Tm 添加ダブルクラッドフッ化物ファイバーを用いた

Mamyshev 発振器の開発

1933017 内園裕也 主任指導教員: 戸倉川正樹 指導教員: 白川晃

1. はじめに

現在波長 2 µm帯で動作するレーザーは 様々な分野、例えば強い水の吸収があること からレーザーメス、大気に対する透過率が高 い波長帯(大気の窓:2~2.5 µm)を含むことか ら自由空間通信に利用されている。更に非線 形波長変換によって 3~20 µm帯という様々な 分子の振動吸収線が多数存在する領域の光を 発生させることが可能であり、環境計測や呼 気分析にも応用が期待されている。このよう なアプリケーションは数百 fs 程の短パルス性 や µJ~mJ の高エネルギー性を有したモード 同期超短パルス光を利用することによって、 応用の裾を広げ得る。

モード同期ファイバーレーザーでは共振器 内の分散値を制御することでエネルギーのス ケーリングが行われてきた。異常分散中での ソリトンモード同期ではパルスエネルギー1 nl 以下[1]、0 分散近傍でのストレッチパルス モード同期では数 nJ[2]、更に、大きな正常分 散中での散逸ソリトンモード同期があり、数 + nJ[3]の報告がされている。 散逸ソリトン の中に全て正常分散を示す素子で構成された 全正常分散モード同期ファイバーレーザー (ANDiFL:All Normal Dispersion Fiber Laser)があり、共振器中をパルスが常にチャ ープした状態で伝搬することから非線形光学 効果を抑制でき、より一層の高パルスエネル ギーの発生が可能となる。波長1 μm帯におけ る ANDiFL では 100 nJ [4] が報告されてい る。しかし波長2 µm帯ファイバーレーザーで ANDiFL を実現しようとすると、一般的に使 用されているシリカファイバーでは材料分散 の異常分散値が大きく困難なものとされてい た。 我々の研究室では Tm 添加 ZBLAN ファ イバーをコア径制御により正常分散とし波長 2 um帯 ANDiFL[5]を実現している。

本研究は上記の ANDiFL を更に発展させ 更なる短パルスと高エネルギー化を目指し、 正常分散ダブクラッド ZBLAN ファイバーを 用いた Mamyshev 発振器を目指した。

2. 原理

2.1 ダブルクラッドファイバー

ダブルクラッドファイバーは、図1に示さ れるような屈折率分布を有しており、内部ク ラッドと外部クラッド、二つのクラッドを有 している。コアはビーム品質の良い信号光を、 内部クラッドはビーム品質の低い励起光を伝 搬させることができる。コアに活性イオンを 添加し、ビーム品質は悪いが高出力な LD 光 をクラッドに結合することによってシングル クラッドファイバーでは得られない、高出力 な増幅動作を可能とする。

図 1. ダブルクラッドファイバーの構造と屈折率分布

2.2 ZBLAN ファイバー

ZBLAN ファイバーとは ZrF₄-BaF₂-LaF₃-AlF₃-NaF を主成分として構成されたフッ化 物ファイバーである。ZBLAN ファイバーの フォノンエネルギーは約500 cm⁻¹であり、シ リカガラスの~1000 cm⁻¹の半分程度ある。そ のためシリカファイバーが 2 µm 以上では実 用的な透過示さないのに対し、ZBLAN ファ イバーでは~4 µmまで実用的な透過を示す [6]。また、活性イオンを添加した際 ZBLAN ガラスはマルチフォノン緩和による非放射緩 和がおき難く、上準位寿命が石英ガラスより 長くなりやすい。そのため低閾値、高効率な レーザー動作が可能になる。このことから中 赤外領域での広帯域光発生やレーザー利得媒 質として有用である。その一方で、潮解性、低 機械強度、低融点などといった取り扱いに慎 重にならなければならない特徴も有している。

また、本研究で着目した ZBLAN ガラスの 特徴は、材料分散の値がシリカカラスと比べ て中赤外領域において低い値を持っているこ とである[7]。波長分散は導波路分散と材料分 散の和で表され、シリカファイバーでは波長 2 μm帯において、材料分散の負の値が高く大

きな異常分散値を示していた。一方 ZBLAN ファイバーは材料分散値が小さく、導波路分 散を制御すること、つまりはファイバーのコ ア径及び NA を適当な値に調整することによ り正常分散を得ることが可能である。シリカ ガラスファイバーと ZBLAN ファイバーの分 散特性について計算結果を図2にそれぞれ示 す。その際、コア径 6 µm、NA0.16 と実験に 使用するものと同じ値に設定してある。図2 の通り、ZBLAN ファイバーは波長2 µm帯に おいて正常分散を示している。シリカファイ バーにおいて正常分散を得るためにはコア径 を約 3 μm以下にしなければならないが、 ZBLAN ファイバーは 6 µm以下で得られる ので大きなコア径が選択できより高出力化が 期待できる。

