光ピンセットの研究

電気通信学研究科 量子・物質工学科専攻 清水和子研究室 0933023 澁川友美子

1 背景

光ピンセットとは、対物レンズで集光させた光 が物体に照射したときに生じる放射圧によって、 数十 μm までの大きさの微粒子を非破壊・非接触 で捕捉し、自由に操作できるものである。この技 術は、分子生物学、医学等の分野で、細胞等の生 物試料に対して傷をつけることなく容易に操作で きる手段として利用されている。

その1つとして我々はDNA分子の操作に着目し た。DNAは高分子生体物質で生物細胞や組織をつ くり上げるのに必要なすべての情報を蓄えている。 光ピンセットを利用することによりDNA1分子の 弾性応答の研究が可能になった。緩衝溶液中の DNAを引き伸ばす場合、力が2~3pN以下では力 と伸びの関係は高分子鎖の形態を記述するモデル であるWorm-like chain (WLC みみず鎖)モデルや Freely Joint Chainモデルで記述できることが明 らかにされている^[1,2]。光ピンセットだけでなく、 微小磁石ビーズをDNAに接着し試料溶液セルの外 部から磁石を用いて磁石ビーズを操作し弾性応答 を調べることも行われている^[3]。

また、DNAは負電荷をもつ荷電高分子鎖である ため溶液のイオン強度によって形態が変化する。 あるイオン強度の範囲では全長が数µm以上ある DNAが直径 100nm以下のリング状に凝縮する。こ れはスーパーコイルと言われ、実際の細胞のサイ ズに収まるときの状態と思われる。イオン強度に 対するDNA凝縮の様子はDNAを引き伸ばすとき の力と伸びの関係から研究されている^[4-10]。

2 目的

今後DNAを光ピンセット操作の対象物とする ため、試料作製技術を獲得し、標準的な緩衝溶液 中DNAの弾性応答を測定してWLCモデルに当て はまることを確認する。また、リング状の強度分 布をもつラゲールガウスモード光中にトラップさ れた微小球は、光の持つ角運動量のためリングに 沿って回転運動を行う。これまでに我々の研究室 では、ラゲールガウスビーム中の微粒子の回転実 験を行っている^[11]。このことを利用してスーパー コイル状に凝縮したDNAをほどく操作方法を開発 する。

3原理

3.1 光ピンセットの原理

屈折率n1の媒質中を伝播する強度Iのレーザー光 は運動量をもち、この光が屈折率の異なる媒質(屈 折率n2)に入射すると、境界面で反射と屈折が生じ て光の進行方向が変化し、運動量が変化する。そ の際運動量保存則により光の運動量の変化分が境 界面に生じる。この力を放射圧という。

レーザー光を溶液中の微粒子に照射すると、運動 量の変化分は微粒子に受け渡され、それがレーザ 一光の焦点位置の方向に向かう力に変換される。

図1のように粒子がBeam wasteより上側にある とき、レーザー光の焦点位置の方向に向かう力と、 光の進行方向に働く力とが釣り合って微粒子を焦 点位置付近に捕捉することができる。

逆に、粒子が Beam waste より下側にあると、

運動量変化によって生じる力は、光の進行方向に 向かう力と同じ向きになり、全体に粒子を押し上 げる力が強く働く。そのため、トラップすること は困難になる。

図1 光ピンセット原理

3.2 液体中を動く物体に働く抵抗力

空気中や水中を運動する物体は空気や水から抵 抗力を受ける。しかし、粘性のない完全流体中を 運動する物体、または完全流体の流れの中に置か れた物体はまったく抵抗を受けないことが導かれ る。それゆえ抵抗のすべての原因は粘性にある。

流体中を運動する物体の受ける抵抗力はストー クスの法則により、

$$F_{visc} = 6\pi\eta \, rv \tag{1}$$

と表される。ここで、 η は水の粘性、rは物体の 半径、vは物体の運動速度である。

3 DNA の構造について

DNAはヌクレオチドという単量体(monomer)か らできた重合体(polymer)で数億ヌクレオチドにも なる。この大きなDNAはたんぱく質と一緒になっ て染色体を形成する^[12]。

実在の高分子鎖では、数多く連結した単結合の1 つ1つが任意の回転角をとることができるため、 同一のエネルギーをもつ高分子鎖であっても無数 のコンフォメーションが考えられる。したがって、 高分子鎖の形態を細かく表現することが困難であ るため、鎖のひろがりを両末端間ベクトル \vec{R} の二 乗の時間平均値または集団平均値〈 \vec{R}^2 〉で評価す る。ここで \vec{R} は両末端間距離(Mean square end-to-end distance)で、〈〉は平均を意味する。 高分子鎖の形態がランダムに変化する場合、 \vec{R} 自 身の平均はゼロとなるため、有限の値をもつ二乗 平均値を採用する。また、 \vec{R} の二乗は、自己ベク トルの内積 $\vec{R} \cdot \vec{R} = \left| \vec{R} \right|^2 = \vec{R}^2$ で表されるため、ひろが

