波長可変 Q スイッチ Tm ファイバーレーザーの開発

戸倉川研究室 原田 有生

1. はじめに

波長2 µm 帯レーザーは様々な応用上好ましい特徴 を有していることから現在注目を集めている。まず、 波長2 µm 帯で動作するレーザーは水の吸収が強いこ とから、医療用のレーザーメスや結石破砕・軟組織ア ブレーション用の光源として応用されている[1]。ま た、大気の透過率が高い大気の窓と呼ばれる波長帯域 に含まれていることから、航空機用 LIDAR や測距装 置、環境分析などの応用に用いられている[2,3]。さら に、波長1 µm 帯や1.5 µm 帯に比べ、波長2 µm 帯の 光はポリマー・プラスチック材料の吸収が強いため、 それらの材料の加工応用に有用である[4]。このよう な応用には高エネルギーなナノ秒短パルス光が必要 である。パルス光を得る手法の1つに0スイッチ法 いう手法があり、光共振器内の Q 値を急激に変化さ せることによって、非常に高いパルスエネルギーを有 するパルス光を得ることが可能である。そこで本研究 では、超広帯域光発生や加工応用のための光源として、 音響光学変調器を用いた波長可変 Q スイッチ Tm フ ァイバーレーザーの開発を行った。

2. 原理

2.1 Tm 添加ファイバー

光ファイバーのコアに希土類元素であるツリウム(以下 Tm と表記)を添加したものが Tm 添加ファイバーである。Tm イオンのエネルギー準位図を図1に示す。

また、今回使用した Tm 添加シリカガラスファイバーの 3H6 から 3H4 の励起における吸収断面積を図2のようになっており、波長 790 nm 付近に吸収のピークを持つため、高出力なレーザーダイオードによる直接励起が可能となっている。基底準位にある電子を波長 793 nm の光で 3H4 に励起し、3H4 から 3F4 に脱

励起する際に、隣接する Tm イオンに対してエネル ギーの受け渡しが生じる。これをクロス緩和と言 い、1 つの電子の励起で2 つの光子が得られる量子 効率が2に迫る動作が可能である。また、3F4 から 3H6に脱励起する際の Tm 添加シリカガラスファイバ ーの吸収誘導放出断面積を図3に示す。波長 1600~2100 nm の広い蛍光帯域を有しているため、広 帯域なレーザー動作が可能である。

吸収誘導放出断面積[6]

2.2 ダブルクラッドファイバー

ダブルクラッドファイバーはクラッドが 2 層構造で 構成され、それぞれ内部クラッド、外部クラッドと呼 ばれる。図4に DCF の断面図と屈折率分布を示す。

内部クラッドはコアを伝搬する信号光を閉じ込める クラッドの役割と励起光のマルチモード導波路の役 割を担っている。外部クラッドは低屈折率の樹脂で作 られており、励起光閉じ込めの機能を持つ。内部と外 部クラッドの屈折率差が大きいため NA は高い値を 示し、かつ断面積が大きいことから、クラッド励起で は高出力なマルチモード LD での効率的な励起が可 能である。ダブルクラッドファイバーのコアに利得媒 質が添加されている場合、励起光がコア内の利得媒質 を励起し信号光を増幅させ、低 NA かつ断面積の小さ なコア内を伝搬する。コアの NA が小さいためマルチ モードの抑制ができ、光ビーム品質な増幅光を得るこ とが可能である。このように、ダブルクラッドファイ バーでは LD からの励起光を高効率で高ビーム品質 な光に変換することができる。

2.3 Q スイッチ法

Qスイッチとは、光共振器内の損失によって定義されるQ値を急激に変化させることによって、高エネルギーな短パルス光を得る手法である[7]。図5にQスイッチ法による短パルス発生過程を示す。まず初めに共振器内損失を大きくすることで、共振器のQ値を小さい値にし、非発振状態で高い利得、すなわち反転分布の大きい値が得られるようにする(AB間)。反転分布が十分に状態から、急激にQ値を高い値に変化させる(BC間)。このとき、レーザー媒質の利得は閾値よりも十分高い値になっているため、発振の急激な立ち上がりが生じ、高エネルギーな短パルス光が得られる(CD間)。本研究では音響光学変調器(AOM)により共振器内のQ値を変化させた。

