光共振器を用いた 1.55µm 帯超狭線幅レーザーの開発

量子·物質工学科 植田研究室 長久 敦史

1.序論

近年、周波数安定化レーザーはレーザー冷却 等の物理実験や、レーザーの絶対周波数の精密 測定など様々な研究において活用され、需要が 大きくなっている。

そこで我々の研究室では、光周波数コムによ る広帯域な周波数領域における精密な周波数基 準を作製し、光ファイバーを用いた他の研究室 や研究機関への分配を計画している。その周波 数基準となる光源は、狭線幅で非常に安定な光 源を光周波数コムの縦モードのどれか1本と位 相同期し、光周波数コムの全ての縦モードが狭 線幅化することで実現可能となる。従って、本 研究ではその光周波数コムを狭線幅化するため の波長1.55μmにおいて線幅1Hz(安定度1×10⁻¹⁵ 台)という非常に短期安定度に優れた超狭線幅 レーザーを作製することを目的とする。

2.原理

レーザーの周波数を安定化するためには、その基準となる安定なリファレンスが必要となる。 そこで今回は、光共振器の共振周波数を基準として用いる。光共振器にレーザー光を入射したとき、共振器長が半波長の整数倍という条件を 満たすことで、共振器内のパワーが上昇し、透 過光電場がコヒーレントになることから透過光 強度が極大値となる共振という現象が発生する。 共振条件をレーザーの周波数fを用いて表すと、

$$f = \frac{c}{2nL}m$$

となる。*c* は光速、*L* は共振器長、*n* は屈折率、 *m* は整数である。この式から横軸を周波数、縦 軸を透過光強度におけるグラフは Fig.1 のよう になる。このように共振モードは等間隔に現れ、 そのうちのどれかを周波数基準として用いるこ とができる。また、この共振モードの鋭さを表 す指標としてフィネス Fがあり、次式のように 共振モード間隔 f_{FSR} を共振モードの線幅 Δf で割 ったもので定義される。

$$\mathcal{F} = \frac{f_{FSR}}{\Delta f}$$

Fig.1:光共振器の共振モード

このように、共振周波数は共振器長Lによっ て決まるため、共振器長の安定性が重要となっ ている。共振器長が変動する要因としては共振 器自身の熱雑音と振動や熱といった外乱がある。 熱雑音よりも外乱の方が大きく影響するため、 まずは熱雑音による理論限界値よりも外乱の影 響を抑えなければならない。

振動による共振器長の変化は、共振器を支持 する位置によって共振器の形状が微妙に変化す ることから生じる。従って、縦方向の振動に対 し共振器長の変化が最も抑制される Airy Point と呼ばれる位置に共振器を支持する必要がある。 また熱による共振器長の変化については、共振 器を包むスペーサの熱膨張が原因となっている。 そのため共振器全体を熱シールドで囲い、熱膨 張率が最小となる温度点にて共振器の温度を制 御する必要がある。

3.実験と結果

目標とする周波数安定度を達成するために、 光共振器は波長 1.55µm においてフィネスが約 50万という非常に高フィネスであるファブリ・ ペロー(F.P.) 共振器を用いた。また、スペーサ の素材は室温において熱膨張率が 0 になる温度 点が存在する Ultra Low Expansion (ULE) ガラ スが使用されている。そして後に行う加振実験 に備え、共振器の支持点を移動できるような共 振器台を作製した。その F.P.共振器の概形図及び 実際の写真を Fig.2 に示す。

Fig.2: F.P.共振器

3-1.F.P. 共振器への共振

高フィネスの共振器に光を共振させるのは非 常に難しい。そのため、光学系を組む前に共振 器固有モードへのモードマッチングの計算をす る必要がある。従って、共振器へ入射したレー ザー光が Fig.3 のような平面鏡と凹面鏡によっ て構成される共振器にてシングルモード共振さ せるための入射ビーム直径 2w₀、及びその 2w₀ で F.P.共振器にレーザー光を入射させるための 行路長 d₁、d₂を光線行列による ABCD 則を用い て計算した。その結果、 $2w_0 = 618 \mu m$ 、 $d_I = 503 mm$ 、 $d_2 = 425 mm$ とそれぞれ求まった。

