多価イオン照射による半導体試料改質の試み

電気通信大学 情報理工学部

先進理工学科 中村(信)研 久保田海

1:背景及び目的

1-1 シリコンカーバイト(SiC)

SiC は Si に比べてバンドギャップ、飽和 ドリフト速度、絶縁破壊電界、熱伝導度が大 きいことから、次世代パワーデバイスの材料 として注目されている。しかし、現在報告 されている SiC-MOSFET は SiC の物性か ら期待される性能が達成されていない。そ の最大の要因は MOS 界面におけるチャネ ル移動度が小さいためチャネル部分での抵 抗が大きくなっていることである。これは 酸化膜/SiCの界面特性が悪いためである。 図1に示す様に酸化膜/SiC界面には結合 を持たないダングリングボンドやカーボン クラスターなどの多くの界面準位が存在す る。Afanas'ev らによればその主要因はカ ーボンクラスターだと考えられているた め、残留カーボンの除去、残留カーボンに 起因した欠陥の終端を行うことで界面準位 を減少し MOS デバイス移動度の向上につ ながるとされている。[1]

図1 界面準位

1-2 酸化物半導体

Ni 酸化物半導体は光学的・電気的・磁気特 性、優れた化学安定性を持つ魅力的な材料で ある。また、NiO は酸素過剰の状態になると、 Ni³⁺イオンが増加し、これによって抵抗率が 低減すると言われている。NiO 酸化物半導体 のキャリア濃度や移動度の制御を行うことが できればより高性能デバイス製作実現につな がると考えられる。[2]

1-3 多価イオン

一般に多価イオンとは原子や分子から 2 個 以上の電子を取り除いたイオンである。多価 イオンの持つ大きな特徴のひとつとして、そ の膨大な内部エネルギーが挙げられる。図 2 に Bi イオンのイオン化エネルギーと内部エ ネルギーを価数の関数として示す。図 2 から 分かるように Bi+の内部エネルギーは 6eV 程 度であるが、Bi⁸³⁺では約 600keV にも達する。 [3]

図 2 Bi イオンのイオン化エネルギーと内部 エネルギー

このような大きなエネルギーを持つ多価イ オンが物質と相互作用すると、中性原子や1 価イオンとは異なる非常に興味深い現象を起 こすことが知られている。

1-4本研究の目的

大きなポテンシャルエネルギーを持つ多価 イオンが半導体との相互作用した際の結晶構 造変化、電気特性変化を調べた報告は少なく 非常に興味深い。本研究はSiCとNiO半導体 に着目し、多価イオンがSiCとNiOと相互作 用したとき、その物性にどのような影響を与 えるかを検討することを目的としている。そ のためにSiC基板に多価イオンを照射した後 に、MOSキャパシタを製作して界面準位密度 を測定した。NiOは多価イオン照射後、電気 伝導度を測定した。

2 装置

2-1 電子ビームイオントラップ(Electron Beam Ion Trap:EBIT)

我々の研究室では、Tokyo-Electron Beam Ion Trap(Tokyo-EBIT) と 小型 -Electron Beam Ion Trap(CoBIT)を用いて多価イオン を生成している。以下ではそれぞれ Tokyo-EBIT、CoBIT と記す。

図3に EBIT の多価イオン生成原理図を示 す。EBIT は電子銃、ドリフトチューブ(DT)、 電子コレクターの3つの部分で構成されてい る。電子銃から出射する電子ビームをトラッ プされたイオンに照射し、電子の逐次衝突に よって電離(逐次電離)が進行し多価イオンを 生成する。DT は3つの円筒電極から成り(図 3)、DT1,DT3を高電位、DT2を低電位にする ことで井戸型ポテンシャルを作り、多価イオ ンを軸方向に閉じ込めることができる。また、 DT の周囲には超伝導コイルが設置されてお り、軸方向に強力な閉じ込め磁場を作ること ができる。電子ビームと多価イオンはこの閉 じ込め磁場に巻き付く形で収束し、さらに電 子ビームの空間電荷で径方向のポテンシャル が形成され、多価イオンは径方向にもトラッ プされる。

図 3 EBIT の多価イオン生成原理 **2-2 多価イオン輸送ビームライン** 図 4 に Tokyo-EBIT の電子コレクターから

価数分析磁石までの装置概要を示す。

Tokyo・EBIT では引き出された多価イオンビ ームは電子コレクターの負の電圧により加速 される。その後ディフレクター、静電レンズ を通過後、価数選別され、実験チャンバーま で輸送されていく。図5 に CoBIT のビーム ライン概要を示す。CoBIT でも、引き出され た多価イオンビームは電子コレクターの負の 電圧により加速される。その後、静電レンズ を通過後、静電偏向器で90度に曲げられ、実 験チャンバーまで輸送されていく。なお今回 の実験では価数分析器を使用していないため、 CoBIT 内で生成された全ての多価イオンを照 射している。 CoBIT 内部には2段の静電レンズが設置して ある。

