Yb 添加セラミック新材料を用いた 高出力超短パルスレーザーの研究

白川(晃)研究室 1433028 北島 将太朗

1. 序論

モード同期により実現される超短パルスレーザ ーは、極めて短いパルス幅と高いピーク強度を持ち、 難加工材料の加工や非線形分光、更には基礎物理学 分野など現在幅広く利用され、更なる研究がなされ ている。特に固体利得媒質を用いたモード同期レー ザーは、その優れた特性より現段階で最も高い出力 と短いパルス幅を簡単に両立できる光源として積極 的に研究が進められている。本研究室では優れた特 性を持つ様々なセラミック新材料を企業との共同研 究にて開発し、それの特性評価・レーザー発振実験 を行うことで既存のレーザーを上回る超短パルスレ ーザーの開発を目指している。セラミックレーザー 媒質は現在広く用いられている単結晶媒質と比べた 際、機械的強度の向上、高濃度添加時の均一性、大 口径試料の作成が可能など、特に高出力レーザーの ために有利な特性を兼ね揃えており、またガラスレ ーザーと比べて熱伝導率が圧倒的に優れている。以 上のような特性よりセラミックレーザーは高強度レ ーザーの媒質として既存のガラス、単結晶媒質に代 わる新しい固体利得媒質になると期待されている。

本研究では特に超短パルスレーザー用の利得媒 質として優れた特性を持つ2種類のセラミック材料 である、 $Yb^{3+}:Lu_3Al_5O_{12}$ (Yb:LuAG)セラミックと $Yb^{3+}:CaF_2-LaF_3セラミックの、熱的、光学的特性評価$ と CW(連続波)レーザー発振実験とモード同期超短パルスレーザー発振実験を行った。

2. 原理

2.1. モード同期レーザー

レーザー共振器の縦モードの共振周波数は共振 器長に応じた間隔 (c/2L) で等間隔に並ぶ。しかし実 際にはこれらの縦モード間の間隔は共振器中の分散 や非線形効果などにより完全に等間隔ではなく、ま たそれらの相対的な位相関係もランダムになる場合 が多い。この結果、それらの合成として得られる出 力はパルスを形成せず雑音のようになってしまう。 そこで共振器中に縦モード間隔 c/2L に等しい周波数 の損失や利得の変調を加えると、各縦モードに対し て±c/2L のサイドバンドが発生し、それらの間でエ ネルギーの引き込みが生じることで縦モード間の位 相関係と周波数間隔が一致する。これをモード同期 といい、このとき時間領域での電界の包絡線は非常 に急峻なパルスを形成することとなる。モード同期 により得られるパルスは ps(10⁻¹² 秒)から fs(10⁻¹⁵ 秒) ほどと非常に短いパルス幅を持つ。

モード同期を実現するための変調を与える素子 として、代表的なものに半導体可飽和吸収鏡 (Semiconductor Saturable Absorber Mirror、SESAM)が ある。SESAM は飽和フルエンスを超える強い光に対 しては高い反射率を、弱い光に対しては低い反射率 を示す特性を持ち、それにより共振器中に損失変調 を与える。SESAM の欠点として、設計によって変調 深さを大きくすると、それに伴い非飽和吸収損失も 大きくなってしまうという点がある。よって SESAM を用いたモード同期レーザーは現実的にはあまり深 い変調を与えることが出来ず、結果としてパルス幅 と出力の双方に制約が与えられる。それに対し別の 原理を用いたモード同期法であるカーレンズモード 同期(以下 KLM)はより深い変調を共振器に与え ることができる。

KLM とは非線形媒質中においてカーレンズ効果 により起こる光の自己収束効果を利用してモード同 期を実現する手法である。十分に強度の高い光があ る媒質に入射した場合、その屈折率は