計算結果に基づいて、Fig.4のような光学系を 加振台の上に組んだ。また、安定化する光源は 発振波長 1.55µm の外部共振器型半導体レーザ - (External Cavity Laser Diode: ECLD) を用い た。そして後に行う加振実験のため、ECLD は 加振台とは別の場所に設置し偏波保持シングル モードファイバーで加振台まで光を運んでいる。 そして、ピエゾ素子で ECLD の回折格子を動か すことによって周波数を掃引し、F.P.共振器から の透過光信号及び反射光信号をオシロスコープ で観測しながら2枚のミラーを微調節すること で F.P.共振器に光を共振させた。結果として、 Fig.5 に示したように反射光信号は、DC レベル に比べ、共振時に青い矢印分下がっているため、 共振カップリング効率は46%を達成したことが 分かった。

Fig.5:反射光信号

3-2.レーザーの周波数安定化

レーザーの周波数を安定化させる手段として は Pound-Drever-Hall (PDH)法を用いた。その 安定化システムの構成は Fig.6 のようになって いる。手順としてまず、EOM を用いて 15MHz の位相変調をかけることによって、反射光信号 にサイドバンドを出現させる。次に、DBM で掛 け合わせることによって同じ 15MHz でその反 射光信号を復調してやると、反射光信号の微分 形である周波数弁別曲線が確認できる。よって、 共振点である弁別曲線の中心点にロックされる ようにサーボ回路を介して ECLD のピエゾ素子 に負帰還制御をかけることによって周波数が安 定化される。

Fig.6: PDH 法による周波数安定化

ここで、どの程度周波数安定化がなされたの かを確認するためにFFT アナライザーで周波数 雑音スペクトルを測定した。Fig.7 に示された結 果から、フリーラン状態の青線に比べ、安定化 時は 10kHz 付近から周波数雑音スペクトルが落 ちているため、安定化されたことがわかった。 また誤差信号評価としては、まだこの段階では ゲインの低い制御による安定化ではあるが、 10Hz において 5Hz/√Hz 程度となった。

Fig.7:周波数雑音スペクトル

3-3. 加振実験

続いて、Airy Point を求めるための加振実験を 行った。実験系は Fig.8 のようになっている。

Fig.8:加振実験セットアップ

測定の手順としては、まず PDH 法による周波 数安定化をかけた状態にし、F.P.共振器の下に設 置した加振器によりある一定の周波数で加振台 を揺らす。ここで FFT 解析器を用いて周波数雑 音スペクトルを測定すると、加振周波数におい て励起された雑音が確認できる。この励起され た雑音ピーク値及び加振台の上に設置された加 速度計より振動方向の加速度を測定する。

この一連の測定を Fig.9 のように定義した F.P. 共振器の支持点の位置 *d* を 15mm、17mm、18mm、 19mm、20mm、21mm、22mm、23mm、24mm、 27mm、30mm と変えてゆき、それぞれ 3 回ずつ 行った。その結果として、平均値をプロットし、 標準誤差をエラーバーとして表したグラフを Fig.10 に示した。ここで、横軸は支持点の位置 *d*、 縦軸は励起された雑音ピーク値を加振加速度で 割った値で定義される伝達関数 *T* [Hz/(m/s²)]で ある。また、加振周波数は 20Hz である。

Fig.9:支持点の位置 d

Fig.10:加振実験の結果

さらに、プロット点を二次曲線でフィッティ ングすると、dが 20mm において伝達関数の値 が一番小さくなっている。従って、Airy Point は d = 20mm であると求められた。また伝達関数の 値は 10^5 台のオーダーとなったが、これは後に 除振台の上に F.P.共振器を設置することを考慮 した場合では十分に相殺できる値であると考え られる。

4.まとめと今後の展望

光周波数コムを用いた光周波数基準の分配の ための超狭線幅レーザーの開発において、周波 数安定化システムを構築し、Airy Point を求める まで至った。

今後の展望としてはまず、現在は共振器を真 鍮ボールによって支えているが、これをテフロ ンやステンレスといった他の素材のボールにつ いても同様の加振実験を行い、比較検討をして みることが挙げられる。さらに原理で述べたよ うな熱膨張の対策も行う必要がある。その上で 更なる安定度の向上を目指すために、真空槽を 用いて F.P.共振器を真空状態し、音響雑音をでき る限り遮断する。ここまですることにより、目 的とする超狭線幅レーザーが実現できると考え られる。

5.参考文献

 Kenji Numata, Amy Kemery, and Jorden Camp, "Thermal-Noise Limit in the Frequency Stabilization of Lasers with Rigid Cavities" PRL 93, 250602 (2004)