図 2. 上:シリカファイバー、下: ZBLAN ファイバ ーの分散特性

2.3 全正常分散モード同期

全てを正の分散を示す光学素子で共振器を 構成することで、正常分散、SPM(自己位相 変調)により、正チャープした時間幅の長い パルスが伝搬し非線形性を抑えることができ、 さらには正常分散、利得、自己位相変調の調 整でシミラリトン動作も可能であり、より高 いエネルギーを得ることができる。このチャ ープしたパルスは回折格子やプリズムを用い て圧縮することができる。全正常分散モード 同期では、バンドパスフィルターが重要な素 子の一つである。SPMに共振器内で形成され るスペクトルは広がっていく。そのためその 共振器一周によるスペクトル幅の拡がりを補 償し、定常発振を促すためにバンドパスフィ ルターの挿入が必要となる。さらにフィルタ ーはパルス形成の役割も担っている。正チャ ープしたパルスの時間的強度分布とパワース ペクトルは似た形状となるため、フィルター を透過することによりパルスの裾を落とすよ うな一種の可飽和吸収体の性質も持つ。

2.4 Mamyshev 発振器

本研究で用いる Mamyshev 発振器は共振 器内に異なる中心波長の2種のフィルターと 2本の正常分散利得ファイバーを有している (図3)。

この2つのフィルターによって狭線幅のCW 光は強い損失を与えられ共振器を周回できない。パルス光を考えると(図4)、Filter1を通 過したパルスのスペクトルは抽出され狭帯域 になり、利得ファイバー中でSPMにより広 がっていき、やがてFilter2を通過できるま で広がっていく。Filter2を通過したパルスも 上記と同様でFilter1を透過できるまで広が っていく。

図 4. Mamyshev 発振器でのスペクトル変化 (赤:スペクトルの変動。青、緑:フィルタ 一の透過率)

その結果、スペクトルが広がるようなパルス 光のみ周回でき、広帯域なスペクトル幅をも った高エネルギーパルス発振が得られる。

ANDi で構成された Mamyshev 発振器は波長 1 µm帯では~1 µJの報告がされている[8]。現 在波長 2 μm帯で報告されている Mamyshev 発振器のパルスエネルギーは~4 nJ[9]であり、 これは正常分散と異常分散を有する素子で構 成されている。波長 2 µm帯で ANDi での Mamyshev 発振器を構築することで更なる高 エネルギーが期待される。Mamyshev 発振器 の特徴として、CW 発振を抑制しているため、 CW のシード光が発生しないのでパルスシー ド光を入れる必要があるが、近年セルフスタ ートの報告例が多々あり[10]、本研究もそれ らを参考にセルフスタートを試みる。本研究 では初めに透過型フィルターの中心波長をそ ろえた状態で非線形偏波回転によるセルフス タートモード同期発振を起こし、そこからフ ィルターの中心波長を変えていくセルフシー ド型の Mamyshev 発振器を検討する。

3 リング型 Mamyshev 発振器の開発

3.1 Tm:ZBLAN の出力、波長可変特性

Mamyshev 発振器を構築する前に、使用する ZBLAN ファイバーの出力、波長可変特性を測 定した。実験系を図5に示す。ZBLANファイ バーは Tm 添加ダブルクラッド構造(コア径: 長軸6.3±0.2 μm、短軸5.7±0.2 μm、NA:0.16、 内部クラッド径:125 µm, NA: 0.5、長さ: 6.5 m、 5.6 m、GVD:~15 fs²/mm)である。また、今回 使用する ZBLAN ファイバーは楕円型である が、楕円率が~0.05と非常に小さいことから偏 波保持特性は低いものと思われる。励起光源 は波長793nm、最大出力4WのLDを使用し、 ダイクロイックミラー(DM)と透過し利得フ ァイバーを励起している。反射型回折格子(溝 本数 600 本/mm)を Littrow 配置し DM(45 度 750-850 nm<0.07%AR 1720-2300 nm ± 10 nm>99.9%HR)から反射してくる光を測定し た。中心波長 1953 nm 時、最大出力 630 mW、 スロープ効率~32%であった。出力が飽和に至 るまで励起出力を増加させなかったのは、高 励起に伴う温度上昇よって生じる端面の劣化 を考慮したためである。波長可変幅は 73 nm(1921nm~1994nm)が得られた。その時 の出力の最大値は200 mWである。中心波長 **1921nmで1948 nm**の寄生発振が確認され、これ以上の短波長化は望めなかった。