$n = n_0 + n_2 I$

と表される。n,は非線形屈折率であり、屈折率n は光の強度 I に比例して変化することがわかる。こ れを光カー効果という。高強度のガウシアンビーム が媒質に入射するとこの光カー効果によって媒質の 屈折率はレンズ状の分布になり、それにより光は自 己収束し、共振器中のビーム系に強度に応じた変化 が現れるようになる。KLM には共振器中にピンホー ルやスリットを挿入するハードアパーチャー KLM と、利得媒質中の励起光のビーム径とレーザーのビ ーム径を一致させることによりそれが仮想的なピン ホールとして作用するソフトアパーチャー KLM と 呼ばれる2種類の方法がある。図1にそれぞれの概 念図を示す。SESAM-ML と比べた時の KLM のメリ ットとして①変調が深く、レスポンスが速い、②非 飽和吸収損失がない、③ダメージへの耐性が非常に 高い、という点が挙げられ、これにより SESAM で は実現できない高出力、短パルス化が実現可能であ る。

図 1. KLM の概念図

2.2. 超短パルスレーザー用媒質に要求される

特性

モード同期を用いた超短パルスレーザー発振 器・増幅器に求められる特性として最も重要なのが、 蛍光スペクトルの半値全幅である。モード同期レー ザーによって得られる最短のパルス幅は蛍光スペク トルの帯域と共振器の線形損失、非線形損失(変調 深さ)によって決まるため、より短いパルスを得る ためにはより広帯域な蛍光幅が必要となる。しかし 実際のレーザーにおいては蛍光スペクトルの幅がそ のままパルス幅に対応することは少なく、KLM のよ うな大きな変調深さを生み出す手法を用いることで 蛍光スペクトルにより定められる限界を超えた短パ ルス化が可能である。また、高効率化の観点からは 蛍光スペクトルの絶対値であるレーザー発振波長で の誘導放出断面積の値も合わせて重要である。また、 高出力化、高効率化の為に重要となってくるのが媒 質の熱伝導率である。前述のとおりレーザーは発振 時に常に熱を生じるため、その効率的な排熱のため にはレーザー媒質が高い熱伝導率を持っていること が重要になってくる。

3. Yb:LuAG セラミックレーザー

3.1. Yb:LuAG セラミックの特性

LuAG (Lutetium Aluminum Garnet) は、 レーザー 媒質として一般的である YAG (Yttrium Aluminum Garnet) の Y (イットリウム) を Lu (ルテチウム) で 置き換えた結晶であり、YAG と同様のガーネット構 造を持つ。YAG 等の一般的なレーザー媒質では、通 常イオンの添加濃度の増加に伴い急激に熱伝導率が 低下するという問題がある。これは置換される母材 のイオンと添加される希土類イオンの原子量が異な るため、希土類イオンが欠陥として作用し、フォノ ンの平均自由行程が下がってしまうためにおきる。 熱伝導率の低下の度合いは、原子量が違うほど顕著 である。図 2 に Yb:YAG と Yb:LuAG の単結晶、 Yb:LuAG のセラミックの熱伝導率の添加濃度依存性 を示す。単結晶のデータは参考文献[1]より、セラミ ックの値は今回本研究にて測定した値である。

図 2. Yb:YAG、Yb:LuAG、Yb:LuAG セラミック の熱伝導率の添加濃度依存性[1]

Yb:YAG の場合では Yb³⁺(173 g/mol) は Y³⁺ (89 g/mol) と置換される。原子量の違いは大きく、熱伝 導率は添加濃度の増加とともに急激に減少する。そ れに対し、Yb:LuAG では Lu³⁺ (175 g/mol) と置換さ れる。原子量は非常に近いため、高濃度添加時 (> 2-3%) においても熱伝導率の低下はわずかである。 またこの特性は Yb:LuAG セラミックにおいても同 様の結果が得られている。これより Yb:LuAG は高濃 度添加と高い熱伝導率の両立ができる、高効率・高 出力なレーザーに向いた材料であるといえる。

図 3 に Yb:LuAG セラミックの吸収・蛍光断面積 を示す。

図 3. Yb:LuAG の吸収・蛍光断面積[2]