図 4 Tokyo-EBIT のビームラインと価数分析 磁石

図 5 CoBIT のビームラインと静電レンズ

3 多価イオン照射実験

表1 照射実験パラメータ				
	CoBIT	Tokyo-EBIT		
生成する	Ar	Kr		
多価イオン				
ガス導入圧力	~10 ⁻⁷ Pa	~10 ⁻⁵ Pa		
電子ビーム	~1keV	30keV		
エネルギー				
電子ビーム	10mA	170mA		
電流				

中心磁場	0.08T	4T
多価イオン	パルスモード	リークモード
の引き出し		
イオン量測定	ファラデーカップ	MCP

3-1 CoBIT 多価イオン照射実験

CoBIT では表1に示す実験パラメータでAr 多価イオンを生成した。ファラデーカップを 用いて電流を測定したところ4.0pA であった。 1 価のAr イオンと仮定すると2.5×10⁷個、2 価のAr イオンと仮定すると1.3×10⁷個のイ オンが毎秒照射されることを意味している。 照射した試料は MgO とサファイア基板上に エピキタシャル成長させた NiO である。試料 は10mm×10mmのサイズにカットしたもの を使用した。その条件下でAr 多価イオンを約 8時間照射した。

3-2 Tokyo-EBIT 多価イオン照射実験

Tokyo-EBIT では表1に示すような実験パラ メータでKr³⁴⁺多価イオンを生成し、3kV で加 速させ CREE 社製の n型 4-SiC 基板に約 50 時間をかけて、総計 2.0×10¹⁰個照射した。 多価イオンの照射領域が直径 4mm の円で あるのでそこから照射密度を求めた所 1.5×10^{11} cm⁻² であった。多価イオン照射後、 熱酸化、POA、Al 電極形成を経て MOS キ ャパシタを製作した。

4 多価イオン照射後の試料の評価4-1 CoBIT を用いた照射実験の結果

表 2 と表 3 に結果を示す。表にある通り NiO/MgO 試料は抵抗が上がり、NiO/sappire の方はほぼ変化が現れなかった。

N	liO/MgO	多価イオン	多価イオン		
		照射前	照射後		
損	氐抗率[Ωcm]	70	171		
表 3 NiO/sapphire 照射実験結果					
NiO/sapphire		多価イオン	多価イオン		
		照射前	照射後		
抵抗率[Ωcm]		2.0×10^{-4}	1.9×10^{-4}		
4-2 Toky-EBIT を用いた照射実験の結果					
	1 執政/	0A-			
	0.8	WOHR IL COURSE			
E	0.6				
'/Cox[]	0.4	i / /			
0	0.0	き価イオン			
	0.2				
	-4 -2	0 2 Voltage[V]	4 6		

表 2 NiO/MgO 照射実験結果

図 6 多価イオン章照射を行った試料の C-V 特性(1MHz)

図7 多価イオン照射を行った試料の 界面準位密度

図6に示す黒色のグラフが熱酸化のみのC-V 特性であり、青色のグラフが多価イオン照 射を行ったC-V特性である。また点線と実線 はそれぞれ負から正に電圧を印加したもの、 正から負に電圧を印加したものである。多価 イオン照射を行ったグラフでは正方向へのシ フトが見られる。

界面準位密度測定の結果を図7に示す。こ こでも熱酸化のみ、多価イオン照射を行った グラフをそれぞれ黒色青色としている。多価 イオン照射を行ったグラフでは広いエネルギ ー領域で界面準位密度が高いことが分かる。 C-V 特性と界面準位密度の上昇から多価イオ ン照射によりダングリングボンドが増えたこ とが考えられる。

5まとめと今後の展望

CoBIT での照射実験では NiO/MgO 試料は 抵抗が上がり、NiO/sappire の方はほぼ変化 が現れなかった。照射した総イオン数が少な いのと、価数も低いことから次回の実験では、 Tokyo-EBIT でより高価数イオンの照射を試 みたいと思う。Tokyo-EBIT での照射実験で は、SiC 基板に Kr³⁴⁺を 1.5×10¹¹cm⁻²の密度 で照射したところ、界面準位密度が上昇した。 条件を変えて(照射時間、使用する多価イオ ン)照射実験を継続させ、その機構を解明し ていきたい。

なお、本研究は野崎研究室との共同研究と して行われた。

6 参考文献

- [1] 岩崎吉記:「シリコンカーバイトの絶縁ゲ ート型電界効果トランジスタに対するア ンモニアプラズマ前処理と界面電子物性 評価」奈良先端科学技術大学院大学 平成 22年博士学位論文
- [2] 陳玉明:「UV 酸化法による NiOx ニッケ ル酸化膜の作製及び評価」電気通信大学 平成 23 年度卒業論文
- [3] 工藤孝弘;「走査型プローブ顕微鏡による 多価イオン照射痕の観測」電気通信大学 平成24年度修士論文