マイクロ ECLD を用いた自動位相同期システムの開発

基盤理工学専攻 武者 満 研究室 伊藤航平

1. 序論

現在、レーザーは加工や通信、測定、医 療など様々な分野で利用されている。そ の中でも、光通信においてレーザーは大 きな役割を担っていると言える。そもそ もレーザーは、「誘導放射による光の増幅| を意味する "Light Amplification by Stimulated Emission of Radiation"の各頭 文字をとって LASER といい、共振器を用 いて光を増幅して得られる人工的な光で ある。レーザー光は指向性や収束性、単色 性に優れているという特徴を持つ。レー ザーを用いた光通信では、レーザーの周 波数の高さによって広周波数帯域、大容 量の通信が可能である。また、レーザーの 指向性の良さにより通信の秘密保持が容 易である。これらの理由で、現在では光フ ァイバーを用いた光通信が盛んに行われ ている。大容量の光通信には、狭い光周波 数間隔の基準が必要である。ITU-T (国際 通信連合の電気通信標準化部門)ではこ の基準として「周波数グリッド」を勧告し ている。周波数グリッドは当初は波長 1.5 μ m 近辺で 100GHz 間隔のものと考えら れていた。しかし、最近では 12.5GHz 間 隔のものも考えられおり、様々な周波数 間隔のものがある。つまり、より一層高い 光周波数の制御技術が求められているの である。この技術を可能にするのが、位相 同期レーザーである。本研究では、位相同 期レーザー作成のために2点の方法を用 いた。

ー点目が、光周波数コムにレーザーの周 波数を同期させる方法である。25GHz 間 隔の光周波数コムを発生させ、その-10、 -5、0、+5 次の縦モード(125GHz 間隔) に超小型 ECLD(ITLA)を追従させた。 この際の光コムは、共振器型の EOM を 用いて発生させた。インライン型の EOM 光コムではサイドモードの SNR が低くな り、+10 次などの高次モードにレーザー の周波数を同期させるのが困難であった ためである。

二点目が、マイクロ ECLD(TTX11537) を用いて、位相同期レーザーを発生させ る方法である。この場合、光周波数コムに 同期させるのではなく、同じマイクロ ECLD を 2 台用意してそれらを位相同期 する。まず、このマイクロ ECLD を出力 周波数を自動で制御するためのアプリケ ーションを LabView を用いて作成した。 周波数に対応する、アクチュエーターの 印加電圧を出力アプリケーションである。 次に、2 台のマイクロ ECLD のビート周 波数を、注入電流によって動かせる事を 確認した。最後に、制御回路を通して、マ イクロ ECLD に不帰還し、位相同期を試 みた。

2. 原理

2.1 マイクロ ECLD の原理

本実験で用いたレーザーは、PURE PHOTONICSのPPCL300とNeo Photonics 社のTTX11537である。これは、フィル ター型のECLDである。小型ながら狭線 幅のレーザーを出力する。周波数操作の アクチュエーターは大きく2つに分類さ れる。粗く周波数操作をするアクチュエ ーターと、細かく周波数操作をするアク チュエーターである。粗く周波数を操作 するのは、内部に内装された二枚のエタ ロンフィルターへの印加電圧である。こ の二枚のエタロンフィルターは異なる透 過率のものである。細かく周波数を操作 するアクチュエーターはゲインチップへ の注入電流と、レーザーの基盤の制御端 子への印加電圧である。PPCL300は、 RS-232というアプリケーションを用い て、これらのアクチュエーターへ制御を 全て自動化してある。TTX11537は自動 化されていない。で

図1 マイクロ ECLD の原理図

図2 PPCL300 (左) と TTX111537 (右)

