ZBLAN ファイバーを用いた波長2 μm帯 全正常分散モード同期ファイバーレーザーの開発

戸倉川研究室 相楽 啓

1. はじめに

モード同期ファイバーレーザーの出力制 限にはファイバー中の非線形効果の影響が 挙げられる。非線形性を抑制・制御する方法 として共振器内の分散量を考慮した共振器 構成が必要になり、過去に様々なモード同 期が開発されてきた[Fig. 1]。代表的なモー ド同期であるソリトンモード同期ではパル スエネルギー1 n/以下、この限界を超える ことに成功したストレッチパルスモード同 期では数 nl、さらに高エネルギー化を実現 した全正常分散モード同期で波長1 µm帯 において 190 n/[1]が報告されている。この ように共振器内の分散値を調整し、発振モ ードを変化させることで出力スケーリング が向上されてきた。しかし、波長2 μm帯の ファイバーレーザーで一般的に使用される シリカガラスファイバーは材料分散の異常 分散値が大きく、上述の正常分散領域での モード同期発振が困難であった。そこで本 研究では、シリカガラスファイバーの代わ りにフッ化物(ZBLAN)ファイバーを使用し た。ZBLAN ファイバーは材料分散がシリカ ガラスと比較して小さく、導波路分散を制

御することで波長 2 µm帯において正常分 散を示すことが可能になる。これによって、 原理的に困難であった波長 2 µm帯全正常 分散モード同期ファイバーレーザーの実現 を目指し、波長 2 µm帯モード同期ファイバ ーレーザーの出力スケーリング向上に取り 組んだ。

2. 全正常分散モード同期

この発振モードは、共振器内で形成され るパルスは自己位相変調および正常分散に より、正チャープした時間幅の長いものに なる。これにより出力制限に影響を与える 非線形性を抑制することができ、より高い エネルギーを蓄えることが可能になる。こ のチャープしたパルスは共振器外部で回折 格子やプリズムを用いることで圧縮するこ とにより超短パルスを得ることができる。 全正常分散モード同期では、バンドパスフ ィルターが重要な素子の一つである。形成 されるスペクトルは自己位相変調により広 がっていく。そのためその共振器一周によ るスペクトル幅の拡がりを補償し、定常発 振を促すためにバンドパスフィルターの挿 入が必要となる。共振器内を周回する光ス ペクトル変動を Fig.2 に示す。 さらにフィル ターはパルス形成の役割も担っている。正 チャープしたパルスの時間的強度分布とパ ワースペクトルは似た形状となるため、フ ィルターを透過することによりパルスの裾

を落とすような可飽和吸収体の性質も持つ。

Fig.2 全正常分散モード同期ファイバーレーザー 共振器内のスペクトル変動[2]

3. フッ化物(ZBLAN)ファイバー

ZBLAN ファイバーの特徴として、フォノ ンエネルギーが小さい点が一つ挙げられる。 石英ガラスの最大フォノンエネルギーはお よそ1000 cm⁻¹に対し、ZBLAN ガラスでは 約500 cm⁻¹であり、半分程度のフォノンエ ネルギーを有している。これにより、波長 2 µm以上では実用的な透過率を持たない 石英ガラスファイバーに比べて、波長約 4 μmの広い透過帯域を有している[3]。この ことから超広帯域光発生や中赤外レーザー の増幅媒質として有用である。また、 ZBLAN ファイバーに希土類を添加した際、 石英では多フォノン緩和により非輻射放出 となる多くの遷移が、ZBLAN ファイバーで は発光を示すことができ、高いスロープ効 率で動作が可能である。さらには、低閾値レ ーザー発振が可能という報告もある[4]。こ れらのことからもシリカファイバーよりも ZBLAN ファイバーが優れたパフォーマン スを示すことが知られている。その一方で、 潮解性、低機械強度、低融点といったファイ