蛍光スペクトルの主要なピークは 1030 nm ($\sigma_{emi} = 2.5 \times 10^{-20} (\text{cm}^2)$) にあり、1046 nm にも小 さなピークが存在する。1030 nm ピークの半値全幅は 6.1 nm で YAG(10 nm)と比べて小さい。1046 nm 付近 での発振は誘導放出断面積が小さい分効率という点 においては 1030 nm 付近の発振に劣るが、その一方 で LuAG のスペクトル幅の狭さに制限の受けない短 パルス化を実現できる可能性がある。Yb:LuAG セラ ミックの蛍光寿命はそれぞれ 5at.%で 1.01 ms、10at.% で 1.02 ms であった。 これまで Yb:LuAG セラミック、単結晶を用いた SESAM (半導体可飽和吸収鏡)モード同期が報告され てきた[2-4]。さらなる短パルス化と高出力化のため には SESAM と比べてより深い利得幅が得られる Kerr レンズモード同期が必須である。本研究では Yb:LuAG セラミックを媒質として用いた KLM を初 めて実現した。

3.2. Yb:LuAG セラミック KLM 発振実験

Yb:LuAG セラミックを媒質とした Kerr レンズモード同期実験を行った。図4に実験系を示す。

図 4. Yb:LuAG セラミック KLM 発振実験系

本研究では Z 型共振器を採用し、利得媒質として 厚さ 2.82 mm の 10 at.% Yb:LuAG セラミックをブリ ュースター角で配置した。分散補償にはプリズム対 を使用した。励起光源には中心波長 940 nm のブロー ドストライプレーザーダイオード(LD)を用いた。LD から放出された励起光は3つのレンズによりコリメ ートされ、f=70mmのレンズにより媒質中に集光され る。スポットでのビーム径は縦 20μm×横 80μm 程で あった。モード同期の最適な条件を見定めるために プリズム間距離の調整により GDD を共振器一往復 で約-6000 fs²から-11000 fs²まで変化させながら分散 補償を行った。同様に出力結合鏡 (OC)には透過率 3%から 10%までの四種類を用いた。エンドミラー M3 の近傍には発振波長の制御のためにナイフエッ ジを挿入した。KLM は励起光のソフトアパーチャー 効果により実現した。

図 5. OC5%、GDD 約-7000 fs²時のパルストレイン

全ての GDD、OC の組み合わせの中で最も短いパルス幅が得られたのが OC5%、GDD 共振器一往復で

約-7000 fs²、励起パワー9.5 W の場合であった。この とき平均出力は 1.72 W、光-光変換効率は 18.1%で あった。図 5 にオシロスコープにて観測したその条 件でのパルストレインを示す。(a) が 10 ns/div、(b) が 4 µs/div である。見ての通り変調のない、パルスの 振幅の揃った安定な CW モード同期が実現できてい る。オシロスコープで計測した繰り返し周波数は 84 MHz であった。

図 6 に発振スペクトルと第二高調波(SHG)自己相 関波形を示す。sech² でフィッティングしたときのパ ルス幅は 103 fs であった。スペクトルの半値全幅は 12.1 nm、中心波長は約 1049 nm であった。時間帯域 幅積は 0.342 であった。

図 6. OC5%、GDD 約-7000 fs²時の自己相関波形、

発振スペクトル

発振波長が長波長側にシフトしていることと、 KLMによる深い変調幅の作用で、蛍光スペクトルの 半値全幅に制限されない発振スペクトルの広がりと 短パルス化を実現している。発振スペクトルの両肩 に見られる小さなピークはモード同期レーザーに特 有のKellyサイドバンドだと考えられる。Kellyサイ ドバンドとは準ソリトン波特有の現象であり、パル スが通過する際に共振器中の分散と利得が周期的に 変動することにより生じる現象である。

図7にRFスペクトルを示す。

図7. OC5%、GDD約-7000 fs²時のRFスペクトル (a)

RBW 1 kHz, (b) RBW 30 kHz

RF スペクトルはフォトダイオードにて光から電 気に変換されたパルス信号を RF スペクトルアナラ イザにて計測した。これにより Q スイッチモード同 期やマルチパルスが生じてないことを確認できる。 (a)は RBW(Resolution bandwidth) 1 kHz で計測した基 本波ビート成分であり、70dBc 以上の消光比が得ら れた。基本波ビート成分とその倍数の成分以外が確 認できないことより、安定したシングルパルスモー ド同期が実現されていることがわかる。以上より計 算されるパルスエネルギーは 20.3 nJ、尖頭出力は 198 kW である。