2.2 光周波数コムについて

周波数コムは、John L. Hall 博士と Theodor W. Hansch 博士によって開発さ れた光領域において周波数軸上に等間隔 の縦モードが並んだ光である。現在では、 光の物差しとして精密測距や光領域での 周波数計測、広帯域の周波数基準として 応用されている。具体的には光周波数コ ムは時間領域では超短パルスが一定時間 間隔で並んだものであり、周波数領域で は発振モード(縦モード)が一定間隔で並 んだものである。周波数領域においての 光周波数コムの姿が櫛(comb)に似ている ことから、光周波数コムと呼ばれている。 光周波数コムの n 番目の縦モード周波数 f_n は、繰り返し周波数 f_{rep} とオフセット周 波数 fcco を用いて式(2.1)表される。光コム の概念図は図3に示す。

$$f_n = f_{ceo} + n \cdot f_{rep} \tag{2.1}$$

2.3 共振器型 EOM 光コムについて

光周波数コム[7]は様々な方法で実現で きる。本研究で用いた光周波数コム発生 器ODCG(Optical frequency comb generator) はEOM(Electro Optic Modulator)を用いて 入射された光に位相変調を加える方式の ものである。ここから、共振器型EOMを 用いた光コムの発生原理について述べ る。 まず、EOMについてだが最も単純なの は、屈折率が局所的な電界の強さの関数 であるニオブ酸リチウム(LiNbO₃)などの 電気光学結晶で構成されているものであ る。これに電圧をかけた場合、電気光学 効果によって結晶の屈折率が変わるので 結晶の入射光に対して位相変調をかける ことができる。ここで、印加電圧を周期 的に変化させた場合の電場について考え る。z方向に伝搬する電場*E(z,t)*は、比例 定数Az、各周波数ωを用いて式2.2で表す ことができる。

$$E(z,t) = A_Z e^{i\omega t} \tag{2.2}$$

このsinに恒等展開を適用すると、式2.2 は式2.3で書くことができる。

$$E(z,t) = A_z e^{i\omega t} \left(1 + \frac{\Delta \theta}{2} (e^{i\omega_m t} - e^{-i\omega_m t}) \right)$$
$$= A \left(e^{i\omega t} + \frac{\Delta \theta}{2} e^{i(\omega_m + \omega)t} - \frac{\Delta \theta}{2} e^{i(\omega - \omega_m)t} \right)$$
(2.3)

この式から、元の信号に加えて $\omega - \omega_m$ と $\omega + \omega_m$ に二つの小さなサイドモード を持っていると解釈することができる。 現実には無限にサイドモードが存在す る。ヤコビ・アンガー拡張と呼ばれるベ ッセル関数を含む有用な恒等式存在す る。これによってサイドモードを求める ための以下の式2.4が導き出される。

$$E(z,t) = A_{Z}e^{i\omega t + i\Delta\theta sin\omega_{m}}$$
(2.12)
$$= Ae^{i\omega t} \left(J_{0}(\Delta\theta) + \sum_{\substack{k=1\\\infty}}^{\infty} J_{k}(\Delta\theta)e^{ik\Delta\theta t} + \sum_{\substack{k=1\\\kappa=1}}^{\infty} (-1)^{k} J_{k}(\Delta\theta)e^{-ik\Delta\theta t} \right)$$

以上より、入射光の周波数を中心に EOMの変調周波数 ω_m の間隔でサイドモードが発生して光コムが実現できることがわかった。

サイドモードのスパンを広げるために は補償をする必要がある。そこで、EOM をファブリーペロー共振器中に置く。共 振器の干渉効果によって分散補償をす る。高フィネスの共振器を利用すること で数百台のEOMを直列に並べた場合と同 じ効果が得られる。これによってスパン の大きな光周波数コムを実現している。 EOM型光周波数コム発生器の概略図を図 4に示す。

図4

共振器型EOMを用いた光周波数コム発生器

3. 実験

3.1 共振器型光周波数コムの発生

本研究で発生させた共振器型 EOM 光コ ムの実験のセットアップの概略図を、図5 に示す。実際に発生した光コムのスペク トルとインライン型の光コムのスペクト ルの比較を図6に示した。

図 6 共振器型 EOM 光コム(上)とインラ イン型 EOM 光コム(下)の比較

3.2 光コムを用いた ITLA の位相同期

図7に、実験セットアップの概略図を示 した。

ITLA を4台用いて4チャンネル位相同 期レーザー信号を実現する。一台の ITLA を EOM の OFCG に入射させての光コム を発生させる。この光コムのスペクトル を、25:75と50:50のファイバーカプラを 用いて三つに分配する。分配された光コ ムとITLA2~4のビート信号をPFDに入 射させ、60MHzのローカル周波数とミッ クスし、誤差信号を取得する。この誤差信 号をサーボ回路を通して ITLA の電流変 調端子に不帰還することで、位相同期を 試みた。結果を図 3.5,3.6 に示した。また、 ITLA1~4 の周波数と光コムのスペクト ルは常にモニターできるように、1:99の ファイバーカプラで Output 信号を設け た。

