軌道角運動量もつれ合い光子源及び検出系の設計と作製

学籍番号:1933139 渡辺大貴

主任指導教員:宮本洋子 指導教員:清水亮介

1. はじめに

本研究は、光子の軌道角運動量もつれ合い状態の検出において、ホログラムシフト法と経路干渉計法の比較を行う ため、もつれ合い光源及び検出系の設計と作製を行うことを目的とする。もつれ合い状態の検出のためには光子を軌 道角運動量の重ね合わせ状態で検出することが必要であり、ホログラムシフト法と経路干渉計法はこの重ね合わせ状 態を検出する手法である。前者はホログラムの欠陥位置を光軸からシフトすることで、重ね合わせ状態をガウスモー ドに変換し、シングルモードファイバーで抽出して検出する手法であり、原理上余分な方位角成分が混入するという 問題点がある。後者はホログラムの欠陥位置を光軸と一致させた状態で複数の回折次数を干渉させる手法で、原理上 余分な方位角成分が混入しないが、外部の環境の変化に対し、光路長差を一定に保つ必要がある。本研究では両手法 の違いを明確に示すため、ホログラムシフト法で余分な成分の影響が強く現れる実験条件をシミュレーションで明ら かにし、これに基づいてもつれ合い光子源の設計と作製を行う。また経路干渉計法の光路長差のフィードバックロッ クについて検討を行う。

2. 光子の軌道角運動量状態

本研究は、光子を軌道角運動量重ね合わせ状態で検出することを目的としている。本章では、光子の軌道角運動量 状態とその検出方法について述べる。

ここで光子の軌道角運動量状態とは、光軸まわりの方位角 φ に対する複素振幅の依存性が $exp(im\varphi)$ で表されるモードに光子が 1 個存在する状態である。複数の方位角指数 mに対応する状態を重ね合わせたものが軌道角運動量重ね合わせ状態である。

2.1. 光子の軌道角運動量状態の検出

図1 に光子の軌道角運動量状態の検出系の概念図を示す。図1の検出系で検出される状態を特定するには、逆方向 伝搬の考え方を用いて検出器から光源面まで遡って考える。レンズ2はファイバーカプラー出射面の像をホログラム 上に、レンズ1はホログラムの像を結晶面上に形成し、結晶面上にビームウェストがあると想定する。位相ホログラ ムの欠陥位置が光軸に対し(*d*, *θ*)の位置にあるとき、ホログラム面上の複素振幅分布は以下で表される。

$$U_{m,n}(\rho,\varphi) = \exp\left\{i \times n \times m \times \arg\left(\rho\cos\varphi - d\cos\theta, \rho\sin\theta - d\sin\theta\right)\right\} \times \sqrt{\frac{2}{\pi} \frac{1}{w_0}} \exp\left(-\frac{\rho^2}{w_0^2}\right)$$
(1)

ここで(ρ, φ)は円筒座標、nは回折次数、mはホログラムの欠陥の次数を示す。 $\arg(x, y)$ は複素数x + iyの偏角を表す 関数であり、($\rho \cos \varphi - d \cos \theta, \rho \sin \theta - d \sin \theta$)は直交座標系で位相ホログラムの欠陥位置に対する変位を表す。(1) 式よりレンズによる反転に注意し、観測する状態は結晶面上で以下で表される。

$$|\psi^m(d,\theta)\rangle \propto \left| \exp\{i \times n \times m \times \arg(\rho \cos\varphi + d\cos\varphi, \rho\sin\theta + d\sin\theta)\} \right|$$

(2)

$$\times \sqrt{\frac{2}{\pi}} \frac{1}{w_0} \exp(-\rho^2/w_0^2) a^{\dagger}(r) |0\rangle dr$$

ここで($\rho \cos \varphi + d \cos \varphi, \rho \sin \theta + d \sin \theta$)は光源面における、位相ホログラムの欠陥位置に対する変位を示す。