また OC の透過率 7.5%、GDD -11000 fs²、励起パ ワー9.5 Wのとき中心波長 1034 nm にて平均出力 2.20 W、光-光変換効率 23.2%の KLM を実現した。この 時パルス幅は 198 fs、スペクトルの半値全幅は 7.1 nm であった。KLM の深い変調幅により 1030 nm 付近で も SESAM モード同期と比べて広いスペクトルが得 られていることが分かる。図 8 は上記 2 つの条件で の発振スペクトルの違いを示している。OC の透過率 7.5%の場合(オレンジ実線)の方が 5%の場合(紫実 線)に比べて蛍光スペクトル(赤破線)にピークの 位置が近いことが分かる。これにより透過率 7.5%の OC のほうが実効利得が高くなったことが、高い変換 効率を得られた理由であると考えられる。

図 8. 二つの条件における発振スペクトル

4. Yb³⁺:CaF₂-LaF₃セラミックレーザー

4.1. Yb³⁺:CaF₂-LaF₃セラミックの特性

Yb:CaF2 の最も大きな特徴としてその広く滑らか な蛍光スペクトルが挙げられる。Yb:CaF2の蛍光スペ クトルには半値全幅で約 70nm の幅があり、波長可変 発振実験では 1000 nm~1080 nm 以上の広帯域な波長 可変が報告されている[5]。上述のとおり蛍光スペク トルの幅はモード同期レーザーにおいて短いパルス 幅を得るために非常に重要となってくるため、 Yb:CaF2は Yb:CALGO と並び、現在最も短いパルス 幅と高い出力の両立を出来る媒質と考えられている。 このように Yb:CaF2 は有望な特性を有しているため、 それをセラミック化することにより機械特性を向上 させ、さらなる幅広い応用に活かそうという研究が なされている。表 1 にこれまでの Yb:CaF2 セラミッ クレーザーの報告をまとめる。

表 1. Yb:CaF2 セラミックレーザーの報告

	[6](2013)	[7](2013)	[8](2015)
最大出力	1.09 W	1.2 W	1.6 W
スロープ効率	35.3%	35%	42.7%
添加濃度	3 at.%	5 at.%	4.5 at.%
試料作製法	HIP	Hot-forming	New method

表左[6]の報告は我々が行ったものである。我々の 研究室では株式会社ニコンとの共同研究において Yb³⁺:CaF₂-LaF₃セラミックの開発を行ってきた。全て のグループはそれぞれ別の試料作製法にて透光性フ ッ化カルシウムセラミックを得ている。我々の試料 作製法は熱間等法圧加圧法(Hot isostatic press, HIP法) と呼ばれる方法に基づいている。本研究では Yb イオ ンの他に少量の La イオンを共添加することにより 二価の Yb イオン(Yb²⁺)の生成を防いでいる。二価の Yb イオンは 400 nm~200 nm 付近に吸収を持つため、 十分に生成を抑制されていないセラミックは肉眼で 見て黄色に近い半透明な外見を有する。また Yb²⁺は 当然の事ながらレーザー発振には寄与せず、実効的 なイオンの添加濃度が下がることより、レーザー発 振効率を低下させることが知られているため、これ を防ぐことはレーザー媒質にとって重要である。し かし La イオンの共添加により Yb²⁺の生成が防がれ る機構については未だ解明されていない。

図 9 に光スペクトルアナライザにて測定した Yb³⁺:CaF₂-LaF₃セラミックの蛍光スペクトルを示す。

図 9. Yb³⁺:CaF₂-LaF₃セラミックの蛍光スペクトル

測定は粉末化した試料をスライドガラスにはさみ、中心波長 910 nm のレーザーにて励起し、その蛍 光を分光することで行った。誘導放出断面積の算出 にはそれぞれの蛍光寿命を測定し、それを用いた。 ピーク付近の形状より、1%La1%YbからYbイオンの添加濃度の上昇によりスペクトルがブロードに変化していくことが分かる。特に1%から2%への変化は劇的であり、添加濃度に依存した何らかのYbイオンの状態の変化が考えられる。Laイオンの添加濃度の変化によるスペクトル形状の変化は1%La1%Ybと2%La1%Ybの間では例外的にやや大きいものの、それ以外の場合では非常に弱いことが分かる。