図5.Qスイッチ法による短パルス発生過程

2.4 音響光学変調器

音響光学変調器(Acousto-optic Modulator)とは、 AOM 内に音響波(疎密波)を発生させ、AOM に入射 した光を回折させる光学素子である。図6に AOM の 内部構造を示す。電気信号により RF 結晶中ドライバ ーを介してトランスデューサーが振動し AOM 内に 音響波(疎密波)を発生させる。音響波の密度分布により屈折率の変化が生じ、回折格子が構成されるため、 AOM に入射した光が回折を受ける。すなわち、AOM が ON のときに光は損失を受けて回折し、OFF のときに光 は透過する。本実験では1次光が AOM に戻るよう HR ミラーを設置し、AOM が ON の時に共振器が組まれる ことによって、Q スイッチ発振を得た。

3. 実験

3.1 CW 発振実験

Q スイッチ発振実験に先立ち、使用した Tm 添加 ファイバーの特性を知るため、Tm ファイバーレー ザーの連続発振(CW)実験を行った。実験系を図7 に示す。利得媒質として長さ 2.2 m の Tm 添加 PM ダブルクラッドファイバー (コア径 10 µm、クラッ ド径 130 µm、NA=0.15) を使用し、PM 励起コンバ イナーを通して波長 793 nm、最大出力 4 W のレーザ ーダイオードを用いて後方励起した。f=5.95 mmの AR コート付き非球面レンズと高反射率(HR)ミラ ー、または回折格子(600本/mm)を用いて外部共振 器を構成した。また、AOM 側の端面には規制発振抑 制のため APC コネクタを融着し、Tm ファイバー側 の端面は垂直にクリーブした。Tm ファイバーから の出射光は非球面レンズでコリメートされた後、ダ イクロイックミラー(DM)によって、励起光を取 り除いた。

3.2 実験結果と考察(HR ミラーを用いた場合)

得られた出力特性とスペクトルを図8に示す。スロー プ効率は33.9%であり、1990-2000 nmの波長帯での発振 を確認した。

3.3 実験結果と考察(回折格子を用いた場合)

得られた出力特性を図9、10,11に示す。PMファ イバーの高速軸と回折格子の溝方向が平行の場合の スロープ効率は14.2%、波長可変幅は116 nm、垂直の

場合のスロープ効率は 29.6%、波長可変幅は 172 nm であった。PMファイバーの高速軸と回折格子の溝方 向が平行の場合に比べて垂直の場合のほうがスロー プ効率が高く、波長可変幅が広くなった原因について は、共振器がすべて PMファイバーで構成されており、 PMファイバーまたは PMコンバイナーが何らかの理 由で偏光依存の損失を有しており、高速軸と回折格子 の溝方向がそろった場合に効率的なレーザー発振が 可能になったと考えられる。

3.4 Q スイッチ発振実験

図 12 のように実験系を構成し、Q スイッチ発振実 験を行った。Q スイッチ発振を得るために AOM(回 折効率 95%)を f=5.95 mm のレンズと HR ミラーまた は回折格子の間に挿入した。その1次光を HR ミラー によって AOM に戻し、AOM が ON のときに共振器 が組まれる構成とした。0次光を用いるよりも大きな 損失変調を得ることが可能であり、より短いパルスと 高いエネルギーが得られやすい。また、AOM の周波 数シフトにより、縦モードフリーな出力を可能とする。 また、AOM は RF ドライバーを通してファンクショ ンジェネレーター(FG)に接続されており、FG から の信号によって、AOM 内に音響波を発生させた。本 実験では、パルス電圧 3V、ゲート時間 700 ns のパル ス信号を印加し、繰り返し周波数を 1-100 kHz に変化 させた。