図 1: 光子の軌道角運動量状態の検出系(シングルモードファイバーと位 相ホログラムを用いた手法)の概念図[1]

2.2 結晶で発生する光子対の状態

励起光がガウスモードであり、結晶が薄いと仮定すると、結晶で発生する光子対の状態は以下で表される。

$$|\Psi\rangle = \sum_{l=0}^{\infty} \sum_{p,p'=0}^{\infty} C_{p,p'}^{l} |l,p\rangle_{S} \otimes |-l,p'\rangle_{I}$$
(3)

ここで、*l*, -*l*はラゲールガウスモードの方位角モード指数、*p*, *p*'は動径方向のモード指数である。また波数空間表現のモード関数は以下の式で表される。

$$\Phi(\mathbf{r}_{S}, \mathbf{r}_{I}) = \iint d\mathbf{q}_{S} d\mathbf{q}_{I} \Phi(\mathbf{q}_{S}, \mathbf{q}_{I}) \exp(i\mathbf{q}_{S} \cdot \mathbf{r}_{S}) \exp(i\mathbf{q}_{I} \cdot \mathbf{r}_{I})$$
$$= N_{r} \exp\left(-\frac{|(\mathbf{r}_{S} + \mathbf{r}_{I})/2|^{2}}{\omega_{P}^{2}}\right) \exp\left(-\frac{|(\mathbf{r}_{S} - \mathbf{r}_{I})/2|^{2}}{b^{2}}\right)$$
(4)

ここで、 N_r は規格化関数であり、 $r_{S,I}$ はビーム断面方向の位置、 w_p は励起光のビームスポットサイズである。また、 b は励起光のビームの波長 k_p と有効結晶長Lを用いて、 $b = 1.42\sqrt{L/(4k_p)}$ で表される。(4)式のモード関数を用いて (3)式は以下のように書き直せる。

$$|\Psi\rangle_{\mathbf{r}} = \iint d\mathbf{r}_{S} d\mathbf{r}_{I} \Phi(\mathbf{r}_{S}, \mathbf{r}_{I}) a_{I}^{\dagger}(\mathbf{r}_{I}) a_{S}^{\dagger}(\mathbf{r}_{S}) |0,0\rangle$$
(5)

ここで $a_{s,l}^{\dagger}(\mathbf{r}_{s,l})$ はシグナル、アイドラ光のビーム断面方向位置 $\mathbf{r}_{s,l}$ に光子を作る生成演算子であり、 $|0,0\rangle$ は真空状態である。

3. ホログラムシフト法における高次モードの影響のシミュレーション

ホログラムの欠陥中心を光軸からずらすことによっての重ね合わせ状態を検出することが出来る。しかし原理的に 測定したい成分以外の軌道角運動量成分が10%程度混入してしまう問題点がある[3]。

そこで本研究では、ホログラムシフト法における余分な成分の混入の影響(以後、高次モードの影響とする)をシミュ レーションによって明らかにする。

3.1 同時計数確率

式(2)と式(5)から、同時計数確率はシグナル、アイドラ側の位相ホログラムの欠陥位置の関数として以下の式で表される。

$$P_{m}(d_{I},\theta_{I},d_{S},\theta_{S}) = \langle \psi_{I}^{m}(d_{I},\theta_{I})|\langle|\psi_{S}^{m}(d_{S},\theta_{S})|\Psi\rangle_{r}|^{2}$$

$$\propto |\iint d\mathbf{r}_{S}d\mathbf{r}_{I}\Phi(\mathbf{r}_{S},\mathbf{r}_{1})\exp(-\rho_{S}^{2}/\omega_{0}^{2})\exp(-\rho_{S}^{2}/\omega_{0}^{2})$$

$$\times \exp\left[-i\times m\times \{\arg\left(\rho_{I}\cos\varphi_{1}\right. + d_{I}\cos\theta_{1},\rho_{I}\sin\varphi_{I} + d_{I}\sin\theta_{I}\right)\}\right]$$

$$\times \exp\left[i\times m\times \{\arg\left(\rho_{S}\cos\varphi_{S} + d_{S}\cos\theta_{S},\rho_{S}\sin\varphi_{S} + d_{S}\sin\theta_{S}\right)\}\right]|^{2}$$
(6)