図10に測定したYb3+:CaF2-LaF3セラミックの吸 収スペクトルを示す。吸収断面積は白色光源を試料 に特化させ、その透過スペクトルより算出した。

図 10. Yb³⁺:CaF₂-LaF₃セラミックの吸収スペクトル

蛍光スペクトルと同様にその Yb イオンの添加濃 度の上昇とともにスペクトル形状が広帯域に変化す ることが分かる。また低添加濃度では強く現れてい る920 nm付近のピークが添加濃度の上昇とともに弱 くなる傾向も分かる。

表2に光スペアナにて測定したYb³⁺:CaF₂-LaF₃セ ラミックの蛍光寿命を示す。両方のイオンの添加濃 度の上昇とともに2.2 ms から2.0 ms まで蛍光寿命が ゆるやかに低下することが分かった。これはレーザ 一媒質において一般的な蛍光寿命の振る舞いである。 単結晶の蛍光寿命2.4 ms と比べるとやや小さいこと が分かる。

表 2. Yb ³⁺ :CaF ₂ -LaF ₃ セラミックの蛍光寿	命
---	---

		Yb (at.%)			
		1	2	3	
La (at.%)	1	2.2 ms	2.2 ms	2.1 ms	
	2	2.1 ms	2.1 ms	2.0 ms	
	3	-	-	2.0 ms	

6%La6%Yb: 1.7 ms

- 4.2. Yb³⁺:CaF₂-LaF₃ セラミックレーザーCW 発振実験
 - 図 11 に Yb³⁺:CaF₂-LaF₃ セラミックレーザーCW 発

振実験の実験系を示す。

図 11. Yb³⁺:CaF₂-LaF₃セラミックレーザーCW 発振実 験系

共振器は2枚のミラーに利得媒質を挟んだ構成で あり、励起光源にはIPG Photonics 社製、最大出力 30W の975 nm VBG ロックファイバー結合型 LD を用いた。 ファイバーのコア径は105 μm であり、それを50 mm のレンズ2枚を用いて結晶中に集光している。集光 系は概ね100 μm×100 μm であった。レーザー出力を 測定すると同時に残留励起光 *P*_{res} を測定することに より発振中の媒質での吸収パワーを推定した。

図 12 に 5%OC を用いた際の対吸収パワー、対入 射パワーそれぞれの全ての試料の入出力特性を示す。

対吸収パワーでは 2%La1%Yb(図中黒色の線)、 対入射パワーでは 2%La3%Yb(図中水色の線)が最 もいい効率であることが分かる。最大出力は 2%La3%Ybの試料で測定した 3.97Wであった。それ ぞれの試料で最大励起パワーが異なるのは、実験時 に熱破壊の前兆が見て取れた際、若しくは熱破壊が 生じた際にそれ以上の励起を中止しているためであ る。熱破壊はイオンの添加濃度の合計が大きいほど 発生しやすく、特に 6%La6%Ybの試料においてはレ ーザー発振は確認したものの、熱破壊があまりに起 きやすかったため、レーザー発振実験の対象外とし た。

表3に全ての試料の対吸収パワーのスロープ効率 を示す。

		Yb (at.%)		
		1	2	3
La (at.%)	1	63.2%	39.9%	27.7%
	2	73.1%	54.0%	47.5%
	3	-	-	48.1%

表3. 全ての試料のスロープ効率

表3より、Ybイオンの添加濃度が上昇すると対 吸収光のスロープ効率が減少することが見て取れる が、吸収効率はYbイオンの添加濃度に比例して上昇 するため、対入力パワーの効率は改善し、その結果 高い出力が得られる事がわかる。しかしLaイオンの 添加濃度に注目してみると、Laイオンの添加濃度を 上昇させると逆にスロープ効率は改善する事がわか る。これはCaF2中に希土類イオンを添加した際に生 じる共晶系の影響によるものだと考えられるが、具 体的な機構は分かっていない。

