. u+iv = f(x+iy).

3 Taylor expansion of AuSin

In chapter 13, the Taylor expansion of function AuSin at π/2 is men-
tioned, (12.24). In figure 22.2, the complex map of the truncated series
with 40 terms is shown. This map should be compared to Figure 12.4.
Such an expansion can be used to boost the precise evaluation of AuSin
for values of the argument in vicinity of π/2. Also, coefficients of this ex-
pansion can be used for evatuation of coefficients of expansion of SuSun
at zero; for example, wight routine InverseSeries.
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4 Sites

Goal to his Book is not to attract attention of Reader to the cites below,
but to provide the description of superfunctions, that releases the reader
from need to browse the sites below.
http://allmybase.com/dropbox/tetration.pdf
http://cdn.bitbucket.org/bo198214/bunch/downloads/main.pdfH.Trappmann,
D.Kouznetsov. 5+ methods for real analytic tetration. June 28, 2010.
http://en.citizendium.org/wiki/Cauchy-Riemann_equations
http://en.citizendium.org/wiki/Superfunction
http://en.citizendium.org/wiki/Tetrational
http://en.citizendium.org/wiki/Holomorphic_function
http://en.wikipedia.org/wiki/Abel_equation
http://en.wikipedia.org/wiki/Abel_function
http://en.wikipedia.org/wiki/Cauchy’s_integral_formula
http://en.wikipedia.org/wiki/Hellmuth_Kneser
http://en.wikipedia.org/wiki/Niels_Henrik_Abel
http://en.wikipedia.org/wiki/Superfunction
http://en.wikipedia.org/wiki/Tetration
http://math.eretrandre.org/tetrationforum/index.php
http://math.stackexchange.com/tags/tetration
http://mathworld.wolfram.com/Tetration.html
http://oeis.org/wiki/Tetration
http://mizugadro.mydns.jp/t/index.php/Abel_function
http://mizugadro.mydns.jp/t/index.php/ArcShoka
http://mizugadro.mydns.jp/t/index.php/AuSin
http://mizugadro.mydns.jp/t/index.php/AuTra
http://mizugadro.mydns.jp/t/index.php/AuZex
http://mizugadro.mydns.jp/t/index.php/Complex_map
http://mizugadro.mydns.jp/t/index.php/Doya_function
http://mizugadro.mydns.jp/t/index.php/Factorial
http://mizugadro.mydns.jp/t/index.php/Holopmorphic_extension_of_Collatz_
Subsequence
http://mizugadro.mydns.jp/t/index.php/Keller_function
http://mizugadro.mydns.jp/t/index.php/LambertW
http://mizugadro.mydns.jp/t/index.php/Logistic_sequence
http://mizugadro.mydns.jp/t/index.php/Regular_iteration
http://mizugadro.mydns.jp/t/index.php/Shoka_function
http://mizugadro.mydns.jp/t/index.php/Superfunction
http://mizugadro.mydns.jp/t/index.php/Superfactorial
http://mizugadro.mydns.jp/t/index.php/SuSin
http://mizugadro.mydns.jp/t/index.php/SuTra
http://mizugadro.mydns.jp/t/index.php/SuTra
http://mizugadro.mydns.jp/t/index.php/Table_of_superfunctions
http://mizugadro.mydns.jp/t/index.php/Tania_function
http://mizugadro.mydns.jp/t/index.php/Tetration
http://www.proofwiki.org/wiki/Definition:Superfunction
http://www.proofwiki.org/wiki/Definition:Tetration
http://www.tetration.org/Tetration/index.html D.Geisler. What lies beyond
exponentiation?
http://www.youtube.com/watch?v=z-mfxP1TmfwKasane Teto. Tetration ↑↑. 2012.
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5 New notations

In future, the new notations will be requested. Below, I suggest tentative
names for them:
Transferation. For given function f , construction of the transfer func-
tion T (z) = f

(
1+f−1(z)

)
. For this transfer function T , function f is

superfunction and f−1 is abelfunction.
Transation. For given function f , construction of the transfer function
T (z) = f−1

(
1 + f(z)

)
. For this transfer function T , function f−1 is

superfunction and f is abelfunction.
Superation. For given function f , construction of superfunction F as
solution of equation F (z+1) = f

(
F (z)

)
. In this case, f appears as

transfer function.
Supation. For given function f , construction of abelfunction G as
solution of the Abel equation G

(
f(z)

)
=G(z)+1. In this case also f

appears as a transfer function.