バーとしては扱いづらい特徴も持っている。 また、本研究で着目した ZBLAN ファイバ ーの特徴は、前述したように材料分散が中 赤外領域において低い値を持っていること である[5]。ファイバーの分散値は材料分散 と導波路分散の和で表される。石英ガラス ファイバーでは波長2 um帯において、材料 分散の負の値が高く全体で大きな異常分散 値を示していた。しかし、ZBLAN ファイバ ーにおいては材料分散値がおよそ 2 倍小さ い、この値は導波路分散を制御すること、つ まりはファイバーのコア径及び NA を適当 な値に調整することによりファイバー全体 で正の分散を示すことが可能である。ファ イバーの分散量の計算結果を示す。ZBLAN ファイバーのコア径を約 6.4 µmに以下に することで正常分散を示すことが可能とな る。

Fig.3 異なるコア径における ZBLAN ファイバー の分散値

Fig.4 ZBLAN ファイバーの全分散特性(コア径: 6.2 µm)

全正常分散モード同期ファイバーレー ザーの開発

4.1 実験構成

本研究で構築した実験系を Fig.5 に示す。 利得ファイバーに Tm:ZBLAN ファイバー (コア径: $6.2\pm0.2 \mu m$ 、NA: 0.2、l = 1.3 m、 GVD ~5500 ± 2000 fs^2/m)を用いた。その ファイバーの両端には、1 mと0.5 mのシン グルモード ZBLAN ファイバー(コア径: 6.2±0.2 µm、NA: 0.2)をそれぞれ機械的に接 続した。共振器に組み込まれる ZBLAN フ アイバー全長の分散値は、126500± 4600 fs²である。ファイバー以外の光学素 子の分散については、ファイバーの分散値 に比べて非常に小さいことから本実験では 考慮しなかった。励起光源には 1555 nm Er:Yb ファイバーレーザーを利用し、ダイク ロイックミラー(DC)を透過させ Tm:ZBLAN ファイバーの励起を行った。レーザー発振 はアイソレータにより、図版時計周りに一 方向性を持たせ、アイソレータの入口側に ある偏光ビームスプリッタから出力を取り 出している。また、共振器一周で生じるスペ クトル広がりを補償するためにバンドパス フィルター(BPF)をレーザー光がファイバ ーに再結合される前の位置に挿入した。本 実験では、バンド幅の異なる二種類のフィ ルター(λ_c : 1885 nm、 BW: 10 nm or λ_c : 1870 nm、 BW: 35 nm)(λ_c : 透過中心波 長、 BW: Band Width)をそれぞれ用いて実験 を行った。

Fig. 5 全正常分散 Tm:ZBLAN モード同期ファイバ ーレーザー

4.2 バンドパスフィルター (BW: 10 nm)

モード同期によって得られたパルストレ インと出力特性を Fig.6.7 にそれぞれ示す。 励起パワー199 mW時に平均出力 47 mW のモード同期動作を確認でき、励起パワー を上げていくことで最高出力 67 mWが得 られている。適正な波長版の組み合わせで あれば、セルフスタートが可能となってい る。繰り返し周波数は70.6 MHzであり、パ ルスエネルギーは 0.9 n/と見積もられる。 低出力時と高出力時のスペクトルを共に Fig.5 に示す。正常分散領域のモード同期で 報告がある Cat-ear 型の構造を確認すること ができた。励起パワーを上げていくことで スペクトル幅が広がっていき、最高出力時 でおよそ 50 nmを得ることができた。この 広がりは利得ファイバー中での増幅動作と 自己位相変調の影響によるものである。ま

た、2つのスペクトルにそれぞれ見られる 細かなディップについては、共に位置が一 致していることからもこの波長域の水の吸 収によるものだと考えられる[5]。

Fig.8 異なる出力時のスペクトル

4.3 バンドパスフィルター (BW: 35 nm)

