電子ビームイオントラップによる Sn 様・In 様イオンの

可視領域発光線の観測

中村信行研究室 PIPATPAKORN PATIVATE

1 序論

1.1 微細構造定数の変動検知

微細構造定数 α とは電子と電磁場の相互 作用の大きさを表す無次元の定数であるが、 クエーサーからの吸収スペクトルの研究によ り、 α 定数が変動する可能性があるとの議論 がある[1]。その議論を確かめるためには α に 対して感度の異なる原子時計の比較が一つの 方法であり、感度 $\delta\alpha/\alpha \sim 10^{-19}$ /年以上が達成 されれば地球上で検証できるが、現在のスト ロンチウム光格子時計では 10^{-18} /年である [2]。理論研究では多価イオンの可視領域の遷 移を利用した新たな高精度原子時計が提案さ れ、これまでの精度を上回ることが期待され ている[3]。

また、多価イオンの中で 1) α変動に感度が 高い、2) 安定な同位体が存在する、3)170-3000nm における基底状態への遷移周波数を 持つ長寿命の準安定状態が存在するという原 子時計応用に適した条件を満たすものとし て、Ag 様、Cd 様、Sn 様、In 様が注目され ており、それらの可視域の発光線の観測・同 定が望まれている[4]。

1.2 核融合実験炉のプラズマ診断

多価イオンの知見はプラズマ診断に有用で であり、将来の新エネルギー源に繋がる核融 合の研究においても必要とされている。近 年、国際共同研究により国際熱核融合実験炉 (International Thermonuclear Experimental Reactor : ITER)の建設が進められており、 2025 年に運転開始を目指している。

ITER のプラズマ容器の下にはダイバータ という部分があり、プラズマからの高い熱流 や粒子の流れを受け止める役割を果たす。そ の部分は熱負荷に非常に強い W が材料として 使用される。W はスパッタリングにより炉内 に混入すると、高温によって電離すること で、多価イオンとなる。しかし、W 多価イオ ンは核融合炉内の中心でも完全に電離しない ため、放射冷却により炉内のプラズマ温度を 低下させる。この現象によって核融合の効率 を低下させることが問題となる。そのため、 W 発光線の分光計測で炉内の W の密度や価 数分布などを診断することが重要であり、W 多価イオンの分光データが必要となる。特に 可視領域では他の領域よりミラーやレンズな ど様々な素子が豊富であるため、測定系を構 築することが容易である。そのため、可視領 域の発光データが非常に重要となる。

1.3 目的

本研究では微細構造定数α変動の検知に向 けた次世代原子時計の開発や ITER のプラズ マ診断に有用である多価イオンの可視域発光 線の観測と同定を、先行研究[5]より4f電子数 が多く複雑な In 様(4f³)及び Sn 様(4f⁴)イオ ンについて行うことが目的である。

W(Z=74)、Re(Z=75)、Os(Z=76)の3元素に ついて等電子系列における原子番号依存性を 系統的に調べ、理論計算と比較することで、 遷移を同定し、その波長を実験的に決定す る。 れたイオンに電子ビームを照射し、電子を1 つずつ剥ぎ取る逐次電離を利用して高価数の イオンを生成する。トラップ領域を通過した 電子ビームは最後に電子コレクターで回収さ れる。イオントラップは、DT1 と DT3 に DT2 より高い電圧を加えることで生成した軸 方向の井戸型ポテンシャルと、電子ビームに よる径方向の空間電荷ポテンシャルによって 行う。EBIT は電子ビームエネルギーを変更 することで、生成できるイオンの価数の上限

図 2 CoBIT と可視分光器 を決定することができる。

本研究では小型電子ビームイオントラップ (CoBIT)を用いて実験を行った。図2に示し たようにガスを導入して中央部分で多価イオ ンが生成されて発光する。Czerny-Turner 型 分光器で分光され、CCDカメラによって記録 される。本実験で使用した回折格子は300本 /mm と1200本/mmの2種類である。300本 /mmの回折格子による低分散測定で広範囲観 測を行った後、1200本/mmの回折格子を用 いて高分散測定を行い、波長決定を行った。 暗電流を下げるために CCDカメラを-70°Cに 冷却し、露光時間は30分に設定した。

2 実験

図1 EBIT の概略図

本研究では電子ビームイオントラップ (Electron Beam Ion Trap: EBIT)を用いて多 価イオンを生成した。EBIT は図1に示すよ うに、主に電子銃、3つの円筒電極からなる ドリフトチューブ (Drift Tube: DT)、ヘルム ホルツ型超伝導コイル、電子コレクターから 構成されている。電子銃から放出され、DT によって加速された電子は超伝導コイルの磁 場で圧縮される。トラップ領域にトラップさ

3 結果と考察

3.1 エネルギー依存性による価数同定

表1 Os のイオン化エネルギーと電子ビーム エネルギーの設定値

Osイオンの価数	計算値(eV)[7]	設定したエネルギー(eV)
28+(Cd様)	920	960
27+(In様)	870	910
26+(Sn様)	820	860
25+(Sb様)	770	810

図3 低分散測定による Os 発光線の観測結果

それぞれの元素について電子エネルギー依 存性を調べることにより、Sn様・In様イオ ンからの発光であることを確認した。例えば 図3に示したグラフは低分散測定のOs発光 線のエネルギー依存性であり、表1に示した イオンの生成エネルギーを参考し、価数の同 定を行った。図中の矢印で示したように 810eV で観測されず 860eV で観測された発光 線を Sn様、860eV で観測されず 910eV で観 測された発光線を In様と同定した。高分散測 定も同様にエネルギー依存を観測すること で、狭い領域で多数の発光線がある際の価数 同定を行った。