(6)式はすべての高次モードの成分を含んだものである。同時計数確率 $P_m(d_I, \theta_I, d_S, \theta_S)$ は4つのパラメター(位相ホロ グラムの欠陥次数m,ポンプ光および観測する量子状態のビーム径 w_p, w_0 結晶長L)で特徴づけられる。

3.2 シミュレーション方法

ホログラムシフト法を用いて同時計数確率を測定する時、原理上余分な成分が混入してしまう。ここではこの影響 を高次モードの影響と呼ぶ。高次モードの影響は正弦曲線とのずれで評価できる。高次モードの影響を評価する指標 は以下の式で表される。

$$Y = P_{harmonic} - P_m = (\cos \theta_S - P_{norm}) \frac{V}{2}$$
⁽⁷⁾

ここで $P_{harmonic}$ は P_m と値の範囲を合わせた正弦曲線、 P_m は高次モードも考慮した同時計数確率、 P_{norm} は P_m の最大値を1、最小値を-1に正規化した関数、Vは P_m の値の振れ幅である。(7)式の指標を用いて、高次モードの影響が最も大きく現れるパラメターをシミュレーションによって明らかにする。

先行研究では検出側の結晶位置でのビーム径 w_0 に対するホログラムの相対的なシフト量に着目していたが、本研究ではシフト量および w_0 を走査し、最も高次モードの影響が現れるパラメターを探索した。その際、励起光のビーム径は先行研究を参考に $w_P = 800 \,\mu m$ と設定した。シミュレーションには数式処理システム Mathematica を使用し、Yの最大値 Y_{max} を最大にするシフト量dおよび検出側のビーム径 w_0 を探索した。

3.3 シミュレーションの結果と考察

 w_0 に対する Y_{max} と Y_{max} が最大値をとるときの w_0 とdの関係をそれぞれ図3、図4に示す。

図3:検出側の結晶位置でのビーム径w₀に対する正 図4:ずれ 弦曲線とのずれの指標の最大値Y_{max} 検出側の緒

図4: ずれの指標の最大値Y_{max} が最大値を取るときの 検出側の結晶位置でのビーム径woとシフト量dの関係

図3 より、検出側の結晶位置でのビーム径 $w_0 = 800 \mu m$ で最大値をとり、 $w_0 = 400 \sim 800 \mu m$ の範囲で Y_{max} はほ ぼ一定値となった。これは主要な高次モードは励起光ビーム径で決まる一定の範囲内に主に存在し、 w_0 をそれ以上 に大きくしても効果がないことを示している。

また図 4 より、 $w_0 = 400 \mu m$ までは w_0 の増加とともに、 Y_{max} の最大値を与えるシフト量も増加する線形の関係を示しているが、 $w_0 = 400 \sim 800 \mu m$ の範囲では、 Y_{max} の最大値を与えるシフト量は $d = 200 \mu m$ で一定値をとっている。これは、励起光ビーム径で決まる最適値があるが、 w_0 が最適値より小さい場合はそれに合わせて小さくする必要があることを示している。

以上の結果より、高次モードの影響が最も現れる条件は、シフト量 $d = 200 \, \mu m$ 、検出側の結晶位置でのビーム径 $w_0 = 400 \sim 800 \, \mu m$ ということが分かった。第4章で励起光源のビーム径の設計を行う。

4. パラメトリック蛍光光子対の励起光源の設計

本章では、パラメトリック蛍光の励起光源作製のために、励起光源のビーム径を調整する光学系を設計する。励起 光源とは、縮退パラメトリック下方変換に使用される励起用の半導体レーザーのことであり、本研究の縮退パラメト リック変換では光子対は同方向に出射する。

