多価イオンと固体表面との相互作用の研究

電気通信大学大学院 情報理工学研究科

先進理工学専攻 中村信行研究室 縄田祐治

1. 背景·目的

1.1 多価イオン

一般に2 価以上の正負のイオンのことを 多価イオンという。我々の研究室では、20 価~80 価程度に高度に電離したイオンを 主に取り扱っている。この多価イオンは1 価のイオンや中性原子とは全く異なる特徴 や振舞いを示し、非常に興味深い粒子とし て注目されている。多価イオンの持つ大き な特徴の一つは、非常に大きな内部エネル ギーを持つことである。多価イオンの持つ 内部エネルギーは、そのイオンを生成する のに必要なイオン化エネルギーの総和とし て定義されていて、価数 q の大よそ 3 乗に 比例して急激に増加していく。図 1.1 に例 としてヨウ素イオンの価数変化に対するイ オン化エネルギーと内部エネルギーを示す。 一価のヨウ素イオン(I⁺)が持つ内部エネ ルギーは 10eV 程度であるが、電子を全て 取り除いた 53 価のヨウ素の裸イオン(I⁵³⁺) の内部エネルギーは 200keV にも達する。 このような大きなエネルギーを持つ多価イ オンが物質に近づき相互作用すると、他の 粒子では現れない特異な現象が起こること が報告されている。しかし、その詳細な機 構は未だ明らかではなく、様々な研究がな されているのが現状である。

1.2 多価イオンと固体表面との相互作用

低速多価イオンを固体表面に接近させる と、表面から多数の電子が多価イオンの高 励起状態に移行し、自らの価数を下げると 同時に表面を局所的に強く帯電させる。高 励起状態に捕らえられた電子は、オージェ 過程を経て内殻に落ちていくものと真空中 に放出されるものがある。また、より内殻 に落ちる際には、X線を放出する確率も増 加する。つまり、多価イオンは固体表面に 近づく際、固体表面から多数の電子を奪い、 そのうちのいくつかを真空中に放出しなが ら中性化しつつ固体表面と衝突する。また ここでの「低速」とは、多価イオンが相互 作用をしかける相手の原子・分子あるいは その凝集体の内部で運動している active な電子の軌道速度(水素原子ならボーア速 度、金属ではフェルミ速度)よりずっとゆ っくりと近づく状況をさしている。この速 度領域では、イオンの表面への移動時間に 比べ active 電子の量子遷移時間はずっと 速く、多価イオンへの電子移行やオージェ 過程の多くは表面到達前に起こると考えら れる。

1.3 研究目的

多価イオンと固体表面の相互作用の研究 は、多価イオン衝突によって生じる二次電 子、二次イオン、多価イオン中性化過程で のX線の観測など相互作用機構を解明する 為に多くの研究が行われてきた。その結果、 照射イオンの価数の増大と共にイオン一個 当りの二次電子放出係数の増大、照射イオ ンのポテンシャルエネルギー増大に伴う二 次イオン放出率の増加が報告されている。 このように、多くの研究対象に対する報告 がされているのだが、多価イオン照射によ る固体内電子励起による発光を観測した例 はほとんどない。また多価イオン衝突によ る照射痕の観測も多く報告されているが高 価数照射イオンを用いた報告例は少ない。 本研究では多価イオンが固体表面と相互作 用する際に多価イオン自身が持つエネルギ ーをどのように消費するかを明らかにする 為、固体内電子励起による表面発光観測、 高価数照射イオンを用いた衝突痕観測実験 を行った。

2 実験装置

本研究の衝突痕観測実験において表面観 察を行うのに走査型トンネル顕微鏡を用い た。

走査型トンネル顕微鏡の基本は、鋭く尖 った先端を持つ探針によるトンネル電流の 測定である。トンネル電流 *I*は、探針ー試 料間の垂直距離 *Z*に指数関数的に依存する。 垂直距離 *Z*が 0.1nm 大きくなれば、トンネ ル電流 I(Z+0.1nm)は元の電流 I(Z)の e²に なる。

探針―試料間距離 Z のみの測定では画像 にはならないので、探針を 3 次元に動かせ る微動機構を使って、探針先端を試料表面 に沿って 2 次元的に XY 走査させると試料 表面の凹凸が測定可能となる。

STMには探針の高さを一定にしてトンネ ル電流の変化量を測定する方法(Constant height mode)、トンネル電流を一定になる ように探針を上下させたときの移動量から 3次元形状を測定する方法(Constant current mode)がある。分解能は垂直方向 で0.01Å以下、水平方向で数Åである。 観察は、大気中、液体中、超高真空中など の様々な環境で可能なため、試料表面の原 子・分子構造の直接観察、表面局所状態密 度の形状観察、液晶の配向、生体試料の観 察、電気化学反応の進行過程の観察などで 使用されている。[1]

本研究では探針材料として白金イリジウム(PtIr)、タングステン(W)の二つを用いた。

白金イリジウム(PtIr)

PtIr 探針の走査型電子顕微鏡観察像を図 2.1 に示す。本研究で用いた PtIr 探針は、 Pt が 80%、Ir が 20%の合金である。Pt は 力学的特性である延性や展性に優れていて 機械研磨に適した物質である。そこに、Ir を少量添加することで剛性が増す。

一般的に線材を単に破断しただけの形態で 走査型トンネル顕微鏡用の探針として実用 化されている。これは、最も試料に近い突 起がトンネル効果に寄与する為、平均的な 形状が乱れていても平坦面の原子構造が観 測出来ると考えられる。しかし、この方法 での探針走査が可能な形状の再現性は本研 究の観察において4割弱であった。この探 針の表面は比較的、化学的に安定で大気中 でも酸化されない。以上の理由から PtIr を 探針の1つとして採用した。