図 12.Q スイッチ発振の実験系

3.5 実験結果と考察(HR ミラーを用いた場合)

3.67 W 励起において、繰り返し周波数を 1-100 kHz に変化させたときに得られた平均出力とパルスエネ ルギー、パルス幅とピークパワーを図 13、図 14

にそれぞれ示す。繰り返し周波数70kHz時に、最 大平均出力459mW、パルス幅131nsが得られた。ま た、繰り返し周期2kHz以下から急激な短パルス化が 起こり、繰り返し周波数1kHz時にて、最大パルスエ ネルギー95µJ、最大ピークパワー18.8kW、パルス幅 5.0nsという高エネルギーな短パルス光が得られた。 最大平均出力時(繰り返し周波数70kHz)におけるパ ルス波形とスペクトルを図15(a)、(b)にそれぞれ示す。 この時得られたスペクトル幅は19nmであり、比較的 広い線幅が得られた。これは、AOMを用いて共振器を 構成しており、縦モードフリーな発振となっているた め、スペクトル幅が広くなっていると考えられる。

図 15.70 kHz 時の(a)パルス波形と(b)スペクトル

また、繰り返し周波数1kHzにおけるパルス波形とス ペクトルを図16(a)、(b)にそれぞれ示す。この時得られ たパルスはシングルパルスであることが確認できた。 また、スペクトルが300 nm ほど広帯域化する現象がみ られた。

図 16.1 kHz 時の(a)パルス波形と(b)スペクトル

ここで、今回繰り返し周波数を低くしていくとパルス 幅が小さくなることが確認できたので、この原因につ いて考察する。Qスイッチレーザーのパルス幅 Δt は次 式で示される[7]。

$$\Delta t \approx \frac{r\eta(r)}{[r-1-\ln(r)]}\tau_{\rm c}$$

rは閾値に対して規格化された励起パワー、 $\eta(r)$ はエ ネルギー取り出し効率、 τ_c は共振器寿命(\propto L_cavity) である。この式から、短パルスを得るためには共振 器長を短くするかrを大きくすることが有用であるこ とがわかる。すなわち、利得の蓄えを大きくする (繰り返し周波数を小さくする)ことでもパルス幅 を短くすることができる。またrの極限を考えると 限界のパルス幅は $\eta(r)$ τ_c となる。図 17 にパルス幅の

励起パワーと周波数依存性を示す。

繰り返し周波数 3-10 kHz において、励起光が強い 時、繰り返しが低い時、のほうがパルス幅は小さく なっていることが分かった。これは上式のとおりで ある。繰り返し周波数 20 kHz 以上においては、励起 光が弱い場合でもパルス幅が小さくなっていること が確認できる。これは、繰り返し周波数が大きいと 1パルスあたりの利得が小さく、パルスが立下る途 中で AOM のシャッターによりパルスの裾が切られ てしまうことから、パルス幅が短くなっていると考 えられる。励起出力が高くなるほど、こう繰り返し でパルス幅が長くなっていることからもこの推測は 正しいと考えられる。また、注目すべき点として 3.67 W 励起時において、繰り返し周波数2kHz以下 では急激にパルス幅が短くなり、図 16(b)のスペクト ルのようにスペクトルの広帯域化がみられた。これ については上式によらない、非線形光学効果が発生 していると考えなければならない。例えば先行研究 にて変調素子無しのパルス幅2nsのYbセルフOス イッチレーザーが報告されており、同様に広帯域な スペクトルが確認されている[9]。これは、後方ブリ

ルアン散乱による非線形フィードバックが発生し短 パルス化がおこり、パルス幅が小さくなるとピーク 光強度が大きくなるので、それによって誘導ラマン 散乱が起こり、スペクトルが広帯域化したと考えら れる。今回のレーザーは波長2µm帯でありガラスの 分散がYbレーザーとは符号が異なっている。その ため soliton fission のような効果も合わせて発生しよ りスムーズなスペクトルの拡大が発生していると考 えられる。

3.3 実験結果と考察(回折格子を用いた場合)

