光ファイバと光周波数コムを用いた X 線自由電子レーザー用 高精度 RF・パルスタイミング伝送システムの開発

量子·物質工学専攻 植田研究室 流王登志雄

1. 背景

現在、兵庫県佐用郡にある大型放射光施 設・Spring-8サイト内において、X線自由 電子レーザー(X-ray Free Electron Laser: XFEL)施設の建設が進行中である。本施 設は低エミッタンス熱電子銃・Cバンド電 子線形加速器・真空封止アンジュレータか らなり、全長は約700mに及ぶ。本施設で は電子を80億電子ボルト(8GeV)まで加 速することで、最短波長0.06 nmのX線レー ザーの発生を目指している。XFELはこれ までにない非常に強い光で超高速のパルス 光であるため、原子や分子といった非常に 微細なものが非常に早く変化する様子を連 続的に観察できるようになると期待されて いる。

図 1 XFEL 完成予想図

XFEL 発生装置は電子銃、線形加速器、 アンジュレータ(永久磁石列)の3つの部 分に分けられる。まず、電子銃から撃ち出 した自由電子のバンチを複数の線形加速器 で加速させ、アンジュレータに通すことで 電子に制動輻射をかけX線レーザーを発生 させる。この時、電子を効率よく加速させ るためには各加速器間で動作用の高周波 (RF)信号を同期させておく必要がある。 そのため最大5.712 GHzの RF 信号を分配し なければならない。また、ポンプ・プロー ブ実験などの XFEL を用いた解析実験を行 う際には利用者が X 線レーザーの到達する タイミングを知る必要があるため、発生側 から利用者側にパルス幅100 fs以下の X 線 レーザーの来るタイミングを伝達しなけれ ばならない。このとき求められる要求値は RF 位相揺らぎが0.007 rad以下、パルスタイ ミングの揺らぎ(以下タイミングジッター) が50 fs以下となっている。

図 2 XFEL 概略図

2. 原理

2.1. 光周波数コム

今回は RF 信号とパルスタイミングを同時に伝送するため、伝送信号には光周波数 コムを用いた。光周波数コムは周波数領域 では縦モード間のビートとして RF 信号を 伝送でき、時間領域ではパルスタイミング をクロックとして伝送できるためである。

図 3 周波数領域で見た光周波数コム

図 4 時間領域で見た光周波数コム

今回は株式会社光コムの位相変調型光周波 数コム発生器(OFCG)を用いた。発生原 理は EOM(Electro Optic Modulator)に より入射光に RF で位相変調をかけること により入射光の周波数を中心にサイドバン ドを生成し、ファブリ・ペロー共振器で増 幅することにより光周波数コムを生成する。

図 5 EOM を用いた光周波数コム発生

2.2. ファイバ長安定化回路

光ファイバには光の高い周波数による高精 度伝送が可能で、電気的外乱に強く、電気 信号を電線で伝送するのに比べ、低減衰で 長距離伝送が可能であるという長所がある 反面、熱や振動に敏感でその影響が位相雑 音として現れるという欠点がある。そのた め、熱や振動によるファイバ長の変化を抑 え、位相雑音を抑制するためにファイバ長 安定化回路を用いた。この回路は非対称マ イケルソン干渉計を構成しており、光の位 相によりファイバの光路長を測定する。光 源には10⁻¹¹の安定度を持つ波長1550 nm

図 6 ファイバ長安定化回路概略図

のアセチレン安定化レーザーを用いた。ま ず光源から出た光は3dBカプラーによって 参照光と計測光に分けられる。計測光は 1 kmの delay fiber を伝送し、終端に達し、 終端のファラデーローテータミラー (FRM) で偏光を 90 度回転させられ、伝送元に返さ れる。この時、計測光は偏光が90度偏光回 転しているためビームスプリッタで反射さ れ、AOM (Acousto-Optic Modulator) に よって55MHzの周波数シフトを受ける。こ の計測光と参照光で光へテロダインを行い 55 MHzのビート信号を検出し、このビート 信号をフォトディテクターで電気信号に変 換し、PFD (Phase Frequency Discriminator) に入れることによって位相変動の情報を検 出できる。これをサーボ回路に通し、ファ イバストレッチャにフィードバックするこ とによってファイバの光路長を一定に保つ。

