金属-プラズマ転移を利用した X線点光源の開発

はじめに

X線は、多くの物質の透過像をとること、 微細な構造を得ることができるため、物性 研究や分子科学研究、医療分野応用など広 く使われている。X線の発生方法としては、 高電圧によって加速させた電子をフィラメ ントに照射させてその励起光を得る方法や、 X線自由電子レーザーのように磁場による シンクロトロン放射を利用する方法、短パ ルスレーザーや高電圧パルスを金属や気体 に照射・印加し高温化する方法などがある。 様々な応用で要求される光源は異なってく るが、エネルギー効率改善や光源大きさの 縮小化など、未だに改善する開発研究が進 んでいる状況にある。

最近、銅や金などの特定の金属が固体か らプラズマ状態に向かう遷移過程のWarm Dense Matter 状態領域において、金属であ る物質の導電率が3桁程度急激に低下する ことが、実験・理論研究で明らかになってき た。この物質変化を用いれば、高温、高圧の 高エネルギー密度状態を空間的に局在した 形で短時間で生成できる可能性がある。そ こで、本研究では、通常のパルス放電と、レ ーザーによる加熱を組み合わせた形の高効 率微小X線源の開発を行った。具体的には、 直径 $30\mu m \sim 150\mu m$ の銅線にレーザーを 用いたスパークギャップにより数 kA のパ ルス電流を流し、その銅線の一部にレーザ ーパルスを照射し、そこだけを Warm

先進理工学科 蛭田興明

指導教員 米田仁紀 教授 Dense Matter 状に遷移させ、エネルギー付 与領域を限定させたものを作る方法である。 実験では、可視域の発光画像、発光波形、電 流波形の変化を、レーザーを照射させた場 合とさせなかった場合で比較し、最適な発 光条件を調べることを行った。

Warm Dense Matter

固体密度状態で温度が数千から前後にお ける固体-プラズマ中間領域状態は、

Warm Dense Matter(WDM)と呼ばれてい る。この領域においては、固体物理学の理 論を適用しても、プラズマ物理学の理論を 適用しても理論値から大きくずれてしまう ことが多く、さらにまだまだ十分な実験デ ータが出揃っていないといった現状があ り、物理学の新たな分野を開拓する上での 良い題材となっている。例えば、銅線に大 電流を流した場合において、固体物理学的 には、自由電子のフォノンとの散乱が温度 上昇とともに増加し、抵抗率が上昇する。 一方で、プラズマ物理学的には、電子温度 の-3/2 乗に比例して低下することが予測 されているが、WDM 領域では、抵抗値が これら2つのモデルでは説明できない異常 な値になってしまうことが観測されてい る。また、流体力学的な振る舞いを考える と、WDM 領域では、金属の膨張が止まる ことが観測されており、この気液2層流体 領域において、臨界点の理論的予測は、自 由電子、束縛電子、イオン、中性原子のす

べてを考慮する必要があるといった点か ら、非常に難しいという現状がある。

図 1. Warm Dense Matter

前項で説明したように、Warm Dense Matter とは物質に高密度のエネルギーを 与えることによって再現できる新たな物性 である。この物質状態は高エネルギー密度 状態の中では最もエネルギー密度が低く、 10¹⁰~10¹¹J/m³の領域である場合が多い。 このため、微小体積における WDM 状態 は、2~3mJ 以下のエネルギー付与で可能 となる。そのため、小さいターゲットを用 いることによって、通常の実験室で用いら れているレーザーでこの物性状態を再現す ることが可能である。

前項の説明でも触れたが、銅線に大き な電流を流して高速で加熱しプラズマ化す る場合、従来の固体物理学やプラズマ物理 学の理論に基づく値よりもはるかに抵抗率 が上昇することが今までの実験によって観 測されている。そこで本研究では、直径 30~150μmの微細な銅線を用い、これに 10kVの高電圧をかけて瞬間的に大電流を 流し、加熱することによって WDM 状態を 再現し、その後にレーザーパルスを照射さ せることによるターゲットの発光を観測し た。仮に WDM 状態で発光していれば抵抗 率が急激に下がっているはずであるため、 レーザーを照射させた場合とさせなかった 場合の波形を比較し、その真偽を追及し た。