結果を、図 8,9 に示す。図 8 より、波長 1.5 µ m 帯において、複数の帯域で 4 チャ ンネルのレーザーが 125 GHz 間隔に周波 数同期されている事が確認できる。図9で は、ビート周波数のスペクトルを確認し たが、中心周波数 60 MHz のサイドモード のキャリアのパワーが抑制されていない。 これは、注入電流変調における制御帯域 が不足している事が原因であると考えら れる。

図8 位相同期した際のレーザーのスペクトル

図 9

ローカル周波数 60MHz と ITLA のビート周波数 のスペクトル

3.3 マイクロ ECLD の周波数制御

マイクロ ECLD では、ゲインチップと シリコン基盤によって 50GHz 周波数を 変化させられることがわかっている。つ まり、エタロンフィルターによって周波 数を50GHz 感覚で制御することができ れば、全ての周波数を出力できる。しかし、 実際にエタロンフィルターで周波数を制 御したところ、いくら印加電圧を細かく 変化させても、連続的でなく離散的に変 化してしまった。これは、出力周波数が2 枚のエタロンフィルターの透過率の共通 部分によるものであることが原因である と言える。つまり、二枚のエタロンフィル ターへの印加電圧を最適化すれば、連続 的に周波数を変化させることが可能であ ると言える。印加電圧を最適化し、ゲイン チップとシリコン基盤で制御することで、 全ての周波数領域におけるアクチュエー ターの値を特定することができた。周波 数に対応するアクチュエーターの値を表 にしたものを、「周波数マップ」と呼ぶこ とにした。

3.4 出力周波数の自動制御

3.2 で、周波数に対応するフィルター1、 2、Si 基盤の印加電圧の値が全て把握で きた。これらの電圧は、デジタルアナログ コンバータ (DA コン)で印可する事にし た。ここでは、周波数に対応する電圧を自 動 で 出 力 す る ア プ リ ケ ー シ ョ ン を LabView を用いて作成した。アルゴリズ ムを図 10 に示した。

図 10 周波数マップ出力アルゴリズム

この際注意した事は、電圧変化の際の動き である。マイクロ ECLD は、印加電圧の上 げ下げによるヒステリシスが確認できた。 よって、電圧を変化させる際には、一旦0V を出力してから目的の値を出力するように プログラムを設定した。

3.5 マイクロ ECLD のビート周波数測定 まず、3.3 のシステムを用いて周波数セ ットを行い、193.8175THz 付近でのビー ト周波数を測定した。この際、PFD で位 相同期に必要な誤差信号を取得するため、 このビート周波数の SNR は 30dB 以上で なければならない。結果を図 11 に示した。

図11 2台のマイクロ ECLD 間のビート周波数 のスペクトル

位相同期する際は、マイクロ ECLD へ の注入電流によってレーザーの周波数に 制御をかける。そのため、ここではマイク ロ ECLD の駆動に用いているカレントド ライバーに電圧をかけてビート周波数が 実際に動くかどうかを確認した。結果を 図 12 に示した。

図12 注入電圧端子へ+0.01V 印加した時のビ ートスペクトル

図 11,12 より、ビート周波数をゲインチップの注 入電流によって操作できること、30dB 以上の SNR のビートスプクトルが取れていることを確認でき た。

3.6 位相同期

3.3~3.5 を使って、位相同期の実験をした。この際に用いたサーボ回路は実験室で作成した。二台のマイクロ ECLD のビート周波数を PFD を用いてローカル周波数とミックスし、その位相差がゼロになるような制御をサーボ回路を用いて作り、マイクロ ECLD に負帰還した。結果を図12に示す。

図12 ローカル周波数とのビートスペクトル

図12より、中心周波数はロックされているもの の、位相同期ができていないことがわかる。サーボ 回路が最適化されていないことが原因として考え られる。

4. 展望

サーボ回路を最適化することで、中心周 波数付近にパワーが集中し、サイドモー ドのパワーが抑制された、正確な位相同 期が実現できるだろう。

5. 参考文献

[1] S. A. Diddams, ei al. "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb" Phys. Rev. Lett. 84 (2000) 5102-5105