Rb 原子を用いたリドベルグブロッケード実験のための

レーザー光源開発

中川研究室 学部4年 田村光

<u>1. 序論</u>

現在,世界中で量子情報処理,特に量子コ ンピュータの実現に向けた様々な研究が行 われている.古典コンピュータが|0>と|1> の離散的なビットであるのに対し、量子コ ンピュータとは|0>と|1>の重ね合わせの状 態をとれるビット(量子ビット)を用いて量 子並列計算を行うというものである.

実際にN量子ビット操作を行うためには, 1量子ビット操作である任意のユニタリー 変換ゲートと2量子ビット操作である制御 NOT ゲートを実現すればよい.また制御 NOT ゲートを実現するためには2つの量子ビッ ト間に量子もつれを生成することが必要不 可欠である.本研究室では⁸⁷Rb 原子のリドベ ルグ状態を用いて量子もつれの生成を目指 している.

リドベルグ状態とは,原子中の電子が主 量子数 n の大きい軌道に励起された状態の ことである.リドベルグ(状態の)原子は以 下のような特徴がをもつ.

・大きな電子の軌道半径 $\langle r \rangle \sim n^2$ ・大きな双極子モーメント $\mu \sim n^2$ ・狭いエネルギー準位間隔 $\Delta E \sim 1/n^3$

・長い寿命 $\tau \sim n^3$

リドベルグ原子は基底状態の原子に比べ 非常に大きな双極子モーメントをもつため, リドベルグ原子間には以下の式で表わされ る相互作用が働く.

 $V = \frac{1}{4\pi\varepsilon_0} \left[\frac{\boldsymbol{\mu}_{\rm A} \cdot \boldsymbol{\mu}_{\rm B}}{R^3} - 3 \frac{(\boldsymbol{\mu}_{\rm A} \cdot \boldsymbol{R})(\boldsymbol{\mu}_{\rm B} \cdot \boldsymbol{R})}{R^5} \right] (1)$

ここで、R は原子間距離、 *µ*_A、 *µ*_Bは各原子の双極子モーメントである. 従って、

リドベルグ状態|1>に共鳴する励起光によ り1個の原子(原子 B)が励起されると,その 近傍の原子(原子 A)のリドベルグ準位が相 互作用によりシフトし,励起光の共鳴から 外れ,励起が抑えられる(リドベルグブロッ ケードという)効果が働く(図 1).

図 1.リドベルグブロッケード

さらに,基底状態|0>の2つの原子に同時 にリドベルグ状態|1>への励起光を照射す ると,以下の式で表わされる状態が生成さ れる.

$$\left|\varphi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|1\right\rangle_{\mathrm{A}} \otimes \left|0\right\rangle_{\mathrm{B}} + \left|0\right\rangle_{\mathrm{A}} \otimes \left|1\right\rangle_{\mathrm{B}}\right)$$
(2)

これは,原子Aがリドベルグ状態にあるとき は原子Bは必ず基底状態にあり,また,原子A が基底状態にあるときは原子Bは必ずリド ベルグ状態にあるという2つの量子力学的 な相関をもった状態を重ね合わせた状態, すなわち量子もつれ状態が生成される.

本研究では量子もつれ生成に必要なレー ザー光源,主に磁気光学トラップ(MOT)用レ ーザー光源とリドベルグ励起用レーザー光 源の開発を行った.

<u>2.実験と結果</u>

2.1 磁気光学トラップ用レーザー光源 我々は⁸⁷Rb 原子の吸収線に安定化された クーリング光源に周波数オフセット 6.6GHz をつけたリパンプ光源の開発を行った.

リパンプ光源は注入電流と半導体の素子 温度のみで波長選択ができる分布帰還型 (DFB)レーザーを用いた.その概要を図3に 示す.

リパンプ光と安定化されたクーリング光 のビート信号を高速光検出器で取り込み, その信号の周波数をプリスケーラーにより 512分の1に分周した.次に位相周波数 比較器により分周したビート信号と発振器 との位相差に比例した誤差信号を取り出し ループフィルターに通すことにより制御電 流として DFB レーザーにフィードバックし た.