図 7. ZBLAN ファイバーの波長可変特性

3.2 反射型回折格子を用いた Mamyshev 発 振器

本実験は当初反射型回折格子をフィルター に用いて Mamyshev 発振器を構築予定だった が、図 8 のような実験系のアライメント中、 端面の破壊が生じた(図 9)。

図8. 端面破壊時の実験図

図 9. ZBLAN ファイバーの端面の劣化、破壊

左が入射端A、右が出射端Bである。端面破 壊の原因は、回折格子と MMF 端面間で発生 したジャイアントパルスのフィードバックを 受けたからだと考えられる。また、出射端 B の端面の溶けているような劣化は、回折格子 の回折角がコアとコア以外に入射され、端面 に付着したごみを燃やしたものだと考えられ る。ジャイアントパルスの防止策として、ア イソレーターを設置し、戻り光を遮断しQ値 の急激な増減を防ぐ対策をとり再度共振器を 組んだ。また、使用するフィルターを回折格 子からバンドパスフィルターに変更した。フ ィルターの変更により、反射型から透過型に 変わったことで回折角によるファイバーへの ダメージを減らし、フィルター幅を~1.6 nm から 10 nm と広帯域にした。修理の際に利得 ファイバーの一つが端面破壊だけでなく、フ ァイバー内に輝点が確認されたので、輝点の 箇所で切断し利得長が 5.6 m となった。

3.3 実験構成

本研究で構築した実験系を図10に示す。発 振器は arm1 と arm2 から構成されそれぞれに 利得ファイバーとして ZBLAN ファイバー長 さ 6.5 m、5.6 m を有し、 $\lambda/2$ 板、 $\lambda/4$ 板、アイ ソレーターを設置し、反時計回りに一方向性 をもたせ、アイソレーターの入射側の偏光ビ ームスプリッタから出力を取り出している。 arm1、arm2 でのそれぞれの取り出しを P1、P2 と設定した。フィルターには透過型バンドパ スフィルターBPF1(中心波長 1982 nm、バン ド幅 10 nm 中心透過率 88%)、BPF2(中心波 長 1942 nm、バンド幅 10 nm 中心透過率 76%)を使用する。BPF1 を 20 度ほど傾ける ことによって BPF2 と中心波長を一致させ、 CW が共振器を周回できるようにし、非線型 偏波回転によりモード同期をスタートさせ BPF1 の角度を戻し Mamyshev 発振器をセル フスタートさせる。ファイバー以外の光学素 子の分散については、ファイバーの分散値に 比べ極めて小さいことから考慮しなかった。

図 10. リング型 Mamyshev 発振器

3.4 リング型共振器の出力特性

図 10 の実験系において、フィルターを設置 しない状態で共振器の出力特性を確認した。 arm2 の励起出力を~400 mW に固定し、arm1 の励起出力を 0~350 mW に増減させ、出力 P1、 P2、発振波長を確認した。その際、波長板の 操作によって取り出し効率を変化させること で P1、P2 のそれぞれのみでの取り出しが可能 であった。P1 と P2 を同程度となるようにし たときの出力特性を(a),出力 P1、出力 P2 を最 大としたときを(b)、(c)とし、(a),(b),(c)それぞ れのときの発振スペクトルは 1967~1969 nm であった。出力特性、(a)の発振スペクトルを 図 11(d)に示す。(a)、(b)、(c)それぞれの最大出 力は P1 \Rightarrow P2=30 mW、P1=57 mW、P2=63 mW であった。

図 11(b)にて P1 の増加に伴い P2 が減少して いるのは、arm1 の励起出力を上げるにつれ ASE 発振からレーザー発振となり、偏光依存 性が生まれたことにより波長板での制御が可 能になったからであると考えられる。(c)の現 象も同様であり、波長板で P1 での取り出し効 率を~0 mW にしているからである。(b)と(c)に おいて最大出力が異なるのは、それぞれの LD の出力の差、カップリング効率、利得長の長 さから生じているものだと考えられる。