この光路長を制御したファイバに対して、 図の緑のラインで伝送信号を 3dB カプラー から入射し、伝送させて終端の 3dB カプラ ーから出射する。なお今回の実験では、光 路長制御時ではファイバ長変化は20 µm以 下に抑えられた。

2.3. 分散シフトファイバ (DSF) 今回は光周波数コムというパルス光を伝送 信号として用いたが、パルス光をファイバ

図 7 SHG 自己相関計

に伝送させると群速度分散によりパルス幅 が拡がるという現象が起こる。この影響を 抑えるため今回は伝送ファイバには分散シ フトファイバ (DSF)を用いた。今回は古 河電工製の分散シフトファイバ (波長分 散:±3.5 ps/km/nm@1525~1575nm)を用 いた。この分散シフトファイバを評価する ため SHG 自己相関計を自作し、delay fiber が0m、1 km のシングルモードファイバ

(SMF)、800 m の分散シフトファイバを 用いた場合において自己相関波形を観測し、 パルス拡がりを調べた。その結果、分散シ フトファイバを用いた場合にはシングルモ ードファイバを用いた場合に比べパルス拡 がりを格段に抑えられ、パルス波形を保っ たまま信号伝送できることが分かった。

この分散シフトファイバを 2.2 のファイ バ長安定化回路の delay fiber に用いること

(赤:0km、青:SMF1km、緑:DSF800m)

で信号伝送システムを構築した。次に実験 として、この伝送システムの評価を行った。

3. 実験(1) RF 位相揺らぎ測定

3.1. 実験方法

まず RF 位相揺らぎの測定を行った。実 験系は図 9 に示す。

最初に作製したファイバ長安定化回路を用 いて1kmのファイバの光路長を一定に制御 した。このファイバに対して信号源から出 た5.712 GHzの基準となる RF 信号をのせた 光周波数コムを伝送した。光周波数コムは 終端のフォトディテクターで電気信号に変 換され、この信号と基準信号を比較するこ とで RF 位相揺らぎを検出した。

次に RF 位相揺らぎ検出計について説明 する。測定計は図 10 に示す。

測定計には高周波ミキサーを使った。高周 波ミキサーには温度に敏感な部品を使って いたため、温度調整装置を自作し、温度を ー定に保った。図 10 に示したように、ミ キサーに基準信号とファイバを伝送してき た RF 信号が入ると内部のフェイズシフタ により、位相がπ/2ずれた二つの信号が検出 される。これらの信号を模式的に sin と cos の式で表すことで、tan の式から位相揺ら ぎを求めた(式(1))。

$$\tan \varphi(t) = \frac{\sin \varphi(t)}{\cos \varphi(t)} = \frac{a}{b}$$
$$\varphi(t) = \tan^{-1} \left(\frac{a}{b}\right) \tag{1}$$

3.2. 実験結果

測定結果を以下に示す(青:ファイバ長 制御時、赤;ファイバ長非制御時)。

図 12 RF 位相の時間変化のアラン分散

図 11 よりファイバ長制御時では非制御 時に比べて RF 位相がほぼ一定に保たれて いることが分かる。また XFEL で使用する ために RF 位相揺らぎの要求値が0.007 rad 以下となっているが、図 12 よりファイバ 長制御時には要求値を満たす結果を得るこ とができた。

4. Timing jitter 測定

4.1. 実験方法

次に timing jitter 測定を行った。実験系 を図 13 に示す。

図 13 timing jitter 測定実験系概略図

RF 位相揺らぎ測定と同様にファイバ長安 定化回路を用い、光路長を一定に保ったフ ァイバに対し光周波数コムを伝送しtiming jitter を測定した。光周波数コムは3 dBカプ ラにより参照光と計測光に分けられ、計測 光は制御されたファイバを伝送していき、 終端の相互相関計で参照光との相互相関を 取ることにより timing jitter を測定した。 なお今回の実験では 800 m の分散シフトフ ァイバを用いた。