バンドパスフィルターをバンド幅35 nm のものに変更し、同様の実験を行った。適切 な波長板の組み合わせを行うことで励起パ ワー216 ~ 329 mWの範囲においてモー ド同期発振を確認することができた。得ら れている最高出力は 67 mWであり、パルス エネルギーは 0.9 nJと見積もられる。測定 したスペクトルと自己相関波形を Fig.10,11 にそれぞれ示す。バンド幅 10 nm使用時と 比較して約30 nm広がり、最大で 80 nmの スペクトルを確認した。スペクトルの中心 部にピークがあるが、励起パワーを下げて いくことでピーク成分を抑制することがで き、中心が平坦な Car-ear 型のスペクトルも 確認できている。また、自己相関計を用いて 測定したパルス幅はガウス形を仮定すると 860 fsを得ることができた。スペクトル幅 から考えると、チャープしたパルスが出力 されていると判断できる。スペクトル形状 やチャープしたパルスからも正常分散領域 でのモード同期が実現できたと考えられる。

Fig.9 出力特性 (BW:35 nm)

4.4 パルス圧縮

回折格子対(300 本/mm)を用いてパルス 圧縮の実験を行った。回折格子対間の距離 を調整し与える分散量を変化させていき、 与えた分散量-21000 fs²のときにパルス 幅を107 fsまで圧縮することができた。圧 縮後の平均出力はおよそ40 mWである。算 出したフーリエ限界パルス幅の 99 fsに近 い値まで圧縮できており、さらなる分散量 の調整により短パルス化が期待できる。パ ルス幅からピークパワーは 5.3 kW程度と 見積もられる。また、パルス裾に圧縮できて いない成分が確認できるが、これは高次の 分散の影響によるものだと考えられる。

-

5. まとめと今後の課題

波長2 µm帯全正常分散モード同期ファ イバーレーザーの開発を行った。バンド幅 35 nmのバンドパスフィルター使用時に最 高出力 67 mW、繰り返し周波数70.6 MHz、 パルスエネルギー0.9 nJのパルスを得るこ とができ、おおよそ 80 nmの広がりを持っ たスペクトルを確認した。また、直接出力さ れるパルス幅はガウス形を仮定すると、 860 *fs*のチャープパルスが得られ、回折格 子対により 107 *fs*まで圧縮することができ ている。

全正常分散領域におけるモード同期を実現 することができたが、得られたパルスエネル ギーとしては0.9 nlと通常のソリトンモー ド同期と同等の値となってしまった。原因 としては、全体での分散量によるものだと 考える。今回の実験構成では分散値が 0.12 ps²であり、正常分散ではあるが値の 小さいものであった。そのためより高出力 な光源開発を目指すのであれば、より分散 量の大きく非線形を抑制できるファイバー を利用することが望ましく、ZBLAN ファイ バーの導波路分散のさらなる制御が必要と なる。また、共振器内に PBS を挿入し、共 振器からの取り出しを高くすることが挙げ られる。これにより共振器内の光強度を下 げ、非線形を抑えることができ、さらなる高 出力化が期待できる。

参考文献

Sidorenko, Pavel; Fu, Walter; Wright, Logan G; Wise,
Frank W, "Multi-megawatt, self-seeded Mamyshev oscillator", Specialty Optical Fibers, Paper, (2018)
Andy Chong, William H. Renninger, and Frank W.
Wise, "Properties of normal-dispersion femtosecond fiber lasers", Journal of the Optical Society of America B, 25, 140-148, (2008)

[3] Xiushan Zhu, and Ravi Jain, "Watt-level Er-doped and Er–Pr-codoped ZBLAN fiber amplifiers at the 2.7– 2.8 μm wavelength range", Optics Letters, 33, 1578-1580, (2008)

[4] B. M. Walsh and N. P. Barnes, "Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 mm,"

Appl. Phys. B 78, 325-333 (2004).

[5] Andreas Wienke, et al, Optics Letters, **37**, 2466-2468,(2012)