マルチコアフォトニック結晶ファイバーレーザーの位相同期特性の研究

白川 晃 研究室 黒須 雄太

1. はじめに

希土類イオンを添加したファイバーレーザーは低 損失のシリカガラスによって作られているために高 効率、導波路構造によって空間モードを完全に制御可 能であるため高ビーム品質、体積比で大きな表面積を 持つために優れた放熱性を持つ等の複数の優れた特 徴を持つ、高平均出力レーザーである。しかし、パル スでの発振では、非線形光学効果や、ファイバー端面 の損傷により性能に制限が生じることが欠点である。

ファイバーレーザーのコアの大口径化では、モード フィールド面積を増大させることで、高出力化の際に 問題となる非線形光学効果の抑制や、破壊閾値の向上 が可能である。しかし、曲げ損失や閉じ込め損失の影 響から、コアの大口径化にも限界がある。また、自己 収束効果の発生閾値はコア径には依存しておらず、フ ァイバーの非線形屈折率のみで決まる。そのため、フ ァイバーレーザーの高出力化に関する問題は、コアの 大口径化のみで解決することはできない。

これらの問題を解決することのできるファイバー レーザーのアレイ化では、複数のファイバーレーザー を束ねて出力加算を行うことで、出力限界の向上が可 能である。特に複数のファイバーレーザーをコヒーレ ントに結合するコヒーレントビーム結合(CBC)では、 高輝度且つ高ビーム品質で結合を行うことができる。

マルチコアファイバー(MCF)に周期的空孔構造を 加えた Yb³⁺添加マルチコアフォトニック結晶ファイ バー(MCPCF)では、モードフィールド面積を大きくす ることで、非線形光学効果を抑制し、パルス動作時に 高尖頭出力化、高エネルギー化が可能である。

我々はこの MCPCF を用いて、上記の CBC による ファイバーレーザーの高尖頭出力化、・高エネルギー 化の研究を行ってきた[1]。

本研究では、6 コア及び 7 コア MCPCF を用いて、 エンドシール法での in-phase モード、out-of-phase モードの選択励振の実証を行った。また、動作時の MCPCF レーザーのモード解析として、新たに干渉を 用いた簡便なモード解析の手法を考案した。

2. MCPCF

本研究で用いた6コア及び7コア MCPCF の構造パ ラメータを表1、断面図を図1にそれぞれ示す。7コ ア MCPCF はファイバーの中心のコアとその周りの6 つのコア、6コア MCPCF は周りの6つのコアに Yb³⁺ イオンが添加されている。また、コアの周りの周期的 空孔構造によって、シングルモード伝搬が可能である。 MCPCF レーザーは、それぞれのコアがエバネッセン ト光により結合している。この結合によって位相同期 がなされており、コア数と同数のスーパーモードを励 振する(図2)。特に、最もモード屈折率の大きい1番 目のモードを in-phase モード、最もモード屈折率の 小さいモードを out-of-phase モードと呼ぶ。 in-phase モードでは全てのコアの位相が揃っており、out-ofphase モードでは隣り合うコアの位相がπ ずれてい る。7 コア MCPCF に関しては周りのコアの影響で電 界が打ち消しあい、中心コアでは電界がなくなってい る。in-phase モードは近視野で全ての位相が揃ってい るために、遠視野では中心に高いピークを持っており、 高輝度且つ高ビーム品質な CBC となっている。また、 out-of-phase モードは隣り合う位相がπ ずれているこ とから、遠視野では6つのピークを持った特徴的なビ ーム形状が形成される。

本研究ではこの in-phase モード、out-of-phase モード についての選択励振を目標とし、実証・考察を行った。

	6コア	7コア
空孔間隔Λ[μm]	13.5	13.3
空孔サイズ d[µm]	6.6	5.6
コア径[µm]	20.7	21.2
第一クラッド径[µm]	180	165
Yb 添加濃度[ppm]	1300	3000
d/Λ	0.49	0.42