次に timing jitter 測定用相互相関計につ いて説明する。相互相関計を図 14 に示す。 今回は二つの相互相関計を同時に用いた。 図 13 で説明した参照光と計測光は図 14 に示すように伝送していき、非同軸で

PPLN 結晶に入射する。このとき、二つの パルスが PPLN 結晶内で重なると重なった パルス幅の面積に応じた出力の SHG (第2 高調波発生) が起こる。この SH 光をフォ トマルで観測し、それぞれの相関計から得 られる信号を(a)、(b)と置いた。ここでコー ナーキューブ1 (C.C.1)を動かすことで図 15 の上図のような相互相関波形を得る。ま た、C.C.2 と C.C.3 を動かすことにより(a) と(b)の相関波形が半波形分だけずれるよう に調整しておく。その状態で(a)、(b)を差し 引きすることにより、図 15 の下図のよう な弁別曲線が得られる。この 0 点付近での 電圧の揺らぎを見ることで、ファイバ長の

図 15 相関波形(上)と弁別曲線(下)

ことができる。timing jitter は得られた弁 別曲線から傾きを取り、測定した 0 点付近 での電圧 (V_0)の変化のデータを用いるこ とで(2)のような式から得た。

図 16 弁別曲線からの傾きの求め方

弁別曲線の傾き:a=<mark>V</mark>

timing jitter : $\tau = V_0 \cdot \frac{1}{a} = V_0 \cdot \frac{t}{V}$ (2)

また相関計上での温度による光路長の揺ら ぎを抑えるために、相関計全体を発泡スチ ロールと段ボールで作った断熱シールドで 覆うことにより、温度を一定に保った。

図 17 相互相関計(写真)

図 18 断熱シールド

図 19はファイバ長制御時のtiming jitter (赤)とファイバ長揺らぎ信号(青)を表 したものである。ファイバ長揺らぎ信号が 一定の時(ファイバ長が一定の時)には timing jitter も一定に保たれていることが 分かる。また、約3000 sで制御を外すと、 ファイバ長揺らぎ信号が大きく変動してフ ァイバ長が変化していることが分かるが、 それと同時に timing jitter も大きく変動し ており、この二つの信号には相関があるこ とが分かる。

また図 20 は timing jitter のアラン分散 を表したもので緑のラインがファイバ長非 制御時、青が制御時、赤が相関計自体の測 定限界、黄がファイバ長揺らぎ信号一定時 の結果から求められる予測値となる。図 20 より制御時の結果は相関計の測定限界で制 限されていると考えられる。しかし、要求 値が50 fs以下となり、平均時間10 s以上で は制御時において要求値を満たす結果を得 ることができた。

5. まとめ

本研究では XFEL 用の RF・パルスタイ ミングの伝送システムの開発とその評価を 行った。具体的には偏光を用いたファイバ 長安定化回路を製作しファイバ長揺らぎを 20 µm以下に制御し、信号伝送ファイバに分 散シフトファイバを用いることでパルス拡 がりを抑制した。そして完成した伝送シス テムを用いて RF 位相揺らぎと timing jitter を測定した。その結果 RF 位相揺らぎ では0.007 rad以下、timing jitter では平均 時間10 s以上において50 fs以下という要求 値を満たすことができた。

6. 今後の展望

今回の結果より timing jitter は予測値よ りより jitter を抑えることができると推測 されるが、相関計の測定限界で制限されて いることが分かった。そのため、光周波数 コムの光源により短期安定度の高い光源を 使用することにより、ノイズレベルを下げ ることができ、相関計の測定限界を下げら れるのではないかと考えられる。

参考文献

[1]M.Musha *et al*, Appl.Phys,B82,555-559(2006)
[2]J.Kim *et al*,Opt.Letter,32,9,1044-1046(2007)

4.2. 測定結果