りの程度がベクトルではなく数値で表現できる利 点がある。

図2 両末端間距離

図 2 の定義を用いると〈 \vec{R}^2 〉の計算式は以下のようにまとめられる。

右辺第一項はボンドベクトルの長さの二乗平均の 和で、高分子鎖の長さと関連した値である。第二 項はボンドベクトルの間の角度の相関を表してい る。高分子鎖内のすべてのボンドベクトルの長さ が等しく、方向が完全にランダムな場合(ランダム 鎖)、第二項は0になる。また、図3に示すように 結合角(π-θ)で自由回転する高分子鎖の場合、右 辺第二項は

$$\sum_{i
(3)
となり、 2>はnが大きいとき以下のように近似で
きる。$$

$$\langle R^2 \rangle = nb^2 \frac{1 + \cos \theta}{1 - \cos \theta}$$
 (4)

結局、<R²>の値は高分子鎖の長さと折れ曲がり具合 に関する項の和で、空間的な広がりの程度を表し ている^[13]。

図3 自由回転鎖

DNA のらせん構造は半屈曲性鎖を表すモデル のみみず鎖(Worm-like chain)で表せる。これは、 ある結合角で自由回転する場合の極限として定義 される空間的に連続なモデルである。

結合の長さb、結合角($\pi - \theta$)、ボンド数nの自由 回転鎖を考える。この鎖の最初の結合方向への両 末端間距離の射影の平均値 $\langle \mathbf{R}_z \rangle$ は、 $\mathbf{n} \rightarrow \infty$ の極限 では

$$\lim \langle R_z \rangle = \frac{b \left(1 - (\cos \theta)^n \right)}{1 - \cos \theta} = \frac{b}{1 - \cos \theta} = P$$
 (5)

となる。ここで、Pは持続長(Persistene length, P) と呼ばれ、あるコンフォメーションをとった鎖の 中でほとんど曲がっていないとみなせる部分の長 さである。高分子がこの長さの棒が繋がってでき ているということもできる。Pが長ければ長いほど 鎖は固いことになる^[14]。

図4 高分子鎖

4 実験

4.1 DNA の弾性応答の測定方法

DNAの両端に球体のビーズを結合させ、そのビ ーズをレーザー光でトラップする。図 5 に方法を 示す。 ①ビーズをトラップした状態で片方を固定し、も う片方を DNA を引き伸ばす方向へ移動させる。

4.2 ビーズに働く力の測定

DNAの弾性応答を測定するために、まずはレー ザー光によってビーズに働く力(DNA を引っ張る 力)を測定する。

レーザー光によってトラップされたビーズを一 定の速度 v で動かしたとする。v が小さいときはビ ーズはトラップされたままレーザー光についてい くが、v が大きくなると液体からの抵抗力が大きく なりトラップから外れる。そのときレーザー光に よる力と液体からの抵抗力が等しくなると考え、 そのときの速度 v をストークスの法則に代入し、 ビーズに働く力を求めた。

4.2.1 ピエゾ素子の動作テスト

トラップが動く速度を操作するためにピエゾ素 子を用いた。使用したピエゾ素子は最大駆動電圧 150Vで作動距離 18μ m のものである。

ピエゾ素子の動作速度を算出するため、 40Line/mm、スリット幅 12.5µm の回折格子を用 いて、ピエゾ素子を取り付けた対物レンズで集光 された光が 12.5µm を通過する時間を測定した。 図 6 のように、ピエゾ素子を取り付けた 20 倍の対 物レンズに He-Ne レーザーを入射させ、光が集光 する位置に回折格子を設置した。回折格子のスリ ットを通過したレーザー光をフォトダイオードに 入射させその信号をオシロスコープで観測した。

図 7 は 12.5μm の距離を通過する光の通過時間か ら速度を計算し周波数との関係を表したグラフで ある。3 度の測定の平均を取った。直線の方程式は (6)である。

4.2.2 ビーズに働く力の測定

図 8 のように顕微鏡のステージ下の対物レンズ にピエゾ素子を取り付け、電圧をかけて対物レン ズが水平方向に動くようにした。レーザー光でビ ーズをトラップし、ピエゾに 150V 印加し、駆動周 波数とレーザーパワーを変化させ、ビーズがトラ ップから外れるときの周波数を測定した。

4.2.3 測定結果、考察

1μm と 2μm のビーズがトラップから外れると きの周波数の値を(6)式に代入し、レーザーパワー と速度の関係に変換したグラフを図 9 に示す。そ れぞれの方程式は以下のようになった。ここで x はレーザーパワー[mW]、y は速度[μm/s]である。

1µm	ビーズ	y=16.7x	(7)
2μm	ビーズ	y=19.0x	(8)

図9 レーザーパワーと速度の関係

これよりストークスの法則(1)の速度vに(7),(8)式 から求まる速度yの値を代入し、ビーズに働く力を 求めた。その結果を図 10 に示す。ここでηは水温 20℃での粘性係数 1.0× 10⁻³[Pa・s]とした。

図 10 レーザー光によりビーズに働く力

図10の直線の方程式は

$1 \mu m$	F=0.16x	(9)
2um	F=0.36x	(10)