図 2. 本研究における Warm Dense Matter 状態の再現

銅の発光実験

実験セットアップ図を以下に示す。まず、 コンデンサーに DC 電源を接続し、10kV の電圧を帯電させた。本研究では、ターゲッ トに瞬間的に大きな電流を流す必要がある ため、高速でスイッチングできる素子を利 用する必要がある。そのために、LTSG(レー ザートリガースパークギャップスイッチ) を作成した。これは同サイズの金属を交互 に設置し、片方にレーザーパルスを照射さ せることによってもう片方の金属をプラズ マ化することで高速に電流を流すことので きる素子であり、これによってパルス的に 電流を流し、銅線を加熱させた。しかし、電 流のみで加熱すると温度上昇が不十分で、 さらに電流の場合、銅全体が加熱されてし まい局所的に高エネルギー密度状態を再現 できないといった問題点があるため、本研 究では、電流に加え、レーザーパルスによる 加熱による温度上昇を目標とした。

まず、ピックアップコイルを用いて銅に 流れる電流の時間変化を測定した。もし前 述の方針による実験で銅線が Warm Dense Matter 状態に遷移していれば、導電率が固 体状態と比較して 3 桁程度急激に下がるこ とが予測されるため、銅線に流れる電流波 形を、固体状態、電流を流した状態、レーザ ーと電流双方の状態で比較することによっ て、導電率の変化を調べた。

また、それぞれの状態におけるターゲッ トの発光画像と電流波形の関係を、レーザ ーを照射させた場合とさせなかった場合と で比較し、最適な条件を定めた。銅が発光し ている時間をフォトダイオードを用いて検 出できるように努めた。回路に電流を流し た直後にレーザーによる加熱を行うと、銅 線に電流が流れていない状態で加熱されて しまい、十分に加熱されない可能性がある ため、スイッチと加熱用のレーザーの間に 約 16m の光路差をつけ、銅に十分に電流が 流れているときにレーザー照射を行うよう に心がけた。

最後に、それぞれの条件下における発光 画像を、CCDカメラに対物レンズを取り付 けた

実験結果

条件を変えた場合における銅の発光画像、 およびその強度分布の比較を図に示す。こ の3つの図および強度分布を比較すると、 レーザーによる加熱と電流による加熱を組 み合わせた場合において、明らかにそれら の影響によるものとは異なる光が認識され ることが分かった。ただ、本研究では画像の 撮影を通常の CCD カメラで行っており、加 熱によるレーザーパルスのタイミングによ って得られる画像が変わってしまう可能性 も否定できない。

図 5. 発光画像(電流のみ)

図 6. 発光画像(電流、レーザー双方)

図 7. 発光強度分布の比較

次に、電流が流れた時間と銅の発光時間の 関係を以下に示す。

図 8. 発光時間と電流波形の関係(電流のみ)

図 9. 発光時間と電流波形の関係(電流、レ ーザー双方)

最後に、両者の電流波形の比較を行った図 を以下に示す。

図 10. 銅に電流を流した場合、および電流 とレーザー双方による加熱をさせた場合の 電流波形の比較

結論

直径 100μm の銅ターゲットにギャップス イッチを用いてパルス的に電流を流し、同 時にレーザー照射の温度上昇による固体か らプラズマに転移する状態における発光を 利用した光源を開発した。レーザー照射の み、電流のみ、双方同時によるターゲットの 発行画像を撮り、それぞれの強度分布を割 り出した結果、双方同時の場合において、 明らかに電流によるものでもレーザーによ るものでもない光が認識された。 さらに、フォトダイオードを用いて、電流と 発光時間の関係を比較することができた。 最後のデータによると、概ね電流のピーク 位置において発光していることが分かった。 銅線に電流のみを流した場合と電流に加え てレーザーパルスを照射させた場合の電流 波形を比較すると、レーザーパルスを照射 させた場合の立ち上がり電流の減衰が大き いことが分かった。

今後の展望としては、よりターゲットを 加熱しやすくするために、スイッチ用と加 熱用のレーザーを別々に用い、さらに真空 中で同様の実験を行いたいと思う。また、プ リズムを用いた発光波長の特定も行ってい きたい。