CW 発振実験の結論として、高いスロープ効率を 得るためには、低濃度の Yb イオンと高濃度の La イ オンの添加が理想的である事がわかる。しかしこの 場合吸収効率が落ちるため、十分に励起光を吸収す るためには今よりも厚い媒質が必要になる。媒質の 厚さは熱光学的効果や励起光のレイリー長により制 限されるため、現実的な一定の厚さ(3~6 mm)の媒質 を仮定すると、どちらのイオンも高濃度添加するこ とが高効率化のためには理想的だと分かる。しかし この場合熱伝導率の急激な低下が両イオンの添加に より生じるため、合計の添加濃度には限界が生じる。 今回の実験中では3%La3%Ybの試料において非常に 熱破壊が生じやすかったことより、現実的な限界は 合計 5%ほどだと推察される。よって今後モード同期 などの実験に用いる媒質としては 2%La3%Yb、 2%La2%Yb などの添加濃度が最適であると結論づけ た。

これらの結果に基づき、2%La2%Yb、厚さ 6 mm の試料を用いて SESAM モード同期実験を行った。 共振器構成は Yb:LuAG セラミックモード同期実験 ととほぼ同等の Z 型共振器とした。励起光源には中 心波長 975 nm、最大出力 12 W のブロードストライ プ LD を用いた。Q スイッチ不安定性を防ぐため SESAM には変調深さ 0.4%、SESAM の集光ミラーに は ROC 100 mm のものを用いた。その結果安定した モード同期が得られた。しかしスペクトル幅が 2nm~10nm ほどと狭かったことから、今後共振器の 最適化を通して短パルス化、高出力化を目指す予定 である。

5. まとめ

本研究では超短パルスレーザー用媒質として有 望な2種類のセラミック新材料、Yb:LuAG セラミッ クと Yb³⁺:CaF₂-LaF₃ セラミックについて、特性評価 とレーザー発振実験を行った。

Yb:LuAG セラミックはイオンの高濃度添加と高 い熱伝導率を両立できることから高出力な超短パル スレーザー用利得媒質として最適である。Yb:LuAG セラミック Kerr レンズモード同期実験では平均出力 1.72 W、パルス幅 103 fs を実現した。この結果はパ ルス幅、出力ともに従来の結果を大幅に上回るもの であり、またYb:LuAGを媒質とした KLM は単結晶、 セラミックを合わせて初めての実証であった。

Yb:CaF₂は非常に広帯域な蛍光スペクトルと比較 的高い熱伝導率を併せ持ち、Yb添加材料にて現在最 も短いパルス幅と高出力を両立できる材料の一つで ある。本研究ではこれをセラミック化し、また LaF₃ を微量添加した Yb³⁺:CaF₂-LaF₃ セラミックを開発し、 その特性評価とレーザー発振実験を行った。蛍光ス ペクトル、吸収スペクトルでは添加濃度の組み合わ せによってスペクトル形状がブロードに変化するこ とを確認した。CW レーザー発振実験では添加濃度 に大きく依存した特性の違いを確認した。中でも 2%La1%Ybにて対吸収にて73%という大きなスロー プ効率を確認した。最大出力は2%La3%Ybの試料で 測定した 3.97 W であった。これらのスロープ効率、 最大出力はこれまで行われてきた Yb:CaF₂ セラミッ クの結果を上回るものであった。

参考文献

- K. Beil *et. al.*, in Advanced Solid-State photonics 2009 (Denver, Feb. 2009), WB28
- [2] H. Nakao et. al., Opt. Express 20, 15385 (2012)
- [3] D. Luo, et. al., physica status solidi C 10, 967 (2013)
- [4] W. Ge, et. al., Opt. Express 22, 2423 (2014)
- [5] P. Camy, et. al., Applied Physics B 89, 539 (2007)
- [6] A. Shirakawa, et al., ASSL Congress, paper JTh5A.7 (2013)
- [7] M. Sh. Akchurin, et al., Opt. Materials 35, 444 (2013)
- [8] P. Aballea et. al., Optica 2, 288 (2015)