タングステン(W)

W 探針は NaOH 水溶液を使った電解研 磨によって、容易に先端曲率半径が 0.1μm 以下のものが再現性よく得られる。軸対称 性が良く、広域観察にも優れている。この 探針の先端を走査型電子顕微鏡で観察した 像を図 2.2 に示す。W 表面には、常温で安 定な酸化層が出来るが本研究では超高真空 中でイオンスパッタによる清浄化を行った 後に観測を行った。

3 衝突痕観測実験

3.1 実験方法

実験装置の概略図を図 3.1 に示す。本研究 では、Bi⁵⁰⁺~Bi⁷³⁺の多価イオンを HOPG に照 射した。まず、Tokyo-EBIT で生成した多価 イオンをビームとして引き出し、価数分析 磁石まで導く。価数分析磁石で価数選別さ れたイオンビームを照射室内に配置した標 的試料に照射する。この時、ビームライン の静電レンズ系を使い、多価イオンの数が 最大になるように調整した。また、照射イ オンの数を知る為に標的試料の後側に MCP を配置した。

照射された HOPG は超高真空中で走査型ト ンネル顕微鏡のある観測室まで輸送し、観 測する。

3.3 結果と考察

図 3.2 a),b)に Bi⁶⁰⁺イオンを照射した HOPG 表面の STM 像を示す。照射時間は 17 時間、イオン量は 3000~4500cps であ る。照射時間はビーム径、イオン量より照 射密度が 3~4×10¹⁰ 個/cm² になるように 決定した。(a)は 100nm×100nm の領域を STM で観察した像で、(b)は 500nm× 500nm の領域を観察した像である。(a)は (b)の一部を拡大したものである。

また図 3.3 a),b)に Bi⁷⁵⁺の照射イオンによ って表面に出来る照射痕の STM 観察像を 示す。照射時間は 8 時間、照射密度は 7~8 ×10¹⁰ 個/cm² である。

価数依存性

図 3.4 に照射多価イオンの価数に対する 照射痕の大きさの変化を示す。横軸は多価 イオンの価数で、縦軸は照射痕の幅である。 前述のように、1 つの価数につき 20 個ほど の照射痕を観測し、この幅を決定している が、そのバラつき(標準偏差)を誤差棒により 示している。

 ■は本研究における実験結果であり、◆と
 ▲はそれぞれ Terada et al[2]、Minniti et al.
 [3]の研究結果である。低価数領域では価数 が増加すると衝突痕の大きさも増加することが報告されていたが、高価数領域でも同 じく照射多価イオンの価数が増加すると、
 衝突痕の大きさも増加することが分かった。

4 表面発光観測実験

4.1 実験方法

本実験の装置概略を図 4.1 に示す。 Tokyo-EBIT で生成した多価イオンビーム をまず、価数分析磁石まで導く。その後、 価数分析磁石で価数分別した多価イオンビ ームを穴あき MCPの直径 1mm の穴を通し 標的試料に照射した。

照射多価イオンの数は、標的試料から放

出される二次電子を検出することで決定した。多価イオンが1つ標的に衝突すると多数の二次電子が標的から放出される。この2次電子群はMCPで非常に波高の高い1つの信号として検出される。この信号によりイオン1個の入射を検知することが出来る。

標的から放出された光子は写真に示した 様に、標的試料の後ろ側からファイバーで 真空の外に導き出し光電子増倍管で検出し た。

4.3 結果と考察

図 4.2 は価数分析磁石にかける電流を変化 させて得られた価数スペクトルである。 MCP で検出したイオンの数は青線、光電子 増倍管で検出した光子の数は赤線で表した。 横軸は価数分析磁石にかける電流、縦軸は 計数率である。

図 4.2 で得られたスペクトルについて各ピ ークの面積を求めることで、照射多価イオ ンの数、放出された光子の数を算出し、多 価イオン1個当りの光子の数を計算した。 図4.2の光子数によるスペクトル(赤線) のようにピークが分かれていないものには 正規分布を当てはめることにより面積を求 めた。

引き出し電圧2kV,3kV,4kVで実験を行っ た結果をそれぞれ図4.3、図4.4、図4.5 に 示す。

以上三つの結果より、引き出し電圧を大き くする(運動エネルギーを大きくする)ほ ど発光強度は全体的にどの価数においても 大きくなることが分かる。またどの引き出 し電圧においても 43 価付近から発光強度 の増加量が変わっている。つまり、43価よ り低価数側での増加量と高価数側での増加 量は明らかに異なる。どの引き出し電圧で もこのような発光強度の増加量変化が現れ るので、多価イオンの運動エネルギーに起 因するものではないと考えられる。多価イ オン自身が持つ内部エネルギー、電子配置 を考えると、I⁴³⁺はNe様イオンであり [1s²2s²2p⁶]の閉殻構造をしている。つまり I44+から高価数領域側ではL殻に空の電子 軌道を持ち始める。L 殻に空席があると、 多価イオンの中性化過程で大きなエネルギ ーを持つLx線やLAuger電子を放出する。 これより、この大きなエネルギーを持つ Lx 線やLAuger 電子が蛍光体の電子励起を引 き起こし発光強度が増加したのではないか と考えられる。

参考文献

[1] 森田 清三,"はじめてのナノプローブ 技術",工業調査会
[2] 寺田 雅史 電気通信大学大学院 修 士論文(2005)
[3] Minniti et al., Phys. Scr. T92 (2001)
22