光マイクロトラップアレーへの単一原子ローディング効率の向上

中川研究室 山口 裕介

1. 研究背景

近年、光子や原子などの量子の性質を 利用した量子情報処理に関する研究が盛 んに行われている。古典的なコンピュー ターでは計算が困難であった数学的問題 を解くことができる量子コンピューター、 自然界に存在する複雑な量子系を制御性 の良い量子系を用いてシミュレートを行 う量子シミュレーションなどが代表的な 例である。

我々の研究室では、光マイクロトラッ プ内の単一中性原子を用いて量子もつれ 状態を持った原子を複数個生成し、量子 情報処理への応用を目指おり、すでに光 マイクロトラップと空間光変調器(SLM) を組み合わせることで 50 個以上の光マ イクロトラップの形成に成功している[1]。 これにより任意の配置に単一原子を用意 することが可能になった。しかし、形成 するトラップの数が増えるほど、すべて のトラップに単一原子を用意できる確率 は減少する。すべてのトラップに高効率 に原子を用意することは今後量子情報処 理への応用に向けて不可欠な要素である。

図1トラップされた原子の平均蛍光画像

高いローディング効率を実現する方法 として光誘起衝突を利用してトラップ内 の原子を1個にする方法が最も一般的で ある。これは、共鳴に近い光を照射し、 トラップ内の原子ペアの衝突を誘起し、 原子ペアに運動エネルギーを与えられる ことを利用してトラップから原子を逃が す方法である。従来の赤方離調光による 方法の場合、1つの光マイクロトラップ内 に単一原子を用意できる確率が約 50%と なる。これは衝突過程で原子ペアに与え られる運動エネルギーに制限がないため である。この場合、例として 50 個のトラ ップにすべて単一原子ローディングする 場合、その確率は(1/2)50となる。対して、 青方離調光による光誘起衝突を用いる方 法は共鳴に対して青方離調した光を用い る場合、原子ペアに与える運動エネルギ ーの上限を離調の大きさによって決める ことができるため、離調を最適化するこ とで単一原子を用意できる確率の向上を 図ることができる。この方法を用いて他 グループでは約90%の確率を実現した [2,3]。我々はこれまで青方離調光による 光誘起衝突を利用して単一原子を用意で きる確率の向上を図ってきたが、同確率 は62%程度にとどまっていた。今回、私 はトラップの深さなどいくつかの改善を 行い、さらなる単一原子を用意できる確 率の向上を図った。

2. 原理

2.1. 衝突ブロッケード

光双極子トラップ内の原子を1個にする ために我々は光双極子トラップの光にビー ムウエストが約1µmの非常に小さなトラッ プ(光マイクロトラップ)を用いている。光マ イクロトラップ内の原子は原子間の距離が 非常に小さくなり、トラップからの原子ロスは 衝突によるロスが支配的となる。

図 2 は赤方離調光下における MOT からト ラップへのローディングレートとトラップ内原 子数の関係を示した図である([4]より引用)。 $\omega_0 = 0.7\mu m$ のときを見ると $R_w < R < R_w$ の領域では、トラップ内平均原子数(N) は 上限を約 0.5 に制限される。これは、衝突レ ートが大きいため1個の原子がローディング されたトラップに 2 個目の原子がローディン グされたとしてもすぐに 2-0 ロスが起こり、ト ラップ内の原子数が0個もしくは1 個のみと なるためである。この効果は衝突ブロッケー ドと呼ばれている。

図 2 ローディングレートに対するトラッ プ内原子数

2.2. 光誘起衝突

光マイクロトラップ内で起こりうる原 子ロスには 2-0 ロス(a)、2-1 ロス(b)、1 体ロスの 3 つの過程がある。2-0 ロス、 2-1 ロス過程は光によって誘起された衝 突過程によるロスである。1 体ロスはバ ックグラウンドガスとの衝突過程による ロス、あるいは温度上昇によるロスであ る。