となる。ここで x はレーザーパワー[mW]、F はビ ーズに働く力[pN]である。

図 9 から、1µm と 2µm では 2µm のビーズの方 がレーザー光による捕捉力が強いことがわかる。 これは、対物レンズにより集光されたレーザー光 のビーム径とビーズのサイズとの差によってトラ ップの安定性が異なるためだと考える。

DNAの操作には2μmのビーズを使用する。2μm のビーズにおける式(10)から、4.3 で述べる DNA 操作において DNA を引き伸ばすのに必要な力が 求められる。

4.3 DNA の操作

4.3.1 試料の作り方

試料作製にあたり、緩衝液となる TE buffer と TE+BSA を作製した。TE buffer はあ Tris-HCl と EDTA からなる緩衝液で、2 価の金属イオンをキレ ートし、DNA の分解を防ぐ働きがある。

①ビーズの洗浄

Streptavidin でコートされたビーズを TE+BSA で 洗浄した。

②ビーズと Biotin2 の結合

洗浄済みのビーズと Biotin2(Oligo 3bio2)を混合し、 室温で 8 時間 incubate した後、TE+BSA を加えて 5分間遠心した。

③ λ - DNA と Biotin1 の結合

λ - DNA と Biotin1(Oligo 3bio1)と TE を混合し、
 70℃で 10 分温めることで DNA の環状を切り、その後室温で 3 時間 incubate した。

④TE+BSA を緩衝液とし、①、②、③を混合して
 室温で12 時間 incubate することで完成した。

4.3.3 測定結果

DNA の弾性応答を図 12 に示す。7 つのサンプルの測定データをまとめた。

4.3.4 WLC モデルとのフィッティング

7つのサンプルをWLCモデルとフィッティング した。フィッティングの様子は代表して 2 つ目の サンプルを図 13 に示した。P=50nm、L=15.5μm で測定値とほぼフィットした。

P の値は高分子によって異なり、DNA は約 50nm といわれている。この値を基準としてそれぞ れの値を決めた。また、Lの値も今回用いた DNA の長さが 48000bp、約 16.5μm であることから値 を決めた。サンプル 6,7 は P の値が 100 となり基 準値の約 2 倍となっていた。これは高分子鎖の本 来回転するはずの結合部が固定され棒状とみなせ る部分が 2 つくっついて 1 本の棒とみなされたた めだと考えた。

図13 WLC とのフィッティング

5 まとめと今後の課題

DNA のらせん構造が WLC モデルで表せること を確認するため、光ピンセット技術を用いて DNA の弾性応答を測定した。結果から、DNA を引き伸 ばすのに必要な力は数 pN ほどであった。今回の実 験では7 つのサンプルでの測定データをまとめた が、それ以外にも様々なサンプルを観測し測定を 試みた。しかし測定途中で DNA が切れてしまった り、おそらく DNA が絡まっていてほとんど引き伸 ばせなかったものも多かった。7つのサンプルは全 て DNA の両端にビーズが結合しており、ビーズが どちらもガラスに付着することなく液体中に浮遊 していたものである。測定のためにはどちらのビ ーズもガラスに付着していないことが望ましい。 それは、トラップされた2つのビーズとDNAをカ バーガラスからの距離が等しい位置に固定できる からである。しかし、DNAの溶液を作製するごと に必ずこのようなサンプルが観測されるとは限ら ない。1つも観測されたいこともあった。見えない DNA を探すことはとても根気のいる作業であっ

た。

DNA の弾性応答のグラフから、力が 1pN を超 えてからは伸びは同じ値でありそれ以上は伸びな かった。もっとレーザーパワーを大きくすると更 に伸び始めるということも実験的にわかっている。 我々の今の実験系ではレーザーパワーを更に上げ ての測定は難しいが、光学系を工夫し行っていき た。

今後は、ラゲールガウスモードを生成し、DNA のらせん構造の状態変化を観測するための実験を 行う。

参考文献

[1]M.D.Wang,H.Yin,R.Landick,J.Gelles,S.M.Block,Bio physicalJournal 72,1335(1997) [2]StevenB.Smith, YujiaCui, CarlosBustamante, Science 271,795,February(1996) [3]StevenB.Smith,LauraFinzi,CarlosBustamante, Science 258,1122,November(1992) [4]T.R.Strick, J. F.Allenmand, D.Bensimon, Croquette, Biophysical Journal 74,2016(1998) [5]T.R.Strick, V.Croquette, D.Bensimon, Nature 404,901(2000) [6]V.A.Bloomfield, Biopolymers 44,269(1997) [7]Yoshihiro Murayama, Masaki Sano, Journal of the Physical Society of Japan 70, No.2,345, February (2001) [8]YoshihiroMurayama,Yoshihiko Sakamaki,Masaki Sano, Phys. Rev. Let 90, N0.1, 018102, January (2003) [9]Hirofumi Wada, Yoshihiro Murayama, Masaki Sano Phys.Rev.E 66, 061912 (2002) [10]Y.Murayama, M.Sano, Biopolymers 77, 354(2005) [11]茂泉 純 修士論文 H.15 年度 [13]野田春彦·丸山工作·石川 統 他著 分子細胞生 物学(上)