F

←
tr
an

sf
er
at
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n
←

−→
su
pe

ra
ti
on
−→

T G−→ supation −→
← transfation ←

←−
InverseFunction

−→

Figure 22.3: T , F and G=F−1

Transferation is inverse operation with
respect to suppuration. Transfation is
inverse operation with respect to supa-
tion. This is shown in figure 22.3 for
the transfer function T , superfunction
F and abelfunction G.

This Book is dedicated to superation
and supation, and also to the additional
requirements, that provide the unique-
ness of superfunction F and abelfunc-
tion G.

In this Book, I do not use the new words
shown in figure 22.3; while, there is no

need to use them. In the similar way, there was no need in the special
terms for differentiation and integration, until these operations became
routines. However, the terms shown in figure 22.3 will be requested as
soon as the automatic construction of superfunctions and abelfunctions
will be realised. In language Mathematica, for the superation, there exist
name Nest (until year 2017, this routine is supported only for natural
values of the number of iterate).

I am not sure, that namely the names from figure 22.3 will be usual.
For this reason, I do not use these names in the Book. However, the
operations, mentioned in figure 22.3 exist; they will require some names.
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6 Extended abstract

The Book is dedicated to construction of superfunction F

and abelfunction G for given transfer function T . The for-
malism of superfunctions is considered with examples, that
are presented in ready-to-use form. The reader is supposed to
know something about the complex numbers and elementary
functions.

The superfunction is solution of the transfer equation
F (z+1) = T

(
F (z)

)
The abelfunction G = F−1 satisfies the Abel equation
G
(
T (z)

)
= G(z) + 1

In order to provide the uniqueness of solution, the additional
requirements on F are applied, referring to its behaviour in
the complex plane.

The nth iterate of function T is denoted with superscript:

T n(z) = T
(
T
(
..T (z)..

))︸ ︷︷ ︸
n evaluations of function T

With superfunction F and abelfunction G, the iterate is ex-
pressed as T n(z) = F

(
n+G(z)

)
. In this representation,

the number n of iterate has no need to be integer.

Examples of superfunctions are considered and collected as
Table 3.1. Superfunctions are constructed for sin, factorial,
exponential, tetration and other functions.
Many explicit plots and complex maps for these functions,
superfunctions, and iterates are included. The figures are
loaded also to TORI together with their generators at
http://mizugadro.mydns.jp/t/index.php/Category:Book

The formalism of superfunctions greatly extends the set of
functions available for applications in the scientific research.
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7 Keywords

In this section, I suggest the essence of the notations

T Transfer function

T
(
F (z)

)
= F (z+1) Transfer equation, superfunction

G
(
T (z)

)
= G(z) + 1 Abel equation, abelfunction

F
(
G(z)

)
= z Identity function

T n(z) = F
(
n +G(z)

)
nth iterate

F (z) =
1

2πi

∮
F (t) dt

t− z
Cauchy integral

tetb(z+1) = btetb(z) tetration to base b

tetb(0) = 1 , tetb
(
ateb(z)

)
= z

ateb(b
z) = ateb(z) + 1 arctetration to base b

exp n
b (z) = tetb

(
n+ateb(z)

)
nth iterate of function z 7→bz

Tania′(z) =
Tania(z)

Tania(z)+1
Tania function, Tania(0)=1

Doya(z) = Tania
(
1+ArcTania(z)

)
Doya function

Shoka(z) = z + ln(e−z+e−1) Shoka function

Keller(z) = Shoka
(
1+ArcShoka(z)

)
Keller function

tra(z) = z + exp(z) Trappmann function

zex(z) = z exp(z) Zex function
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Tools for evaluation of superfunctions, abelfunctions and non-integer
iterates of holomorphic functions are collected. For a giver transfer
function T, the superfunction is solution F of the transfer equation
F(z+1)=T(F(z)) . The abelfuction is inverse of F. In particular,
superfunctions of factorial, exponent, sin are suggested. Also, the
holomorphic extensions of the logistic sequence and those of the
Ackermann functions are considered. Among ackermanns, the tetration
(mainly to the base b>1) and natural pentation (to base b=e) are
presented. The efficient algorithm for the evaluation of superfunctions
and abelfunctions are described. The graphics and complex maps
are plotted. The possible applications are discussed. Superfunctions
significantly extend the set of functions that can be used in scientific
research and technical design. Generators of figures are loaded to the
site TORI, http://mizugadro.mydns.jp for the free downloading. With
these generators, the Readers can reproduce (and modify) the figures
from the Book. The Book is intended to be applied and popular.
I try to avoid the complicated formulas, but some basic knowledge
of the complex arithmetics, Cauchy integral and the principles of the
asymptotical analysis should help at the reading.
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