図3光誘起衝突による原子ロス

トラップ内への単一原子ローディング 効率を向上させるためには 2-1 ロスが起 こる頻度を 2-0 ロスのそれに対して大き く上回る必要がある。赤方離調光下では 2-0 ロス、青方離調光下では 2-1 ロスが 起こる確率が高くなるため、光誘起衝突 を利用した単一原子ローディングには青 方離調光を用いられる。

光マイクロトラップ内の原子の共鳴周 波数に近い周波数のレーザー光を照射す ると、励起状態 P の原子と基底状態 S の 原子間衝突が支配的となる。図 3、4 のよ うに原子間距離が小さくなると引力ポテ ンシャルと斥力ポテンシャルの 2 つに分 裂する。 2.1. 赤方離調光による光誘起衝突

図 4 のようにトラップ内の原子の共鳴 周波数から∆だけ赤方離調した光をトラ ップ内の原子ペアへ照射した場合につい て考える。このとき、原子ペアは $R_{c} = (C_{3}\hbar\Delta)^{1/3}$ で共鳴となり引力ポテン シャルへ遷移する。C3は励起された原子 ペアは、ポテンシャルの坂を下りR_sで自 然放出し|S + S⟩ へと遷移する。この遷 移は非弾性遷移なので、原子ペアにポテ ンシャルの坂を下った分の運動エネルギ ーが与えられる。この遷移により原子ペ アに与えられるエネルギーは通常、トラ ップの深さより十分大きく原子ペアは両 方ともトラップから逃げることになる。 このことから、赤方離調光による光誘起 衝突を用いると、トラップ内の初期原子 数が奇数個のときのみ1個の原子が残り、 偶数個のときは0 個となってしまうこと がわかる。よって、トラップ内に原子1個 のみローディングできる確率は 1/2 とな ってしまう。

2.2. 青方離調光による光誘起衝突

次に、図5のようにトラップ内の原子の 共鳴周波数からムだけ青方離調した周波 数の光をトラップ内の原子ペアへ照射し た場合について考える。このとき、原子 ペアは $R_c = (C_3\hbar\Delta)^{1/3}$ で共鳴となり引力 ポテンシャルへ遷移する。励起された原 子ペアは、初期運動エネルギー分だけポ テンシャルを登ったのち、再び Rc に戻 る。ここで誘導放出が起こる場合とRc を 通り過ぎ、そのうち自然放出する場合が 考えられる。前者の遷移は弾性遷移で原 子のペアに与えられるエネルギーはない。 対して後者の遷移は非弾性遷移なので、 原子ペアに Rc からポテンシャルの坂を 下った分の運動エネルギーが与えられる。 ここで重要なのがこの時のエネルギーは ℎΔ が上限となる点である。これにより離 調の大きさ∆で原子ペアに与えるエネル ギーを上限のみだが決めることができる。

図4 赤方離調光による光誘起衝突

3. 実験系

3.1. 光学系

本実験では磁気光学トラップ、光双極子 トラップになどに必要な光、加えてプッ シュ光や観測光、青方離調光などの光が 必要となる。各光の周波数設定を図 6 に 示す。

本実験では、青方離調光として D1 ライ ンの $F=1 \rightarrow F=2$ から青方離調した光 を用いている。外部共振器型半導体レー ザーを光源とし、電流変調法を用いて D1 ラインの $F=1 \rightarrow F=2$ の共鳴周波数に 安定化している。

ポンプ光は、青方離調光照射時に基底 状態のF = 2 に原子が溜まり、青方離調 光を吸収しなくなってしまうため、励起 状態のF = 2に励起するための光である。

3.2. 観測系

本実験では、光マイクロトラップ内の 原子の蛍光を EM-CCD カメラで撮影し、 トラップ内の原子数を測定することで単 一原子ローディング効率を求める。 観測系の概略図を図7に示す。