3.2 遷移波長と遷移確率の計算

本研究では波長決定と遷移同定をするため に、観測実験を行うと共に Flexible Atomic Code (FAC)と呼ばれる原子計算コードを用 いて遷移波長と遷移確率の計算を行った。

今回の計算では基底状態の電子配置の他、1 つあるいは2つの4f電子が5sに励起した状 態を考慮した。例えばIn様は4f³、4f²5s¹、 4f¹5s²の3つの電子配置、Sn様は4f⁴、 4f³5s¹、4f²5s²の3つの電子配置を考慮し、 微細構造準位やそれらの準位間の遷移を計算 した。その結果を図4に示す。図の縦軸は統 計重率(g)と遷移確率(A)の積である。発光線 の強度に比例するものは本来上準位の占有密 度と遷移確率の積のため、gA値を実験結果の 強度と直接比較することはできないが、狭い エネルギー範囲において占有密度を統計重率 で置き換えることは良い付近となるため、遷

3

移同定に有用である。これを観測実験と比較 することで遷移同定を行った。

3.3 In 様イオン(4f³)

図 6 低分散測定による In 様 Os、Re、W 発光線の観測 1

FAC 計算によると、Os の場合、In 様の 4f³微細構造準位は約 33eV のエネルギー幅に 40 の準位が存在する複雑な構造を持つ。しか し、CoBIT で観測される比較的強度強い発光 線は微細構造準位の中でも最も低い準位間の 遷移という傾向がある。図 5 は例として Os²⁷⁺について基底配置から 10eV までの範囲 にある微細構造準位を示したものである。

低分散測定の観測結果から 380-680nm お よび 560-880nm における In 様 Os、Re、W スペクトルをそれぞれ図 6、図 7 に示し、図 5 における 1、2、3、a、b、c、d の各遷移を 矢印で示した。

図6で示した910eV における短波長側3本 の発光線は電子のエネルギー依存性から In 様 Os のものと確認できるが、図4の FAC 計算 の通りだとすると短波長側からa、1、bの遷 移となる。しかし、もしその通りだとする と、これらのライン間の強度比が Re や W と 異なり、1 が a や b よりも弱いことになる。 最も低い準位間の遷移である 1 が励起状態間 遷移である a、b よりも弱くなることは考えが たいため、Re と W の発光線の強度比と同様 に図 6 に付けたように Os の発光線では短波 長から 1、a、b と同定した。

より長波長側の 560nm-880nm における In 様イオンのスペクトルを図7に示す。この波 長領域では Re と W における 3、d に相当す る遷移が観測されたが、Os では 3 の遷移が観 測できなかった。

3.4 Sn 様イオン(4f⁴)

4f電子を4つ持つ Sn 様多価イオンについ ても同様に実験結果を FAC 計算と比較し、波 長決定と遷移同定を行った。Os のエネルギー 準位の計算によると、Sn 様の 4f⁴配置では約 53eV の範囲に 106 の微細構造準位が存在 し、In 様よりさらに複雑な原子構造となる。 Os²⁶⁺について 10eV までの微細構造準位を図 8 に示す。In 様と同様に本研究において得ら れた比較的強度の強い発光線に注目し、基底 状態付近の遷移同定を試みた。

図 9 低分散測定による Sn 様 Os、Re、W 発光線の観測

図9は低分散測定によるOs、Re、Wイオ ンの観測結果で、矢印で示した発光線はエネ ルギー依存からSn様と同定されたものであ る。ここで、それぞれ2本の発光線が比較的 強く観測され、原子番号の増加に伴い波長が 短波長側に変化していることが分かった。比 較的強い強度を持つと予想される最も低い準 位間の遷移1と2の波長を計算すると、実験 結果と同様に原子番号とともに図4のように 変化することが示された。その波長の値およ び原子番号依存性から実験で観測された2本 のラインは図9に矢印で示したように図8中 の遷移1、2に相当すると考えられる。

4 結論と今後の展望

本研究では小型電子ビームイオントラップ を用いて4f電子数が多く複雑な In 様(4f³)及 び Sn 様(4f⁴)多価イオンにおける可視領域の 発光線を観測した。低分散測定で等電子系列 における原子番号依存性を系統的に確認し て、計算と比較することで、微細構造の中で 低いエネルギーを持つ準位間の遷移を同定し た。また、高分散測定でそれらについて波長 を決定した。結果として In 様イオンでは 7本 (Os のみ 6本)、Sn 様イオンでは 2本の発光 線を新たに波長決定・遷移同定することがで きた。

いずれも最も低い準位付近の遷移は比較的 強度が強くて同定しやすい傾向があった。そ れ以外の比較的強度の弱い発光線の同定や、 4f電子を5つあるいは6つ持つより複雑なイ オンの観測および同定が今後の展望となる。

参考文献

[1] Webb, J. K., et al. "Indications of a spatial variation of the fine structure constant." *Physical Review Letters* 107.19 (2011): 191101.

[2] Bloom, B. J., et al. "An optical lattice clock with accuracy and stability at the 10 – 18
level." *Nature* 506.7486 (2014): 71-75.

[3] Berengut, J. C., et al. "Highly charged ions with E 1, M 1, and E 2 transitions within laser range." *Physical Review A* 86.2 (2012): 022517.

[4] Safronova, M. S., et al. "Highly charged ions for atomic clocks, quantum information, and search for α variation." *Physical review letters* 113.3 (2014): 030801.

[5] Murata, Shunichi, et al. "Visible transitions in Ag-like and Cd-like lanthanide ions." *Physical Review A* 96.6 (2017): 062506.