本研究では、β-メタホウ酸バリウム(BBO)結晶から出射する蛍光光子対の波長は810 nm、励起光源の波長は405 nm を想定している。表1 に励起光源のビームの強度分布撮影に使用した実験機器を示す。

レーザー光はシングルモードファイバーを通して出射される。ファイバーカプラーの調整を行った後、CCD カメラ でビームの強度分布の撮影を伝搬距離100~800 mm の間で行った。ここで伝搬距離とは、自由空間側ファイバーカ プラーの対物レンズから CCD カメラまでの距離のことである。CCD カメラによる撮影結果を図5に示す。

表1:励起光源の特性測定の使用器具

使用器具	メーカー	型番
半導体レーザー	CNI 社	PSU-III-FDA
自由空間側ファイバーカプラー	Newport	F-91-C1-T
レーザー側ファイバーカプラー	Schäfter + Kirchhoff	60SMS-1-4-M4-33
CCD カメラ	浜松ホトニクス	C5948
ND フィルター		
パワーメーター	ILX Lightwave	OMM-6810B

図5: 伝搬距離と強度分布

図5に示したビームの強度分布の画像をMATLABに取り込み、以下の2次元ガウス関数でフィッティングする。

$$I(x,y) = z_0 + Aexp\left[\frac{-1}{2(1-cor^2)}\left\{\left(\frac{x-x_0}{xwidth}\right)^2 + \left(\frac{y-y_0}{ywidth}\right)^2 - \frac{2cor(x-x_0)(y-y_0)}{xwidth \cdot ywidth}\right\}\right]$$
(8)

xwidthとywidthはそれぞれx,y方向の強度分布の径、x₀,y₀はビームの中心座標、corはx,y方向の分布の相関を示している。さらに伝搬距離ごとのビーム径からビームウェスト径と位置をフィッティングによって見積もる。フィッティングに用いる式は以下の式である[2]。

$$w_{x(y)}(z) = \sqrt{w_0^2 + \frac{1}{w_0^2} \left\{ \frac{\pi}{\lambda} (z - z_0) \right\}^2}$$
(9)

(9)式によるフィッティング結果を以下に示す。

表2:ビームウェスト径とビームウェスト位置のフィッティング結果

	ウェスト径 [m]	ウェスト位置 [m]
x方向	$(9.2 \pm 0.4) \times 10^{-4}$	(9.6 ± 0.2)
y方向	$(1.1 \pm 0.1) \times 10^{-3}$	(9.8 ± 0.1)

次に励起光源のビーム径800 μm を実現するための光学系を設計する。今回はレンズを2枚使用して、目標のビーム径を得るために、レンズ通過後のビームウェストの径と位置を見積もった。その際、計算に用いたビームの伝搬距 離z_{1.2}の式、レンズ前後における曲率半径*R*_{1.2}の式、およびレンズの式を以下に示す。

$$z_{1,2} = \pm z_R \sqrt{\left(\frac{w(z)}{w_0}\right)^2 - 1}$$
(10)

$$R_{1,2} = z_{1,2} \left\{ 1 + \left(\frac{z_R}{z_{1,2}} \right)^2 \right\}$$
(11)

$$\frac{1}{f} = \frac{1}{R_1} - \frac{1}{R_2}$$
(12)

ここで z_R はレイリー長、w(z) はz に依存するビーム径を表している。 (10)~(12) 式による見積もり結果および、設計した光学系を以下に示す。

表3:2枚のレンズ通過後のウェスト径とウェスト位置

	ウェスト径 [m]	ウェスト位置 [m]
x方向	$8.15 imes 10^{-4}$	-5.00×10^{-2}
y方向	8.02×10^{-4}	-5.00×10^{-2}