表1 6コア・7コア MCPCF の構造パラメータ

図 1. (左) 6 コア、(右) 7 コア MCPCF の断面図

図2. 近視野電界分布及び遠視野強度分布

3. エンドシール法による位相同期

MCPCFのモード選択にあたり、選択的に励振を行 うためには特定のモードとそれ以外のモード間で損 失差を与え、特定のモードだけを励振させる必要があ る。このスーパーモードの選択励振の手法の一つに Talbot 法がある。複数の光源が等間隔に並んでいる とすると、出射後の光は回折・干渉を繰り返し、出射 直後と類似した強度分布が一定の距離で周期的に再 形成される。これを自己イメージング効果(Talbot 効 果)、この一定距離を Talbot 距離といい、この効果を 利用している。自己イメージングが再形成される距離 はモードごとに異なっており、Talbot 法とは、この各 モードの Talbot 距離の違いを利用した、外部共振器 型モード選択法である。また、この手法を用いた共振 器は Talbot 共振器とよばれる。

しかし、Talbot 共振器では MCPCF 端面でのフレ ネル反射がモード選択に悪影響を及ぼす[]。

そこで本研究ではエンドキャップを MCPCF に融 着するエンドシール法を用いた。エンドシール法の概 念図を図3に示す。エンドシール法は MCPCF の空孔 部分をフィラメント型融着器で溶融消滅させること で作製する。この方法では鏡の部分をシリカロッド端 面でのフレネル反射で行い、全ファイバーモード選択 器を実現することができる[1]。エンドシール法は Talbot 法と同じく、スーパーモードごとの Talbot 距 離の違いを利用して、特定のスーパーモードとその他 のスーパーモードで損失差を与え、特定のスーパーモ ードの選択的な励振を行う。エンドシール共振器はエ ンドシール部であるシリカロッド側面で全反射を行 うことが可能なため、ビーム広がりによる損失なしに 再結合を行うことができる。

図3. エンドシール法による選択励振

エンドシール共振器を用いた際の再結合係数につ いて考える。6コア・7コア MCPCF の各スーパーモ ードの再結合係数を図4、図5に示す。この計算には FIMMWAVE のアドオンである FIMMPROP を用い ている。6 コア MCPCF では、in-phase モードを選 択する場合、エンドシール長 3.1 mm の位置で再結合 係数が最大値 0.67 となっており、さらに他のスーパ ーモードとの再結合係数の差が最も大きいのがわか る。よって、エンドシール長 3.1 mm の位置で inphase モードは優先的に選択され、選択励振が可能で ある。同じように7コア MCPCF では、in-phase モ ードを選択する場合、エンドシール長3.2mmの位置 で再結合係数が最大値 0.83 となっており、他のスー パーモードとの再結合係数の差が最も大きいため、こ の位置で in-phase モードの選択励振が可能である。 ここで6コア MCPCF と7コア MCPCF を比較する と、7 コア MCPCF の方が高い再結合係数となってい る。これは Talbot 効果により再構成される自己イメ ージが、6 コア MCPCF の in-phase モードの際にも 中心に若干の強度を有してしまい、端面での強度分布 が完全に再構成されないことが影響しており、中心に コアのある7コア MCPCF の方が再結合の際に損失 が少なくなる。これにより、再結合係数に約16%もの 差がある。そのため、in-phase モードの選択励振の際 には7コア MCPCF の方が有利である。

また、out-of-phase モードの選択励振に関しては、 どちらとも 4.5~5.5 mm の広い範囲で 80%程度の高 い再結合係数と他のモードとの大きな損失差を有し ており、他のモードに比べて選択励振が容易であると 考えられる。

図 4. 6 コア MCPCF のスーパーモードの再結合係数

図 5. 7 コア MCPCF のスーパーモードの再結合係数

エンドシール長 [mm]

本研究ではin-phaseモードの占有率の評価方法として、以下の式で表される中心ローブ比η_cを用いる。

$$\eta_{c} = \frac{\left| \iint_{d < 2.2 \text{ deg}} I(x, y) dx dy \right|}{\left| \iint I(x, y) dx dy \right|}$$
(1)