図 3.リパンプ光源の周波数オフセットロック

リパンプ遷移の自然幅 6MHz よりも周波数 揺らぎを十分小さくし, 遷移確率を大きく することと, 繰り返し実験を行っている間 に外れにくいような長時間のロックを目標 とした. なお, ループフィルターの設計は [1]を参考にした.

図4にプリスケーラー直後のビート信号, 図5に誤差信号から換算した周波数揺らぎ を示す.

図 4.ロック前後のビート信号

図 5.ロック前後の周波数揺らぎ

図4より制御帯域である100kHz以下の振幅 が抑えられていること,図5よりロック前 は8MHz程度揺らいでいた周波数を,500kHz まで抑えることができたと言える.また,長 時間(3h程度)のロックを実現することが できた.

<u>2.2 リドベルグ励起用レーザー光源</u>

我々はプローブ光(波長 780nm)とブルー 光(波長 480nm)の2台のレーザー光による 2光子吸収により,⁸⁷Rb 原子をリドベルグ準 位に励起する方法を用いている.ブルー光 は波長 960nm の半導体レーザーの光を非線 形波長変換で第二高調波を発生させ用いて いる.ここで,量子もつれ状態にデコヒーレ ンスを生じさせる要因を以下に挙げてい く.

①励起時間中の原子の運動

②励起光の周波数揺らぎ

③中間状態からの自然放出

④励起時間中の励起光のコヒーレンス性 ②~④を解決するために,我々は励起光を 光周波数コムに周波数オフセットロックを 行っていく.このロックが実現できればこ れらの問題点は以下のようになる.

- ②光周波数コムの周波数精度で安定化
- ③2光子吸収の中間状態からの大きな離調を確保⇒自然放出確率の減少
- ④励起光を光周波数コムの線幅まで狭窄化⇒大きいコヒーレンス時間の確保

まず, プローブ光源の開発から行った(図 6). 周波数オフセットロックはリパンプ光 源と同様の方法である.

図7にプローブ光と光周波数コムのビー ト信号,図8に光周波数コムのスペクトル を示す.

図 7.プローブ光と光周波数コムのビート信号

図8.光周波数コムのスペクトル

現状はビート信号の SN 比が周波数ロックに 十分でない. その要因を以下に挙げていく.

- ・ビート信号に用いた光のパワーより
 SN 比を見積もると 36dB
 ⇒図7より SN 比は 20dB であるため、
 - 2つの光の重なりが十分でない
- 図8より光周波数コムのスペクトルが 780nmまで十分に広がっていない

そこでまず,ダミー光(波長 780nm)とのビー ト信号を用いてループフィルターの開発を 行った(図9).

図 9.ダミー光を用いた周波数ロック

図10に高速光検出器直後のビート信号, 図11に誤差信号から換算した位相揺らぎ を示す.

図 10.ロック前後のビート信号

図 11.ロック前後の位相揺らぎ

図10より制御帯域を2MHz まで広げること ができたが,1MHz あたりの振幅が抑えられ ていないこと,5MHz あたりの高周波で発振 していることが分かる.また,図11より位 相揺らぎが 1rad 程度残っていることから, ループフィルターの改善の余地があると言 える.

3. まとめと今後の展望

3.1 磁気光学トラップ用レーザー光源

周波数揺らぎをリパンプ遷移の自然幅 6MHz よりも十分小さく抑えることができ, かつ長時間のロックを実現することができた.

今後は実際に磁気光学トラップを行って いく.

3.2 リドベルグ励起用レーザー光源

ダミー光を用いてループフィルターを開 発し,制御帯域を 2MHz まで広げることがで きたが,光周波数コムへのロックには至っ ていない.

今後は光周波数コムとのビート信号の SN 比を大きくするため,100%近く2つの光を 重ねること,光周波数コムのスペクトルの 最適化,もしくは非線形媒質を用いて光周 波数コムのスペクトルを広げることなどを 考えている.また光周波数コムとのビート 信号を用いて,線幅の狭窄化のためのルー プフィルターを開発していく.

<u>4. 参考文献</u>

[1] Hartmut G. Roskos et al. OPTICS EXPRESS 18, 8, 8621 (2010).