使用しているカメラは、Andor 社製 「iXon Ultra 897」で画素数は 512×512、 ピクセルサイズは 16×16 μ m である。原 子からの蛍光を焦点距離 8mm のレンズ と 200mm のレンズによってカメラの受 光面に集光している。画素分解能は 0.64 μ m/pixel である。図 8 に示した画像はト ラップ内の原子を 1000 回撮影して得ら れた 1000 枚の画像を平均化した画像で ある。この画像から図 9 のようなヒスト グラムを作成し確率を求める。

図8単一原子ローディング実験の CCD より得られる平均画像

図9 蛍光量ヒストグラム(1000 回測定)

4. 実験結果

4.1. トラップ内の光シフト測定

トラップ内の原子は、トラップ光によ って内部エネルギー準位に光シフトが生 じる。測定方法としては、トラップ内の 原子の共鳴に近い光をプッシュ光として 用いて、その周波数を掃引し最もトラッ プから原子が逃げる周波数を探すことで 光シフト測定を行った。トラップの数は2 個で行い、その結果を図 10,11 に示す。

電圧表記は光マイクロトラップのパワー をモニターしているフォトディテクター の電圧値を示している。 4.2. 単一原子ローディングの高効率化

青方離調光による光誘起衝突を用いて、 光マイクロトラップ内に単一原子ローデ ィング効率の向上を図った。ポンプ光の パワーは350µWに設定している。高効 率化実験の時間系列を図12に示した。測 定回数は1サイクルに1回で、これを 1000サイクル行った。また、サイクル終 了ごとにトラップ内の原子を初期化する ためトラップを開放し、共鳴光を当てた。

図 12 高効率化実験の時間系列

4.2.1. 青方離調光のパワー依存性

まず、単一原子ローディング効率の青 方離調光のパワー依存性について測定し た。トラップの深さを 3.8mK、青方離調 光の離調を 80MHz、照射時間を 200ms に設定して測定を行った。図 13よりピー ク確率は 450 µ W で 76.3% となった。青 方離調光のパワーが強いと輻射圧による 加熱効果による原子ロスが生じる。対し てパワーが弱いと加熱効果による原子ロ スはあまり生じなくなるが、原子に与え るエネルギーが小さくなり原子ペアがト ラップから逃げず、観測時の赤方離調光 による原子ロスにより確率が下がってい ると考えられる。

4.2.2. 青方離調光の照射時間依存性

次に、単一原子ローディング効率の青 方離調光の照射時間依存性について測定 した。トラップの深さを 3.8mK、青方離 調光の離調を 80MHz、パワーを 450µW に設定して測定を行った。図 13の結果を 見ると MOT を切り青方離調光のみ照射 されている 150ms 以降、確率は大きく上 昇し、ピーク確率は 230ms で 77.9% と なった。赤方離調光と青方離調光の差は 2 個目の原子がトラップ内にローディング され、衝突が生じている 100ms から 200ms の間の確率の変化から確認できる。

4.2.3. 青方離調光の離調依存性

次に、単一原子ローディング効率の青 方離調光の照射時間依存性について測定 した。青方離調光のパワーや照射時間は 最適化した値に設定して測定を行った。 図 14 より離調が 90MHz でピーク確率は 82.2% となった。

5. まとめ

本研究では、青方離調光による光誘起衝 突を用いて光マイクロトラップ内の単一 原子ローディング効率の向上を図った。 今回、トラップの深さを 1.5mK から 3.8mK にし、青方離調光を D2 遷移から D1 遷移に変更を行い、また青方離調光の 離調、照射時間、パワーを最適化した結 果、82.2% まで向上することができた。

参考文献

[1] Hikaru Tamura, et al., OE.24.008132(2016)

[2] M. F. Andersen, et al., LaserPhys. Lett. 10, 125501 (2013)

[3] B. J. Lester et al., Phys. Rev. Lett.115, 073003 (2015)

[4] N. Schlosser et al., Phys. Rev. Lett. 89, 023005 (2002).