中心ローブ比η_cは、in-phase モードの全体の強度 のうち、中心ローブの強度が占める割合としている。 この定義式において、中心ローブの領域は直径 d<2.2 deg と定義した。これは遠視野強度分布での in-phase モードが、計算値では d=2.2 deg のときに中心ローブ の裾があることから決定しており、in-phase モード がどの程度の割合で中心にビーム結合しているのか を示す指標ともなっている。 今回用いたエンドシール共振器での in phase モードの選択励振では、Talbot 共振器に比べて中心ローブの高い遠視野強度分布を形成することが可能である。これはエンドシール部の作製の際に発生するテーパー部、つまり空孔が徐々に潰れていく領域の影響であると考えられる(図 6)。空孔径による中心ローブ比と M²の推移を表したグラフを図7に示す。これを見るとわかるように、空孔径が小さくなるにつれて、中心ローブが縮小していき、サイドローブも減少していくことがわかる。また、それに伴い中心ローブ比と M²の値も向上する。これは中心ローブの周りに存在したサイドローブが抑制され、その抑制された分が中心ローブに加えられることで、TEM₀₀のガウシアンビームに近くなっていくからであると考えられる。

図 6. 空孔径による遠視野ビーム形状の変化

図 7. 空孔径による中心ローブ比、M²の推移

4. エンドシール法による位相同期発振実験

7 コア MCPCF を用いた発振光学系を図8に示す。 両側のファイバー端面によるフレネル反射で共振器 を構築しており、エンドシール側から出射されたビー ムを CCD で観測した。in-phase モード選択時のエン ドシール最適長 5.2 mm で観測した遠視野像と評価を 図9に示す。このモードの評価方法として、直径 d<2.2 degの範囲内に含まれる光強度の割合を表す中心ロー ブ比 η_c 、及びM²を用いた[1]。in-phase モードのM²及 び中心ローブ比の理論値は $M^2 = 3.89$ 、 $\eta_c = 0.66$ 程度 であるが、エンドシール部でサイドローブが抑制され ており、理論値を越えたM² = 3.44、中心ローブ比 $\eta_{c} = 0.98$ という値を持つ遠視野ビーム形状を観測し た。また、エンドシール長 5.6 mm の時に、図 5 のよ うな out-of-phase モードの特徴を持った近視野像及び 遠視野ビーム形状を観測した。ただし、遠視野像で中 心にもピークが存在しており、他のスーパーモードも 同時に励振されていると考えられる。今回は中心ロー ブ比等の方法では、このビーム形状に関して評価を行 うことはできなかったため、全てのスーパーモードに 関して評価することのできるモード解析法を新たに 考案した。

図 8. 6 コア MCPCF の位相同期連続発振光学系

近視野像 遠視野像 計算値 観測結果

図 10. out-of-phase モードの近視野像と遠視野像

5. 干渉法によるモード解析

これまで遠視野ビーム形状に関しての評価は、中心 ローブ比を用いて行ってきたが、この評価方法では他 のスーパーモードの割合を算出することはできなか った。そのため、新たなモード解析法が必要であった。 現在、静的ファイバーのモード解析は Spatially and spectrally resolved imaging (S²法) などを用いて行 われているが、この手法はアクティブレーザーに用い ることはできない。これまで動作時の MCPCF レーザ ーのモード解析は一件しか報告されておらず、その手 法もモード解析を行うそれぞれのレーザーに対して、 それぞれ違った回折格子ホログラムを作製する必要 があるために、ファイバーレーザーのようなファイバ ーの設計によって、伝搬するモードが異なるレーザー のモード解析を行うには、非常に高価で困難なモード 解析法であった[2]。そのため、新たなモード解析法を 考案した。

本研究で用いる干渉法によるモード解析では、像転 送した近視野像で干渉縞を観測する。得られた干渉縞 について、フーリエ変換を用いることによって、干渉 縞の空間周波数スペクトルの検出が可能である。干渉 縞の空間周波数スペクトルには電界分布と位相の情 報が含まれており、これらの情報を抽出することでモ ード解析を行うことができる。