3.5 フィルターの中心波長の可変特性

LD1 を~350 mW、LD2 を~400 mW に出力を 固定し BPF2 を設置せず BPF1 のみを設置し、 フィルターの角度を変化させた時のレーザー 出力と発振波長を測定した(図 12)。7~25 度 傾けた時、中心波長 1939~1979 nm、出力 63~57 mW であった。この中心波長のシフトから短 波長側のフィルター1942 nm とのオーバーラ ップが可能であることが確認できる。

図 12. BPF の角度を変化させた時のレーザー出力 と発振波長の変化

3.6 フィルター1 枚での非線形偏波回転によるモード同期

次に、フィルター1 枚で非線形偏波回転によるモード同期が得られるか試みた。使用する BPF は上記の中心波長 1982 nm のものであり、LD1 を~350 mW、LD2 を~400 mW に固定し、P1 からオシロスコープでパルストレインを観測した。図 13 にパルストレインをです。瞬間的なノイズのあるパルスの立ち上がりは確認できた。両励起出力を増加させ波長板を調整したところ図 14 のようなノイズの少ないパルストレインが観測できたが、安定したモード同期は得られなかった。

図 13. パルストレイン(50 ns/div) 平均出力 P1=50 mW、P2=10 mW

図 14. パルストレイン上(50 ns/div)、下(2 µs/div) 平均出力 P1=70 mW、P2=13 mW

更に励起出力を上げ波長版を調整したところ、 両 arm の出射端側の端面の中心に破壊が確認 された(図 15)。

図 15. 端面の破壊(左:arm1、右:arm2 の出射端)

端面の破壊が確認されたのは P1 出力 100 mW、 P2 出力 10 mW 時である。モード同期を仮定 すると繰り返し周波数が~16 MHz なのでパル スエネルギーは 7 nJ 程度と見積もられ、端面 の破壊は起こりえないので、励起出力を上げ たことによってジャイアントパルスが発生し、 端面の破壊が起こったと考えられる。波長版 の調整によって損失が大きくなり、反転分布 量が増えその後更に波長版の調整により Q値 が急激に高くなったことによりジャイアント パルスが発生したものと考えられる。モード 同期を安定に得るためには端面の破壊を防ぐ 必要がある。

7. まとめと今後の展望

Tm:ダブルクラッド ZBLAN ファイバーを 用いた波長 2 µm帯 ANDi Mamyshev リング 型発振器をセルフスタートの方法で検討した。 フィルター無し時、最高出力 63 mW、発振波 長~1967 nm、繰り返し周波数が~16 MHzが 得られた。1 つのフィルターでの非線形偏波 回転を用いてモード同期を試みたところ、平 均出 70 mW の時、共振器の繰り返しに合う 平坦なパルストレインが一瞬確認されたが、 平均出力 100 mW時端面の破壊が確認され た。今後は端面の保護のためエンドキャップ 取り付けによって出射端でのエネルギー密度 を下げる方法が有用だと思われる。また、マ ルチパスセルなどを組み込み、共振器長を長 くすることで、現状よりも低繰り返しにし、 共振器内のパルスエネルギーを上げる方法も 考えられる。

参考文献

[1]Khanh Kieu, et al, Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber, IEEE Photonics Technology Letters 21(3):128 - 130(2009)
[2]Frithjof Haxsen, et al, Stretched-pulse operation of a thulium-doped fiber laser, Optics Express, 25, 20471-20476(2008)

[3]Zhen Tian, et al, Mode-locked thulium fiber laser with MoS2, Laser Phys. Lett. **12**, 065104(2015)

[4]Yuhang Shi, et al, Generation of 104 nJ, 100 kHz Pulses directly from all-Normal Dispersion all-PM Ybfiber Laser with a Nonlinear Amplifying Loop Mirror (2019)

 [5]Masaki Tokurakawa, et al,All-normal-dispersion nonlinear polarization rotation mode-locked Tm:ZBLAN fiber laser, Optics Express, 27, 19530-19535 (2019)

[6]Xiushan Zhu, and Ravi Jain, "Watt-level Er-doped and Er–Pr-codoped ZBLAN fiber amplifiers at the 2.7– 2.8 μm wavelength range", Optics Letters, **33**, 1578-1580, (2008)

[7]Yutaka Nomura, Takao Fuji, "Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator", Optics Express, **22**, 12461-12466 (2014)

[8]Wu Liu, et al, Femtosecond Mamyshev oscillator with 10-MW-level peak power, Optica, **6**, 194-197, (2019)

[9]Yi-Hao Chen, et al, Starting Dynamics of a Linear Mamyshev Oscillator, arxiv.org,2010.10022 (2020)

[10]Paul Repgen, et al. Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator, Optics Express, **28**, 13837-13844 (2020)