次に HR ミラーを回折格子に置き換えて Q スイッ チ発振実験を行った。実験の結果、3.67W 励起にお いて、繰り返し周波数を 1-100 kHz に変化させたと きに得られた平均出力とパルスエネルギー、パルス 幅とピークパワーを図 18、図 19 にそれぞれ示す。

繰り返し周波数 20kHz から 80kHz において、平均 出力 360mW 以上が得られた。また、繰り返し周波数 1 kHz 時にて、最大パルスエネルギー75µJ、最大ピー クパワー1.67 kW、パルス幅 4.5 ns の短パルス光が得 られた。最短パルス時(繰り返し周波数 1 kHz) にお けるパルス波形とスペクトルを図 20 に示す。この時 得られたパルスはシングルパルスであることが確認 できた。また、スペクトルが 300 nm ほど広帯域化す

る現象がみられた。

図 20.1 kHz 時の(a)パルス波形と(b)スペクトル

3 W 励起にて回折格子を用いた波長可変実験を行った結果、図 21 に示す波長に対する平均出力とパルス幅の変化が得られた。利得が大きくなると平均出力が増加し、パルス幅も短くなることが確認できた。また、図 22 に示すスペクトルが得られた。繰り返し周波数4kHz時に最大波長可変幅 126 nm が得られた。

4. まとめと今後の展望

本研究では、音響光学変調器を用いた波長可変 Q ス イッチ Tm ファイバーレーザーの開発を行った。HR ミラーを用いた Q スイッチ発振によって、3.67W 励 起での測定により、繰り返し周波数 70 kHz にて最大 平均出力 459 mW が得られ、パルス幅は 131ns であ った。また、繰り返し周波数 1 kHz にて最大パルス エネルギー94 uJ、最大ピークパワー18.8 kW が得ら れ、その時のパルス幅は 5ns と高エネルギーな短パ ルスが得られた。さらに繰り返し周波数を低下させて いくとパルス幅が急激に短くなり、スペクトルが 300nm ほど広帯域化する現象がみられた。この原因 については、後方ブリルアン散乱による非線形フィー ドバックが発生し短パルス化がおこり、パルス幅が小 さくなるとピーク光強度が大きくなるので、それによ って誘導ラマン散乱が起こり、スペクトルが広帯域化 したと考えられる。また、回折格子を用いた Q スイ ッチ発振によって、3.67W 励起時に繰り返し周波数 20kHzから 80kHz において、平均出力 360mW 以上 が得られた。また、繰り返し周波数1kHzにてパル スエネルギー75 μJ、ピークパワー16.7 kW、最短パル ス幅 4.5 ns が得られた。HR ミラーを用いた場合と同 様に、繰り返し周波数を低下させていくとパルス幅が 急激に短くなり、スペクトルが 300nm ほど広帯域化 する現象がみられた。さらに 3W 励起での波長可変 Q スイッチ発振において、繰り返し周波数4kHz時に最 大波長可変幅 126nm が得られた。今後の展望につい ては、今回確認した短パルス化の原因を究明する。また、高出力な LD を用いることでさらなる高出力化、高エネルギー化を目指す。さらに、今回開発した光源を用いて加工応用に用いる予定である。

参考文献

[1] Debases Pal, et al., IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, **25**, No.1, 7100808, 2019

[2] Kohei Mizutani, et al., Optics Letters, **43**, No.2, 202-205(2018).

[3] Albert Schliesser, et al., Nature Photonics, 28, 142, 2012

[4] Ilya Minagareev, et al., Optics & Laser Technology, 44, 2095-2099(2012).

[5] Arlee V. Smith and Jesse J. Smith, Optics Express, 24, 795-992(2016)

[6] Søren Dyøe Agger and Jørn Hedegaard Povlsen, Optics Express, **14**, 50-57(2006)

[7] M. Eichhorn, et al, Optics Letters, 32, 2780-2782(2007)

[8] http://www.anfoworld.com/lasers.html

[9] S. V. Chernikov, et al., Optics Letters, 22, 298-300(1997).