電界分布と位相の算出方法 (フーリエ変換法) につ いての詳細を記す。今回はマッハ・ツェンダー干渉計 によって干渉縞を得た。この干渉縞の空間周波数スペ クトルから電界分布と位相を算出する手法をフーリ エ変換法という[3]。干渉縞はフーリエ変換を行うこ とにより、三つの分離した空間周波数スペクトルで表 すことができる(図6)。空間周波数スペクトルの中 心には低周波数成分があり、その両側に干渉縞の空間 周波数スペクトルがある。その干渉縞の空間周波数ス ペクトルを抽出し、原点に移動する処理を行ったうえ で逆フーリエ変換をすることで、干渉縞の明暗と空間 キャリア周波数を取り除くことが可能である。

図 6. 干渉縞とその空間周波数スペクトル 次に、求めた電界分布Eから、それぞれのスーパーモー ドの割合を求めるモード解析について記述する。 MCPCF レーザーの全てのスーパーモードは線形結合 として表されるため、以下のようにスーパーモードで分 解して電界分布Eを表すことができる。

> $E = c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_n \alpha_n$ (2)

 c_n はn番目のモードの振幅、 α_n はn番目のモードの電界 分布を表している。次に、求めたいn番目のスーパーモ ードの複素共役α_n*を両辺に掛け合わせ、積分を行うこ

とにより、以下の式を得る。このとき、全てのスーパー モードは規格化されているとする。

$$\iint E \cdot \alpha_n^* \, dx \, dy = c_n \tag{3}$$

式(3)より、MCPCF レーザーが励振する in-phase モードから out-of-phase モードまでの全てのスーパーモードについてのモードの振幅 c_n を算出することによって、以下のように割合として表すことができる。

$$C_n = \frac{|c_n|^2}{|c_1|^2 + |c_2|^2 + \dots + |c_n|^2}$$
(4)

本研究で用いた近視野像転送干渉計を図7に示す。 経路①では6コア MCPCF 端面の近視野像を像転送し ており、伝搬距離を変えられるように設計した。そし て経路②の SMF より出射される参照光(平面波)と の干渉縞を観測する。また、経路③で遠視野像を像転 送することにより、同時に観測を行った。

観測した干渉縞を含む近視野像とフーリエ変換法 により算出した電界分布及び位相を図8、図9にそれ ぞれ示す。図8(a)は干渉縞を含む近視野像、図8(b) は遠視野像、図9(a),(b)は干渉縞より算出した電界分 布と位相をそれぞれ表している。

得られた電界分布を 6 つのスーパーモードで展開 し、モードの割合を計算する。その結果、out-of-phase モードが 68%と大部分を占めており、遠視野像の観測 結果も 6 つのピークを持っていることから特徴が一 致した。

図 7.6 コア MCPCF laser を用いた近視野像転送干渉計

図 9. 算出した(a)電界分布、(b)位相

6. 結論と今後の展望

7 コア MCPCF の位相同期特性として、in-phase モ ードの選択励振を実証した。研磨によりエンドシール 長の最適化を行い、中心ローブ比 η_c =0.98、M²=3.44 の 遠視野ビーム形状を観測した。これにより、in-phase モ ードの選択励振を確認した。また、エンドシール長 5.6 mm の時、out-of-phase モードの特徴を持った近視野像 及び遠視野像を観測した。

また、MCPCF レーザー動作時の新たなモード解析 の手法として、干渉法によるモード解析の考案及び実 証を行った。その結果、近視野像および遠視野像が out-of-phase mode の特徴と一致するものを観測するこ とができた。しかし、近視野像と算出した電界分布の 強度が一致しておらず、干渉縞が不鮮明な部分につい ては正確な結果が得られなかった。

参考文献

- [1] M. Matsumoto, T. Kobayashi, A. Shirakawa, and K. Ueda, "All-fiber phase-locked multi-core photonic crystal fiber laser," Advanced Solid-State Photonics 2011, paper AMC 3.
- [2] Jollivet, Clémence, et al., "Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser," Opt. Exp. 22, 24, pp.30377-30386, 2014
- [3] 武田光夫, "フーリエ変換法によるしま画像解析とその応 用," 応用物理 第62巻 第6号, 1993