図6:ビーム径を調整するための光学系

5. 経路干渉計法のフィードバックロック

ホログラムシフト法によってもつれ合い光子対を測定する方法では、原理上余分な成分が混入してしまう。それに 対して、光軸に固定された位相ホログラムとファイバー干渉計を組み合わせて検出する手法では、原理上余分な軌道 角運動量成分は混入しない。ここではこの検出手法を経路干渉計法と呼ぶ。図7に経路干渉計法の光学系を示す。

図7:経路干渉計法の光学系

経路干渉計を用いて同時計数率測定を行う際、外部の環境の温度変化等に対し、ファイバー干渉計の光路長差を光 子計数中に一定に保つ必要がある。ここではその制御のことをフィードバックロックと呼ぶ。フィードバックロック は、光子計数に用いない方の経路から出射されるレーザー光の干渉強度に応じて位相変調器(ピエゾ素子)を操作す ることで、ファイバー干渉計の光路長差を一定に保つことが出来る。本実験では、LabVIEWを用いて干渉強度のモニ ターを行い、リアルタイムでフィードバック制御を実現することを目指している。構想しているフィードバックロッ クの概要図を以下に示した。

図8:フィードバックロックの概要図

図8 に示したように、パワーメーターで測定した干渉強度を LabVIEW 上でモニターし、干渉強度が一定になるように電圧設定値を電圧発生器に送る。その後電圧発生器から出力される電圧信号によって位相変調器用のドライバを 制御し、位相変調器のピエゾ素子に電圧が印加されることでファイバーが伸縮し、光路長差が一定に保たれる。まず 初めに、LabVIEW とパワーメーター、および電圧発生器との通信が行えることを確認した。さらにパワーメーターの 測定値をリアルタイムでとりこめるプログラムを作成した。また図9のファイバー干渉計と接続してデータの読み込 みの遅延について確認したところ、LabVIEW を実行して 30 秒ほど置いた後では強度変化を反映するまでの時間は 0.5 秒となった。 干渉計の光路長差の変化がこれよりも速い場合はモニター方法の変更が必要である。

6. まとめ

本研究では、光子の軌道角運動量重ね合わせ状態の検出における余分な成分の混入のシミュレーション、励起光源の設計、および検出系のフィードバック制御の検討を行った。まず、ホログラムをシフトする手法の設計のために、余分な方位格成分の影響が大きくなる実験条件について、ホログラムシフト方向に対する光子対の同時検出確率の振る舞いをシミュレーションで調べ、正弦関数とのズレを評価することで検討した。その結果、励起光源のビーム径が $w_0 = 800 \ \mu m$ のとき、高次モードの影響が最も現れる条件は、シフト量が $d = 200 \ \mu m$ 、検出側の結晶位置でのビーム径が $w_0 = 400 \sim 800 \ \mu m$ ということが分かった。

つぎに励起用レーザーのビーム径を実験により見積もり、ガウスビームの伝搬とビーム径の式より、ビームウェスト位置とビームウェスト径を求めた。その結果をもとにビームウェスト径を800 µm にする光学系の設計を行った。 結果として、レンズを2 枚使う光学系において、励起光源のビームウェスト径800 µmを実現できることが分かった。

最後に、ホログラムの欠陥位置を光軸と一致させた状態で、検出する手法を実現するために、ファイバー干渉計のフィードバックの検討を行った。フィードバックに用いるソフトウェアである LabVIEW と各装置を接続し、データ 通信をできるようにした。またファイバー干渉計と LabVIEW を接続し、測定値を取り込めることを確認した。

参考文献

[1] 川瀬大輔,「光子の軌道角運動量もつれ合いの生成と制御に関する研究」,北海道大学博士論文,(2009)

[2] H. Kogelnik and T. Li, "Laser Beams and Resonators", Proc. IEEE, 54, pp. 1312-1329 (1966)

[3] 和田篤, 「位相特異点を持つ光ビームの発生と伝搬に関する研究」, 電気通信大学博士論文, (2006)